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ABSTRACT. Genetic parameters were estimated with restricted max-
imum likelihood  for individual test-day milk, fat, and protein yields and 
somatic cell scores with a random regression cubic spline model. Test-
day records of Holstein cows that calved from 1994 through early 1999 
were obtained from Dairy Records Management Systems in Raleigh, 
North Carolina, for the analysis. Estimates of heritability for individual 
test-days and estimates of genetic and phenotypic correlations between 
test-days were obtained from estimates of variances and covariances 
from the cubic spline analysis. Estimates were calculated of genetic pa-
rameters for the averages of the test days within each of the ten 30-day 
test intervals. The model included herd test-day, age at first calving, 
and bovine somatropin treatment as fixed factors. Cubic splines were 
fitted for the overall lactation curve and for random additive genetic 
and permanent environmental effects, with five predetermined knots or 
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INTRODUCTION

There has been an increased interest in changing the type of data used for genetic 
evaluation of dairy cattle. Traditional models use data from test-day records combined into 
305-day mature equivalent lactation records. The test-day model would use test-day records 
collected at various times during the lactation. The test-day model could provide some advan-
tages compared to traditional models. These advantages would include: 1) an increased ac-
curacy of genetic evaluations for yields, 2) direct and more precise adjustments for temporary 
environmental effects on test-days, 3) end-of lactation yields would not need to be extended for 
culled cows or for cows with records in-progress (Jensen, 2001), and 4) models could include 
the shape of the lactation curve for individual cows (Schaeffer and Dekkers, 1994). Test-day 
models tend to be more complex with more equations and parameters to be estimated, which is 
the main disadvantage compared to more traditional models (Jensen, 2001).

Various test-day models have been described in reviews by Swalve (2000), Misztal et 
al. (2000), Schaeffer et al. (2000), and Jensen (2001). These models have included a multiple-
trait model with reduced rank, a repeatability model, a random regression model, and a covari-
ance function model (Ptak and Schaeffer, 1993; Schaeffer and Dekkers, 1994; Wiggans and 
Goddard, 1997; Meyer and Hill, 1997). With the multiple-trait model, each test-day is modeled 
as a separate trait. Wiggans and Goddard (1997) suggested that the many test-day traits could 
be reduced to a few traits with a canonical transformation. With the repeatability model, test-
day records within a lactation are considered to be repeated measures with fixed regression on 
days in milk, as defined by Ali and Schaeffer (1987). This model was later modified by Ptak 
and Schaeffer (1993) to adjust for test-day means at different stages of lactation.

Schaeffer and Dekkers (1994) and Jamrozik and Schaeffer (1997) extended the fixed 
regression model to a random regression model that was proposed by Henderson Jr. (1982). 
With such models, the shape of the lactation curve is modeled as a function of fixed effects. 
The random genetic and permanent environmental effects associated with an individual cow 
are modeled as deviations from the fixed lactation curve. Other authors developed functions 
that model lactation curves based on the natural shape of the lactation (e.g., Wilmink, 1987). 
Kirkpatrick et al. (1990, 1994)  illustrated a method of estimating a matrix of coefficients for 
covariance functions with Legendre polynomials. Meyer and Hill (1997) demonstrated that 
models with a covariance function are equivalent to models with covariances among traits 
defined as a function of time or age. 

four intervals between days 0, 50, 135, 220, and 305. Estimates of heri-
tability for lactation one ranged from 0.10 to 0.15, 0.06 to 0.10, 0.09 to 
0.15, and 0.02 to 0.06 for test-day one to test-day 10 for milk, fat, and 
protein yields and somatic cell scores, respectively. Estimates of herita-
bility were greater in lactations two and three. Estimates of heritability 
increased over the course of the lactation. Estimates of genetic and phe-
notypic correlations were smaller for test-days further apart.
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White et al. (1999) described the use of smoothing cubic splines to model the lactation 
curve using test-day records. This random regression model consisted of fitting a series of cubic 
polynomials that are continuous and centered through knots or intervals along the lactation curve. 
White et al. (1999) explained that the spline function provided more flexibility to produce a “good” 
fit compared with polynomial functions. Another advantage of the spline models is the number of 
parameters that need to be estimated. The spline models need only four (co)variance parameters to 
be estimated (White et al., 1990), whereas the polynomial models require 0.5q(q+1) (co)variance 
parameters to be estimated, where q is the order of the polynomial (White et al., 1990). 

We estimated genetic parameters for test-day milk, fat, and protein yields and somatic 
cell scores (SCS) for lactations one, two and three of Holstein cows, with a random regression, 
cubic spline model.

