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ABSTRACT. Various approaches use gene trees to infer species 
trees produced from incomplete lineage sorting. Generally, one of 
these approaches is used to deduce the rooted species tree from a 
rooted gene tree, or another method can be used to determine the 
unrooted species tree from an unrooted gene tree. Typically, this 
unrooted species is then rooted through at least one outgroup. 
However, in theory, the unrooted gene tree can be used consistently 
and directly to infer the rooted species tree without using an 
outgroup. We used an unrooted gene tree with the assumption of a 
multispecies coalescent model to infer the rooted species tree by 
using the approximate Bayesian computation (ABC). In certain cases, 
this could be useful, especially when it is hard to locate a fitting 
outgroup neglected by gene trees. To address the challenges of 
increasing the taxa number, an ABC was used to gauge the rooted 
species tree of a large number of taxa, using an unrooted gene tree to 
develop the rooted species tree. This is the first ABC application that 
can handle very large numbers of taxa. Based on the results, the 
Robinson-Foulds (RF) distance is generally equal to 2 when the 
species tree is in imbalance. When the shape of the species tree is 
balanced, the RF distance is normally equal to 0. Out of all shapes of 
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species trees, the most recent one is the most appropriate for every 
clade. 
 
Key words: Number of taxa; Unrooted gene tree; Outgroup; ABC method; 
Coalescent model 

INTRODUCTION 
 
Over the last decade, methods that use gene trees for inferring rooted species 

tree have experienced rapid development. According to Degnan (2018), an essential 
issue for any species tree inference is how to connect the time scale, used in the 
multispecies coalescent model in a species tree, to other evolutionary models sequentially 
used on gene trees. These methods include, for example, rooted triple consensus 
(Ewing et al., 2008), STAR (Liu et al., 2009), triplet MRP (Wang and Degnan, 2011), 
ASTRAL (Mirarab et al., 2014), and approximate Bayesian computation (ABC) strategy 
(Fan and Kubatko, 2011; Alanzi and Degnan (2017). A clear shift in methodology has 
been observed, from methods utilizing rooted gene trees as input (most procedures used 
from 2005 to 2010–2011) to strategies that utilize unrooted gene trees as inputs (most 
procedures used from 2010 to present). In certain circumstances, one can view the latter 
methods as unrooted varieties of prior rooted techniques. Some examples include pseudo 
likelihood utilizing quartets rather than rooted triples (Solis-Lemus and Ane, 2016) and an 
unrooted copy of the standard required for minimizing deep coalescence (MDC) (Yu et al., 
2011). One can also view the NJst (Liu and Yu, 2011) procedure as an unrooted group from 
the prior STAR procedure (Liu et al., 2009); Allman et al., 2018a). It was observed 
whether the unrooted copy of MDC, which was applied in PhyloNet (Than et al., 2008), 
can use the unrooted gene tree as an input to produce a rooted species tree. This 
strategy is compared to ABC in Alanzi and Degnan (2017). 

In part, strategies that utilize unrooted trees are advantageous whenever fast 
likelihood programs such as RAxML (Stamatakis, 2006) and PHYML (Guindon et al., 
2010) can only give estimations of unrooted trees in the absence of a clock. Furthermore, 
rooting gene trees may result in systematic errors that go beyond the usual errors as a result 
of the estimation error for gene tree arising from short alignments or improper models for 
substitution. Specifically, even if one can consider a taxon as an outgroup of the level for 
the species tree, it does not generally follow that as it is an outgroup for any gene tree. For 
instance, Huang and Knowles (2009) conducted simulations that revealed that given six 
coalescent units (i.e., 6N generations), and after separating the root of the species tree 
including the outgroup and the root of the ingroup taxa, only a 95% probability of 
monophyly existed for the ingroup taxa. This signifies that 5% of gene trees that were 
rooted through an outgroup would be rooted improperly. 

Allman et al. (2011) obtained a theoretical result that demonstrated that when five 
or more taxa are included, the rooted species tree can be deduced utilizing the true 
distribution of unrooted gene tree topologies. The basis of this result is to know about the 
probabilities of every topology of the unrooted gene tree. It does not use information that is 
in the sequence data. In practice, a limited number of loci for sequence data are used to 
estimate the unrooted gene trees that take place from those sequence data. Thus, it can only 
estimate topology probabilities. As a result, the simplicity range of loci remains unclear due 
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to the limited numbers it uses for estimating rooted species tree and utilizing evaluated 
unrooted gene trees. Part of the reasoning for determining the rooted species tree given 
unrooted gene trees is the fact that they do not have equalities, which they can have in the 
gene tree probabilities. 

