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ABSTRACT. Xanthomonas albilineans causes leaf scald disease, 
one of the most economically important diseases of sugarcane. Leaf 
scald is a systemic and vascular disease that can severely reduce 
productivity. The best and primary method of leaf scald control is the 
use of tolerant cultivars. Knowing that cell wall lignification is a 
plant defense mechanism and that chorismate mutase is relevant in 
this process, we analyzed the expression pattern of the chorismate 
mutase 2 (SoCM2) gene in two contrasting sugarcane cultivars by 
RT-qPCR.  A similar pattern of downregulation for the SoCM2 gene 
was observed in both cultivars; however, after 72h, the tolerant 
cultivar (RB867515) showed repression of the SoCM2 gene, while 
for the susceptible cultivar (SP78-4467), SoCM2 gene 
downregulation occurred only after 144h. Here we propose that early 
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repression of the SoCM2 gene is responsible for tolerance to X. 
albilineans infection in the sugarcane cultivar RB867515. 
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 INTRODUCTION 
 
Sugarcane (Saccharum spp.) an important source of sugar and ethanol has become 

the third most commodity in the world (1.4G) and Brazil figures as a major producer (500M 
tons) (FAOSTAT, 2017). The increasing demand for food and reneweable energy has lead 
to the expansion of sugarcane cultivated areas, as well as productivity (Hoang et al., 2015). 
However, several factors such as drought, salinity, temperature and pathogenesis can affect 
productivity (Qin et al., 2011; Safarnejad et al., 2011). 

Leaf scald, caused by Xanthomonas albilineans, is one of the most important and 
persistent sugarcane diseases (Birch, 2001), decreasing productivity and sugar quality (Rott 
et al., 2000). Xanthomonas albilineans is the only xanthomonad that produces albicidin, a 
phytotoxin responsible for a white leaf stripe with necrotic zones at leaf margin, rapid 
wilting and plant death. Albicidin is a DNA gyrase inhibitor that blocks chloroplast DNA 
replication and differentiation (Legaz et al., 2018). The disease can appear in three distinct 
forms: chronic, acute and latent. In the acute and chronic forms, the necrotic zones at leaf 
margins can easily be seen, but they are not seen in the latent form, and the bacteria can 
easily be spread by mechanical harvesting. The evolution of the latent to acute form of 
infection is not only based on the bacterial population, but also on abiotic stress and the 
cultivars in use (Rott et al., 2000; Birch, 2001).   

Plants and microorganism interaction involves a complex and integrative system 
that includes the synthesis of different compounds, such as effector proteins (AvrB, 
HopPtoD2, AvrXv4 and XopD) (Beth Mudgett, 2005) and phytotoxins (Coronatine) (He et 
al., 2004) by the bacteria that will allow the establishment of infection. On the other hand, 
plants also produce compounds to prevent the establishment of bacteria, such as: 
phytohormones (ethylene, jasmonic acid, and salicylic acid) (Kazan and Lyons, 2014), 
transmembrane receptors (FLS2) (Gómez-Gómez and Boller, 2002), cell wall lignification 
(Vance et al., 1980), among others. 

In sugarcane, several genes have been identified as involved in defense mechanisms 
to biotic stress; e.g. β-1,3-glucanase was identified in Sporisorium scitamineum sugarcane 
interaction (Su et al., 2013), NBS-LRR genes acting in systemic acquired resistance (SAR) 
against Colletotrichum falcatum fungal infection (Selvaraj et al., 2014) and glycoproteins 
that are produced to inhibit the effect of enzymes secreted by X. albilineans during invasion 
(Legaz et al., 2011). Dabbas et al., (2006) selected differently expressed genes, with 
different biological functions, when comparing two contrasting sugarcane cultivars (33 
induced and 67 repressed) and (53 induced and 47 repressed) for the susceptible and 
tolerant cultivars respectively, evidencing the complexity of the sugarcane response to X. 
albilineans. Among those, an Expressed Sequence Tag (EST) similar to chorismate mutase 
was induced.  

It is known that chorismate mutase (CM) catalyzes the conversion of chorismate to 
prephenate and this, in turn, will participate in the biosynthesis of the aromatic amino acids 
phenylalanine and tyrosine, precursors of secondary metabolites such as lignin, alkaloids 
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and cinnamic acid (Mobley et al., 1999; Anterola and Lewis, 2002; Tzin and Galili, 2010; 
Westfall et al., 2014). In Arabidopsis, three chorismate mutase isoforms (CM1, CM2 and 
CM3) were identified (Woodin et al., 1978); CM1 and CM3 are located in the plastids, 
while CM2 is found in the cytosol (Eberhard et al., 1996; Mobley et al., 1999).  