MATERIAL AND METHODS

Data

Test-day yields of Holstein cows that calved from 1994 through early 1999 were obtained 
from Dairy Records Management Systems of Raleigh, North Carolina. Each cow was required to 
have 2X per day milking, 305-day mature equivalent lactation yields, with at least eight test-day 
records. Lactation records were eliminated if days in milk was less than 200 days or greater than 
350 days, if sire or dam identification was missing, lactation was initiated by abortion, or calving 
data were missing. Each test-day record was coded whether the cow was or was not treated with 
bovine somatotropin (bST). Only herds in which at least half of the cows received bST treatment 
were included in the analysis. Cows were considered bST-treated if the bST treatment started no 
later than test-day three and if bST treatment was coded for at least five consecutive test-days 
(coded 1 in analyses). Untreated cows were required not to have any bST treatment codes during 
the lactation (coded 0 in the analysis). Table 1 contains the number of test-day observations after 
edits that were used in the analysis for each trait and lactation combination. Fewer test-day records 
for fat and protein yields and SCS were available because some herds recorded only milk yield. 

Table 1. Summary of the milk yield data.

Lactation 1 Lactation 2 Lactation 3

Lactation records 17,168 12,432 7886

Number of test-day records 144,139 104,266 67,618

Test-day records per cow (mean) 8.40 8.39 8.57

MODEL AND METHODOLOGY

A single-trait, random regression, cubic spline model was used to fit fixed lacta-
tion curves and deviations for each animal for both random genetic and permanent en-
vironmental components. The cubic spline model consists of a series of piecewise cubic 
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polynomials that are defined for a set of pre-assigned interval along the lactation curve. 
The model is constrained so that the cubic spline function and its first two derivatives are 
continuous at the knots (breakpoints along the lactation curve), which determine the inter-
vals (White et al., 1999). 

Verbyla et al. (1999) and White et al. (1999) demonstrated how to incorporate the 
cubic spline function into the standard mixed model when the knots are assigned before the 
analysis. The model can be written as a random regression animal model:

y = Xβ + Zss + Waa1 + Zaas + Wpepe1 + Zpepes + e

where y is a vector of test-day yields or test-day SCS. The vector β contains fixed effects, 
including fixed regression coefficients, and X is the incidence matrix for the fixed effects, 
which includes the bST code (0,1), herd test-day, covariate for age at the beginning of lacta-
tion, and a covariate for days in milk for each test-day record. The random effects are: s, a 
vector of overall spline parameters with length q-2; a1, a vector of genetic intercept (ai) and 
slope (asl) breeding value parameters for each animal of length 2m with m equal to the num-
ber of animals; as, a vector of spline breeding value parameters for the cubic spline function 
for each animal with length (q-2) ⋅ m; pe1, a vector of permanent environmental intercept 
(pei) and slope (pesl) parameters with length 2p with p equal to the number of levels of fac-
tors; pes, a vector of permanent environmental parameters for the spline function with length 
(q-2)p, and e, a vector of residual effects. The matrices Wa and Wpe are the incidence matri-
ces of the linear coefficients for animal genetic and permanent environmental effects, and 
Zs, Za, and Zpe are the incidence matrices of the spline coefficients for overall spline, animal 
genetic, and permanent environmental parameters of the spline function based on the number 
of predetermined knots. The distributions of the random effects are defined as:

s ~ N(0, Dσ2
s), as ~ N(0, A ⊗ Dσ2

as), pes ~ N(0, I ⊗ Dσ2
pes )

a
l ~ N(0, A ⊗ Φa), pe

l ~ N(0, I ⊗ Φpe), e ~ N(0,Iσ2), with
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where D is an identity matrix of dimensions (q-2) x (q-2), I are the identity matrices of appro-
priate order, and A is the animal numerator relationship matrix.

The analysis was done using ASREML to estimate (co)variance components 
(Gilmour et al., 1997). The predetermined knots were at days 0, 50, 135, 220, and 305. 
Convergence was presumed when the REML log-likelihood changed less than 0.002 from 
the previous iteration and the individual variance parameter estimates changed less than 
1%. The analysis was restarted after the first convergence until the log-likelihood value 
was considered converged. 