The result that Allman et al. (2011) obtained does not automatically lead to an 
approach to infer the rooted species tree. Moreover, the ABC-inspired algorithm designed 
by Alanzi and Degnan (2017) has been applied in the current study to estimate the shape of 
root from the unrooted species tree under the assumption of unknown-unrooted species tree. 
However, the type of species was inferred using the simulated method by R-package. 

Fan and Kubatko (2011) formulated the ABC algorithm and used the input data 
from a collection of gene trees. It inferred species trees through the simulation of data sets 
that bear similarities to the input data set. The prior distribution determined the species 
trees, which are used as a set of input data. After that, it measured how the observation data 
is different compared to the simulated species tree. It saves the species trees that showed the 
least difference. These species trees are then used for estimation of the species trees’ posterior 
distribution. The aim for species trees is that they are moderately nearer to the genuine 
species and are randomly chosen to be produced by data set of simulation. In this way, a 
greater similarity must be existed for the observation data set so that when compared with 
known species trees, a difference from the genuine species tree is shown.  

The method that Fan and Kubatko (2011) used is similar to ABC. However, in 
ABC strategies, simulation of an informational collection depends on the haphazardly 
selected parameters by d e t e r m i n e d  b y  prior researchers, such as Alanzi and 
Degnan (2017), and Fan and Kubatko (2011). Furthermore, it computes differences 
between both data sets, which are simulated and observed. Fan and Kubatko (2011) 
determined the normal quantities of quality tree topologies utilizing the dispersion of 
gene trees from the multispecies coalescent through COAL programming as opposed to 
recreating gene trees from the prior chosen species tree (Degnan and Salter, 2005). Buzbas 
(2012) criticized this method as it is not of genuine ABC strategy since it does not have the 
ability to simulate data sets. 

Additionally, Alanzi and Degnan (2017) made modifications to the method of Fan 
and Kubatko (2011). They utilized the standard ABC strategy for data set simulation for 
each priorly chosen parameter, which is a species tree. Moreover, the researchers utilized a 
prior result, which was made up of rooted species trees having the same unrooted topology. 
They also utilized unrooted topologies instead of the rooted ones. In spite of choosing the 
established species trees from the earlier ones, in each species tree, the recreated quality 
trees are dealt with as unrooted, taking into account the estimated separation between the 
estimated and observed sets of quality trees. 

The method we used here is similar to that of Alanzi and Degnan (2017). However, 
the ABC is applied with large amounts of taxa after randomly selected species are simulated 
at each iteration of simulation. The same step of algorithm was then used for the 
computation of the eight taxa with varying speciation and extinction rates. 

The difference between observation dataset and simulation dataset was used to 
compute the summary statistic for the ABC method. Priorly simulated species trees 
were related to small separations and after that filled in as the reason for the parameter’s 
calculable posterior distribution. In Bayesian statistics, the objective is often to work out the 
parameter’s posterior distribution supported by the data. The posterior distribution in ABC 
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is calculable providing the outline data point closer to the information. The aim is to 
approximate the posterior distribution based on the data (Sisson et al. (2007); Joyce and 
Marjoram (2008)). Thus, using adequate statistics is desirable for the summary statistics 
(information outlines that keep all useful information for the inference) (Casella and 
Berger, 2002). 

Computation of the difference between datasets is done by employing a summary 
statistic of each simulated and observed data sets. Priorly simulated species trees that 
compared to little separations filled in as reason for the estimation of the parameter’s 
posterior distribution. In Bayesian statistics, the general objective is to identify the 
parameter’s posterior distribution based on the data. The ABC approach is vital in 
circumstances at the molecular clock but it is not applicable and a suitable outgroup, which 
is hard to discover. An example of this is the study conducted by Boykin et al. (2010) about 
rooting methods for Orcuttiaea. It is likely that this method will be inefficient except if a 
small number of competitor species trees is present. 

The objective of this study is to apply the ABC method to estimate the rooted 
species tree by using the unrooted gene tree, which is considered as the first ABC 
application for large numbers of taxa. According to Allman et al. (2011), estimating rooted 
species trees from unrooted gene tree is easier to compute than an rooted gene tree. 
Moreover, Allman et al. (2018b) argues that the distribution of branch lengths in the gene 
trees gives information regarding times when the species had split and then merged 
before the final divergence. For this reason, this paper is as the first demonstration for a 
large number of taxa that uses an unrooted gene tree to estimate a rooted species tree using 
ABC method. Therefore, Mirarab and Warnow (2015) affirmed that setting X is considered 
is a problem when large numbers of taxa, few gene trees or high levels of discordance 
exist. 

The methods section below provides details of the ABC algorithm. Simulations that 
were performed using 8-, 12- and 16-taxon trees were used to determine the best strategy for 
various branch lengths and species tree topologies. 