Knowing that the membrane lignification is one of the main plant defense 
mechanisms and that chorismate mutase is relevant in this process, we analyzed the 
expression pattern of the chorismate mutase 2 (SoCM2) gene in two contrasting sugarcane 
cultivars by RT-qPCR. 

MATERIAL AND METHODS 

Biological material  
 
Inoculation experiments were conducted at IAC (Sugarcane Center of the 

Agronomic Institute of Campinas, at Ribeirão Preto, Brazil) in a greenhouse using healthy 
plants derived from disease-free tissue-cultured plantlets of sugarcane cultivars: SP78-4467 
(sensitive to X. albilineans Cultivar - SXaC) and RB867515 (tolerant to X. albilineans 
Cultivar - TXaC).  Plants were grown in individual pots containing a mixture of soil, sand, 
pine, and coconut bark substrate at 3:1:1:1 proportion. Twenty-five sugarcane stalks per 
cultivar were inoculated by the decapitation method using X. albilineans strain IACXa11, 
considered one of the most aggressive X. albilineans isolates found in Brazil (Tardiani et 
al., 2014), as described by Rott et al., (2011) with modifications. Stalks were cut off using 
sterile scissors just above leaf+2, and inoculated using 100 µL of bacterial suspension 
calibrated to 1x108 CFU mL-1 in sterile PBS buffer. Control plants were inoculated using 
100 µL of sterile PBS buffer. Leaf samples from inoculated and control plants were 
collected at 24, 72, 144, 360, and 720 h after inoculation, immediately frozen in liquid 
nitrogen, and stored at -80°C for further processing.  

RNA extraction 
 
Total RNA was extracted from 200 mg of leaf tissue using the Trizol reagent 

(Invitrogen, USA), following the manufacturer's recommendations. After extraction, total 
RNA was quantified in NanoPhotometer P360 (Implen, Germany) and its quality was 
evaluated by denaturing agarose gel electrophoresis.  

RT-qPCR  
 
For the chorismate mutase 2 (SoCM2) gene expression analyses, a quantitative real 

time polymerase chain reaction (RT-qPCR) was performed. First strand cDNA was 
synthesized from total RNA using the RevertAid First Strand cDNA Synthesis kit (Thermo 
Fisher Scientific, USA) according to the manufacturer´s recommendations, and the RT-
qPCR was performed using 20 ng of cDNA, 200 nM of each primer (Table 1), KAPA 
SYBR Fast qPCR Master Mix Kit (2X) Universal (Kapa Biosystems, USA), and water with 
final volume of 20 μL. In RT-qPCR experiments, cDNA concentration was standardized for 
each sample, dissociation curve analysis was performed to check primer specificity, and teal 
time PCR was carried out in a Stratagene MX3005P thermocycler, (California, USA). 
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Thermal cycling conditions were as follows: 95°C for 3 min, followed by 35 cycles of 95°C 
for 15 s, 60°C for 30 s, and 72°C for 30 s. The dissociation curve was constructed based on: 
95°C - 1 m; 55°C - 30 s, and 95°C - 30 s. 

 
 

Table 1. Nucleotide sequence for primers used in RT-qPCR analyses of the sugarcane chorismate mutase 2 
(SoCM2) gene from leaves infected and not infected by Xanthomonas albilineans. 
 

Gene Sequence Amplicon (bp) 
SoCM2 F: 5’ - GCTCCCGTTATTCACTGTTG - 3’ 134 

 R: 5’- CGTCTTTGAACTTCACCTCAG - 3’  α-Tub F: 5’ - CCATTGGCAAGGAGATTGTT - 3’ 104 

 R: 5’ - TCCACCAACTGCATTGAAGA - 3’  GAPDH F: 5’ - CACGGCCACTGGAAGCA - 3’ 100 
  R: 5’ - TCCTCAGGGTTCCTGATGCC - 3’   

 
The mRNAs expression level was quantified after normalization with constitutive 

genes glyceraldehyde-phosphate dehydrogenase (GAPDH) and alpha-tubulin (α-TUB) 
(Thiebaut et al., 2012; Silva et al., 2014) used as internal controls. In the RT-qPCR 
procedure, all time points were analyzed and three biological replicates were examined to 
ensure reproducibility.  

