Methodology ## Molecular cytogenetic characterization of the Aegilops biuncialis karyotype J. Wang¹, W. Zhang^{1,2}, H. Zhao³, F.R. Li¹, Z.G. Wang¹, J. Ji^{1,2}, X.Q. Zhang², D.W. Wang² and J.M. Li^{1,2} ¹Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China ²State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, China ³College of Biological Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, China Corresponding author: J.M. Li E-mail: ljm@ms.sjziam.ac.cn Genet. Mol. Res. 12 (1): 683-692 (2013) Received April 24, 2012 Accepted October 4, 2012 Published March 11, 2013 DOI http://dx.doi.org/10.4238/2013.March.11.16 **ABSTRACT.** Aegilops biuncialis can be hybridized with wheat (*Triticum* spp) and has been used for wheat breeding and genetic studies. The *A. biuncialis* karyotype ($U^bU^bM^bM^b$) was investigated based on three *A. biuncialis* accessions grown in China. Two pairs of SAT chromosomes were identified as $1U^b$ and $5U^b$, with a karyotype formula of 2n = 4x = 28 = 14m + 10sm + 4st. Fluorescence *in situ* hybridization (FISH) and C-banding approaches were used to analyze the *A. biuncialis* accession chromosomes at the mitotic stage. Based on the C-banding and FISH patterns, all U^b and M^b chromosomes could be discriminated simultaneously; the three *A. biuncialis* accessions exhibited similar patterns, suggesting a common origin. The U^b genome from *A. biuncialis* resembled the U genome in the diploid species containing the U genome. The M^b genome had some differences compared to the M genome in the diploid species *A. comosa*, and it may be related to the tetraploid species possessing the M genome. A generalized ideogram was proposed for the *A. biuncialis* genome, which could be useful for standardized and accurate identification of the *A. biuncialis* karyotype and chromosomes. **Key words:** *Aegilops biuncialis*; Chromosome; Karyotype; C-banding; Fluorescence *in situ* hybridization