Φ Φ
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σ σ σ σ
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RESULTS AND DISCUSSION

Test-day milk yield 

Estimates of genetic, permanent environmental, and phenotypic variances for test-
day milk yields for the first three lactations are in Table 2, as calculated for the midpoints 
of the test-day intervals. Table 3 contains the estimates of heritabilities for the first three 
lactations. Test-day milk yields had estimates of heritability that ranged from 0.10 to 0.15, 
0.10 to 0.18, and 0.09 to 0.17 for lactations one, two, and three, respectively. Estimates of 
heritability increased steadily from test one to test 10. Estimates in later lactations were 
greater than for lactation one. The estimates of heritability were less than estimates reported 
by White et al. (1999), who used a random regression cubic spline model, Tijani et al. (1999), 
who used a random regression model using Legendre polynomials covariance functions, and 
were much smaller than estimates by Jamrozik and Schaeffer (1997), who used a random 
regression model with functions of ratios of days and the natural logarithm of days in milk. 
The estimates were similar to estimates reported by Gengler et al. (2001), using a random 
regression model with Legendre polynomials as the covariance function for lactation one. 
Estimates were less compared to later lactations. 

Table 2. Estimates of genetic variance (σ2
a), permanent environmental variance (σ2

pe), and phenotypic variance 
(σ2

p) for test-day milk yield (kg) for 10 representative days in milk (DIM) for lactations one, two, and three.

Test DIM Lactation 1 Lactation 2 Lactation 3

σ2
a σ2

pe σ2
p σ2

a σ2
pe σ2

p σ2
a σ2

pe σ2
p

1 18 3.43 20.58 36.01 5.53 35.49 57.14 6.16 42.50 66.99

2 46 3.01 17.68 32.70 4.33 29.96 50.41 5.54 34.86 58.72

3 76 2.98 17.16 32.14 4.42 28.02 48.56 5.25 32.62 56.20

4 106 3.20 18.04 33.24 5.28 28.37 49.77 5.29 33.54 57.16

5 136 3.57 19.45 35.03 6.46 29.74 52.32 5.60 35.58 59.51

6 167 3.96 20.37 36.33 7.44 30.62 54.18 6.13 36.25 60.71

7 196 4.31 20.64 36.95 8.11 30.82 55.05 6.83 35.34 60.50

8 227 4.74 20.70 37.44 8.74 30.96 55.52 7.81 33.69 59.82

9 256 5.18 20.64 37.82 9.31 31.14 56.57 8.94 31.69 58.96

10 288 5.91 21.72 39.63 10.59 33.29 60.00 10.52 32.07 60.92

For the three lactations, the overall genetic variance decreased from test one to test 
three and then gradually increased over the course of the lactation. The permanent envi-
ronmental variances were variable during the early stages of lactations and were relatively 
constant during the mid and later stages of lactations. The estimates of genetic correla-
tions ranged from 0.34 to 0.98 for lactation one and were similar for later lactations. The 
estimates of genetic and phenotypic correlations were high between test-day milk yields 
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on test-days close together compared with yields for test-days that were more days apart. 
Estimates are similar to those reported in previous studies (Tijani et al., 1999; White et al., 
1999; Gengler et al., 2001).

Test-day fat and protein yields

Estimates of genetic, permanent environmental, and phenotypic variances for the first 
three lactations are in Tables 4 and 5 for test-day fat and protein yields, respectively. Tables 6 

Table 3. Estimates of heritability (h2) for test-day milk yield (kg) for 10 representative days in milk (DIM) for 
lactations one, two, and three.

Test DIM Lactation 1 Lactation 2 Lactation 3

1 18 0.095 0.097 0.092

2 46 0.092 0.086 0.094

3 76 0.093 0.091 0.093

4 106 0.096 0.106 0.093

5 136 0.102 0.123 0.094

6 167 0.109 0.137 0.101

7 196 0.117 0.147 0.113

8 227 0.126 0.157 0.130

9 256 0.137 0.165 0.152

10 288 0.149 0.177 0.173

Table 4. Estimates of genetic variance (σ2
a), permanent environmental variance (σ2

pe), and phenotypic variance (σ2
p) 

for test-day fat yield (kg) for 10 representative days in milk (DIM) for lactations one, two, and three.

Test DIM Lactation 1 Lactation 2 Lactation 3

σ2
a σ2

pe σ2
p σ2

a σ2
pe σ2

p σ2
a σ2

pe σ2
p

1 18 0.005 0.040 0.080 0.006 0.069 0.124 0.009 0.080 0.146
2 46 0.005 0.032 0.072 0.005 0.055 0.109 0.007 0.065 0.129
3 76 0.005 0.030 0.070 0.006 0.050 0.105 0.007 0.058 0.122
4 106 0.006 0.030 0.071 0.007 0.050 0.106 0.008 0.055 0.120
5 136 0.007 0.032 0.074 0.009 0.052 0.109 0.010 0.055 0.121
6 167 0.007 0.033 0.075 0.010 0.051 0.110 0.011 0.053 0.120
7 196 0.007 0.032 0.074 0.012 0.048 0.109 0.012 0.049 0.118
8 227 0.007 0.030 0.072 0.013 0.045 0.107 0.013 0.045 0.115
9 256 0.007 0.028 0.070 0.015 0.040 0.104 0.014 0.040 0.111

10 288 0.007 0.028 0.071 0.017 0.040 0.106 0.016 0.040 0.113
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Table 5. Estimates of genetic variance (σ2
a), permanent environmental variance (σ2

pe), and phenotypic variance 
(σ2

p) for test-day protein yield (kg) for 10 representative days in milk (DIM) for lactations one, two, and three.