MATERIAL AND METHODS 

The ABC Approach 
 
For ABC methods, the normal method involves a first simulation from the prior 

parameter distribution (in this situation, a species tree having branch lengths). 
Consequently, data are simulated from the parameter, which indicates that species trees 
contain gene trees. The distance between the real data set and simulated data set is then 
recorded. For this project, the observed and simulated data were made up of the topologies 
for the unrooted gene tree. The calculated difference between the real and simulated data is 
affected by the summary statistic used. Some of those variations were then utilized. The 
approach to trees was then applied with 8, 12, and 16 taxa. 

Fan and Kubatko (2011) managed this issue for eight taxa just noting rooted gene 
tree counts in the real data. After that, the number of topologies for gene tree was counted 
within the simulated data corresponding to one amongst the input trees. Nevertheless, the 
measure of correct tree topologies could still be too high, with each gene tree sometimes 
having one kind of topology (Salichos and Rokas, 2013). The researchers discovered that 
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their method was precisely accurate for trees having eight branches instead of four 
branches. It is speculated that this could be a result of the dimensionality problem. Alanzi 
and Degnan (2017) utilized splits for eight taxa. Rather than recording the counts every split 
allowed, the symmetric difference is recorded between the simulated data set of splits 
versus real data set of splits. Splits are only for 8, 12, and16 taxa. The symmetric distinction 
between the real data set of splits versus simulated data set of splits is then recorded. More 
explanation for this algorithm provided below (Figure 1). 

 

 
Figure 1. An example of how to explain computing distance using the multiset. The first row 
shows the observed data set and the second row shows the simulated data (Alanzi and Degnan, 2017). 
The multisets are sets to keep the track of the multiplicity of each element - the number of times 
needed for each element of the set occurs. 

 
Splits for trees having 8, 12, and16 taxa are registered as multisets. Multisets refer 

to sets that monitor the multiplicity of each element. Multiplicity is that the quantity of 
times for each part of the observed set. For instance, the application of multiset thought, 
Figure 1 in Alanzi and Degnan (2017), gives a test case that outlines two arrangements of 
three trees. After that, the distance got from the multisets of splits was computed. The 
distance D = |Sobs \ Ssim| + |Ssim \Sobs| refers to the total sizes of the set variations. This 
algorithm below was adapted from the research. 

Algorithm 
 
By Simulation the observed gene tree that used to extract the splits to multiset 
Sobs. 
It Begins with ܬ	 = 	1. 
By simulation the species tree from the prior distribution to have the rooted species 

tree. 
By simulation the gene trees obtained a species tree from the prior distribution from 

the third step, which used the Hybrid-Lambda program to simulate t h e  gene tree and 
extracted all splits to multiset Ssim. 
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Compute the symmetric difference for splits by using this formula 
 D = | Sobs\Ssim | + | Ssim\Sobs|, for both sets. 
Redo all steps from step 2 to step 5 by increasing the value of ݆ by 1 until 

reach 
 .times ܬ
From  choose the small values obtained from stage 5. After that the size of 

species tree, which corresponds to the small value is then retained. The trees are capable 
of estimating the posterior distribution. 

In stage 5, the observation of the symmetric distance refers to the distance for 
both multisets. Accordingly, it could be noted that if the basis of the sets Sobs and Ssim 
are the observation (real) and one simulation tree, then, the Robinson-Foulds (RF) 
distance would be reduced by D (Robinson and Foulds, 1981). In the algorithm, the 
calculated value of D generalizes the RF distance when two sets of trees are present 
instead of two individual trees. This work presents a summary of the posterior 
distribution of the species tree splits as a way of inferring the rooted species tree 
through the majority-rule consensus. This study implements all the calculations by 
using a number of scripts, which includes code in R (Ihaka and Gentleman, 1996). 

Besides, this research bears similarity to Alanzi and Degnan (2017) in that 
species trees are estimated based on the steps of the algorithm. However, expected 
counts of small amounts of taxa were computed by Alanzi and Degnan (2017) under the 
assumption that the species tree is known. On the other hand, this study assumes that 
the species tree is unknown when it calculates expected counts for large numbers of 
taxa. This work used unrooted gene trees to estimate rooted species trees. The priors 
utilized were restricted to finding the root of the species tree given an unrooted tree. 

Simulation 
 
Fifty species trees were simulated using TreeSim (Stadler, 2011). A pure birth 

model was used with birth parameters of = 0.25, 0.5, 0.75, and 1.0. Four values of  
were used -0.0, 0.25, 0.5, and 0.75. This approach is similar to other species tree inference 
papers that used a pure birth model to summarize results over species trees (Huang et al., 
2010). 