Statistical analysis 
 
Expression levels were analyzed using the MxPro QPCR Software version 4.10 

(Stratagene, California, USA) and the relative expression values were established by the 
ratio between the expression of the target gene and the control that was considered 1. 

RESULTS AND DISCUSSION 
 
The RT-qPCR analysis revealed a similar pattern of downregulation for the SoCM2 

gene in the two cultivars. Although gene repression was evident for the two cultivars, down 
regulation was different at two points, 72 and 144 h after infection. At 24, 360 and 720 h, 
the SoCM2 gene exhibited no significant differences in expression levels (Figure 1). 

After 72h, the tolerant cultivar (RB867515) showed the first signaling in response 
to infection with repression of the SoCM2 gene expression from 0.926 to 0.565. In contrast 
in the susceptible cultivar (SP78-4467), SoCM2 gene down regulation occurred only after 
144h (0.809 to 0.278).  

As it is already known, the main difference between tolerance and susceptibility of 
plants may be a result of the timing of the response; the most tolerant plant perceives the 
pathogens and immediately activates the necessary mechanism to prevent pathogen invasion 
(Yang et al., 1997). The mechanisms utilized by sugarcane plants, especially cultivar 
RB867515 (tolerant) were activated faster, controlling the pathogenic effect caused by the 
bacterium  X. albilineans. This is reinforced by the result of the SoCM2 gene expression at 
144h for the susceptible cultivar, where it reached its maximum repression (Figure 1). 
Plants of cultivar SP78-4467 remained susceptible to the free action of X. albilineans for six 
days before their defense mechanisms signaled by SoCM2 were actually activated. In this 
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cultivar, the decrease in gene expression is probably related to late molecular recognition of 
the pathogen by the sugarcane plant. 

 

 
Figure 1. Relative expression profile of the SoCM2 gene in the leaves of cultivars SP78-4467 (susceptible) and 
RB867515 (tolerant) submitted to infection by Xanthomonas albilineans during the periods of 24, 72, 144, 360 
and 720 h, compared to control plants. The relative expression values were established by the ratio between the 
expression of the target and the control gene, which was considered 1. 

 
Chorismate mutase 2 is a cytosolic enzyme, and the reason for its presence in plants 

is still unknown (Westfall et al., 2014); however, repression of the CM2 gene has been 
associated with plant defense mechanisms in Arabidopsis thaliana leaves infected with 
Fusarium oxysporum (Eberhard et al., 1996) and wounding stress (Mobley et al., 1999). 

During X. albilineans infection, the cell wall begins to be degraded, and it is worth 
mentioning that X. albilineans has 19 enzymes that degrade the cell wall of the host (Pieretti 
et al., 2009).  As the need for protein in the lignification process increases, SoCM2 is 
repressed and releases chorismate to be used by CM1 and CM3 (primary metabolism) for 
the production of aromatic amino acids, e.g. phenylalanine and tyrosine required for the 
biosynthesis of lignin precursors (Lewis and Yamamoto, 1990). CM2 is modulated by 
lignin precursors (Woodin et al., 1978); when the lignification process occurs by the 
induction of CM1 and CM3, the CM2 gene is repressed, as had been reported by Eberhard 
et al., (1996) CM1 increases in A. thaliana during fungal infection. CM2 has higher 
catalytic efficiency than the other two isoforms (CM1 and CM3), probably because it is in 
an environment (cytosol) with low supply of Chorismate, since all mechanisms for amino 
acid biosynthesis are found in plastids (Westfall et al., 2014). 

Our results show that in the RB867515 cultivar, the repression of SoCM2 after 72 h 
of infection releasing Chorismate for CM1 and CM3 to produce aromatic amino acids to be 
used in the lignification process can be responsible for its pathogen tolerance capacity 
(Figure 2). 
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Figure 2. Role of the CM2 sugarcane gene in response to Xanthomonas albilineans infection. During the 
infection process, the bacterium causes physical damage to the plant, triggering the defense process through 
lignification. CM1 and CM3 are upregulated (blue arrow), and later the lignification precursors signal to SoCM2 
to be downregulated (red arrow), making all the chorismate available in the plastid only for CM1 and CM3. * 
Early repression in response - ** Later repression in response. 

 
Here we describe how SoCM2 can influence the lignification process in sugarcane. 

The CM2 decrease will lead to the increase of CM1 and CM3 expression, increasing the 
production of aromatic amino acids essential in the lignification process. 

CONCLUSIONS 
 
The early repression of SoCM2 gene appears to be responsible for the RB867515 

sugarcane cultivar tolerance capacity to Xanthomonas albilineans infection. 
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