Test DIM Lactation 1 Lactation 2 Lactation 3

σ2
a σ2

pe σ2
p σ2

a σ2
pe σ2

p σ2
a σ2

pe σ2
p

1 18 0.003 0.016 0.032 0.004 0.028 0.049 0.004 0.031 0.055
2 46 0.002 0.013 0.029 0.003 0.023 0.043 0.004 0.025 0.049
3 76 0.002 0.013 0.028 0.003 0.022 0.042 0.004 0.023 0.047
4 106 0.003 0.014 0.040 0.004 0.023 0.044 0.004 0.025 0.049
5 136 0.003 0.015 0.031 0.005 0.025 0.047 0.005 0.027 0.052
6 167 0.003 0.016 0.033 0.006 0.026 0.049 0.005 0.029 0.054
7 196 0.004 0.017 0.034 0.006 0.027 0.050 0.006 0.029 0.055
8 227 0.004 0.017 0.034 0.007 0.028 0.052 0.007 0.029 0.056
9 256 0.005 0.017 0.035 0.008 0.028 0.053 0.008 0.028 0.056

10 288 0.005 0.018 0.037 0.009 0.031 0.057 0.009 0.030 0.059

Table 6. Estimates of heritability (h2) for test-day fat yield (kg) for 10 representative days in milk (DIM) for 
lactations one, two, and three.

Test DIM Lactation 1 Lactation 2 Lactation 3

1 18 0.062 0.048 0.060
2 46 0.063 0.049 0.055
3 76 0.071 0.056 0.058
4 106 0.080 0.067 0.068
5 136 0.088 0.080 0.080
6 167 0.094 0.094 0.092
7 196 0.098 0.108 0.102
8 227 0.101 0.125 0.115
9 256 0.102 0.144 0.127

10 288 0.104 0.164 0.144

and 7 contain estimates of heritabilities for test-day fat and protein yields, respectively. Test-
day fat yields had estimates of heritability that ranged from 0.06 to 0.10, 0.05 to 0.16, and 0.06 
to 0.15 for lactations one, two, and three, respectively. Test-day protein yields had estimates of 
heritability that ranged from 0.09 to 0.15, 0.08 to 0.16, and 0.07 to 0.15 for lactations one, two, 
and three, respectively. Estimates of heritability for test-day fat and protein yields increased 
steadily over the course of the lactations. The estimates of heritability for test-day fat and pro-
tein yields were less than estimates reported by Tijani et al. (1999) and Gengler et al. (2001), 
who used a random regression model with Legendre polynomials as covariance functions and 
were much less than estimates by Jamrozik and Schaeffer (1997), using a random regression 
model with functions of ratios of days and natural logarithm of days in milk.
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Estimates of overall genetic variances for test-day fat and protein yields increased 
from the early to mid stages of lactation and remained constant from mid to later stages 
of lactation. Estimates of overall permanent environmental variances decreased slightly 
over the lactation. The estimates of overall genetic variance were nearly constant during 
the early part of the lactation and increased during the mid and later stages of lactation. 
Estimates of permanent environmental variances were variable during the early stages of 
lactation and remained constant during the mid and later stages of lactation. The estimates 
of genetic correlations ranged from 0.49 to 0.97 and 0.36 to 0.99 for lactation one test-day 
fat and protein yields, respectively. The estimates of genetic correlations were similar for 
the later lactations. Estimates of correlations were high between test-day fat and protein 
yields on test-days close together compared with yields on test-days that were more days 
apart. These estimates are similar to those reported in previous studies (Tijani et al., 1999; 
Gengler et al., 2001).

Somatic cell scores

Estimates of genetic, permanent environmental, and phenotypic variances for test-day 
SCS for the first three lactations are in Table 8. Table 9 contains the estimates of heritabilities 
for the first three lactations. Test-day SCS had estimates of heritability that ranged from 0.02 
to 0.06, 0.04 to 0.04, and 0.03 to 0.06 for lactations one, two, and three, respectively. The 
estimates of heritability were less than estimates reported by Haile-Mariam et al. (2001) for a 
random regression model with a second-order polynomial. 

The estimates of overall permanent environmental variance decreased and then increased 
during the early stage of lactation and were relatively constant during the mid and later stages 
of lactation. The estimates of genetic correlations ranged from 0.83 to 0.99 for lactation one and 
were similar for the later lactations. Estimates of genetic correlations among test-day SCS were 
high between test-day SCS on test-days close together compared with scores on test-days that 
were farther apart. These estimates are similar to those reported by Haile-Mariam et al. (2001). 

Table 7. Estimates of heritability (h2) for test-day protein yield (kg) for 10 representative days in milk (DIM) for 
lactations one, two, and three.

Test DIM Lactation 1 Lactation 2 Lactation 3

1 18 0.085 0.077 0.070
2 46 0.085 0.066 0.075
3 76 0.084 0.070 0.080
4 106 0.084 0.083 0.084
5 136 0.087 0.099 0.089
6 167 0.093 0.112 0.097
7 196 0.103 0.124 0.108
8 227 0.116 0.136 0.122
9 256 0.131 0.146 0.137

10 288 0.146 0.160 0.151
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CONCLUSIONS

The cubic spline model provided flexibility for estimating genetic parameters from 
test-day yields and SCS. The flexibility of the model extends to estimating genetic and per-
manent environmental (co)variances (White et al., 1999). Estimates of heritability increased 
as days in milk increased for all lactations for test-day yields and SCS. Estimates of heritabil-
ity were less than previous estimates reported with other types of random regression models. 
The smaller estimates could be due to the type of data set used in the analysis. This data set 
contained more grade cows than registered cows. Estimates of genetic parameters are usually 
lower for grade cows compared to registered cows, which may be caused by a greater chance 
of misidentification of sires and dams for grade cows.

Table 8. Estimates of genetic variance (σ2
a), permanent environmental variance (σ2

pe), and phenotypic variance (σ2
p) 

for test-day somatic cell scores for 10 representative days in milk (DIM) for lactations one, two, and three.

Test DIM Lactation 1 Lactation 2 Lactation 3
σ2

a σ2
pe σ2

p σ2
a σ2

pe σ2
p σ2

a σ2
pe σ2

p

1 18 0.073 1.434 3.097 0.137 1.790 3.485 0.105 1.612 3.291
2 46 0.081 1.234 2.903 0.108 1.521 3.186 0.094 1.377 3.046
3 76 0.097 1.233 2.920 0.108 1.493 3.159 0.103 1.363 3.040
4 106 0.117 1.341 3.049 0.125 1.594 3.276 0.121 1.468 3.162
5 136 0.138 1.484 3.213 0.146 1.724 3.428 0.142 1.604 3.320
6 167 0.157 1.570 3.317 0.160 1.766 3.483 0.159 1.669 3.401
7 196 0.172 1.591 3.353 0.163 1.710 3.431 0.168 1.650 3.382
8 227 0.187 1.579 3.356 0.162 1.594 3.314 0.175 1.586 3.334
9 256 0.199 1.544 3.333 0.158 1.442 3.157 0.179 1.493 3.245

10 288 0.215 1.584 3.389 0.166 1.372 3.096 0.191 1.483 3.248

Table 9. Estimates of heritability (h2) for test-day somatic cell scores for 10 representative days in milk (DIM) for 
lactations one, two, and three.

Test DIM Lactation 1 Lactation 2 Lactation 3

1 18 0.024 0.039 0.032
2 46 0.028 0.034 0.031
3 76 0.033 0.034 0.034
4 106 0.038 0.038 0.038
5 136 0.043 0.043 0.043
6 167 0.047 0.046 0.047
7 196 0.051 0.048 0.049
8 227 0.056 0.049 0.052
9 256 0.060 0.050 0.055

10 288 0.064 0.054 0.059
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Estimates of genetic and permanent environmental variances for test-day yields 
and SCS were higher for lactations two and three than for lactation one. Lactation two had 
estimates of variances due to genetic and permanent environmental effects in the spline 
function that were more variable than estimates for lactations one and three. Estimates of 
genetic and phenotypic correlations decreased with an increase in days between when the 
yields were measured. 

The cubic spline model may be a suitable method of estimating genetic parameters 
over the course of the lactation. In our study, the estimates of genetic parameters with the 
cubic spline model were comparable to estimates found with other methods. The major advan-
tage of this method is the smaller number of variance components that need to be estimated, 
when compared with polynomial and multiple trait methods. Further research would need to 
be done to determine the proper number and placement of the knots for days in milk and com-
parison of computational time needed to set up and solve equations for other methods used to 
estimate genetic parameters.
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