The species tree serves as the parameter and the data is made up of the 
topologies of the unrooted gene tree. The researcher started with the step that involves 
data simulation and recording. The second step is the utilization of a prior to simulate 
species trees (the parameters). It then uses the simulated species trees for data 
simulation in the form of unrooted gene trees. It utilized a uniform prior for the species 
tree topologies. The prior is made up of 2n – 3 possible rooted topologies for the 
unrooted tree topology. According to Furnas (1984), exactly 2n – 3 times full rooted 
binary trees with n leaves exist for unrooted binary trees having n leaves. The study 
used an exponential distribution having a 1.0 coalescent unit’s rate for branch lengths of 
the species trees. This includes the lengths of the external branches. The study used the 
exponential prior in order to simulate a broad range of coalescent data. Once data 
simulation with those priors happens, recording of the split counts take place. 
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RESULTS 
 
The generation of these species trees took place under a pure birth model that 

had varying values of . Different results were achieved with different  
 values. In this study, branch lengths had a tendency to be longer when the values of  

were smaller. For 8-taxon trees, the consensus trees obtained for the 100 best species 
trees possessed an average RF distance that is shown in Table 1. As seen from the 
second to the fifth column, each row represents different  values while each column 
represents different  values. Columns six to nine show information about accurate (RF 
= 0). For the rest of the Table 1, the percentage of trees having an RF value of 2 or 
lower (i.e. at most one clade is wrong) is given. Based on Table 1, it was revealed that 
the smallest RF distance was observed with the smallest  value, which is 0.25, and µ 
value of 0.5. However, the highest proportion of recovering is completely accurate 
(RF = 0) for all  and µ values, when  = 1 and  = 0.5. The next highest 
proportion is when  is 0.75 and  is 0.25. It was also observed that 74% of trees 
possessed an RF value of 2 or lower when  = 1 and  = 0.5 and when  = 0.25 and 

 = 0.25. 
 

 

Table 1. Summary for eight taxa. 
 

 
 

 

Average RF Proportion of accurately RF = 0 Proportion RF of 2 or Lower 
   

0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 
1.00 2.4 2.36 2.44 2.72 0.22 0.10 0.26 0.18 0.79 0.64 0.74 0.64 
0.75 2.64 2.4 2.48 2.84 0.20 0.18 0.22 0.20 0.50 0.68 0.68 0.64 
0.50 2.76 2.32 2.28 2.52 0.12 0.18 0.14 0.08 0.62 0.70 0.62 0.56 
0.25 2.08 2.64 2.00 2.44 0.22 0.12 0.18 0.12 0.62 0.74 0.72 0.62 

 
Based on Table 2, the smallest RF distance was observed to have taken place 

with the smallest  value, which is 0.25, and  value of 0.5. Furthermore, the 
highest proportion is recovered completely and accurately (RF= 0) among all  and µ 
values, when  = 0.5 and  = 0.75. Around 70% of trees were observed to have had 
an RF of 2 or lower when  = 0.5 and  = 0.5 and  = 0.25 and  = 0.5. 
 

 

Table 2. Summary for 12 -taxa. 
 

 
 

 

Average RF Proportion of accurately RF = 0 Proportion RF of 2 or Lower 
   

0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 
1.00 3.32 2.92 3.16 3.08 0.10 0.16 0.10 0.20 0.50 0.58 0.56 0.56 
0.75 3.52 3.16 3.16 3.12 0.20 0.10 0.12 0.06 0.64 0.52 0.52 0.58 
0.50 3.00 2.92 2.44 3.00 0.14 0.10 0.16 0.20 0.52 0.62 0.70 0.54 
0.25 3.20 2.96 2.44 2.72 0.12 0.12 0.12 0.16 0.54 0.56 0.68 0.64 
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Table 3 shows that the smallest RF distance was observed with the smallest  values, 
which are 1 and 0.5, both with a µ value of 0.75. However, all values of  render the 
smallest RF distance with  = 0.75. On the other hand, proportion of completely recovered 
RF shows the highest accurately (RF = 0) with the different values of  that is greater than 
0.25 and the value of  = 0.75 while other exception was  = 0.25 and µ = 0. Moreover, 
62% and 66% of trees possessed an RF of 2 or lower with all  values when µ = 0.75, 
except for when the value of  = 0.5 and  = 0.25. In the latter’s case, 58% of trees 
possessed an RF of 2 or lower. Based on Table 2 and 3, it is observed that  had an effect 
on the estimation of the result, given an increase in the number of taxa and a decrease in the 
values of . 

Imbalanced species trees have a tendency to exhibit higher gene tree discordance 
compared to balanced species trees even if they have similar branch lengths (Degnan and 
Salter, 2005). This is a possible evidence for why the caterpillar is preferred in the posterior 
when there are absolutely arbitrary gene trees, which is the star species tree, and why there 
is underestimation of caterpillars when no variation is observed in the gene trees, which is 
the species tree has long branches. In line with this expectation, the ratio of times when there 
is an inference for the balanced species tree is lower compared to the expected value for an 
uninformative prior for the star tree. 

 
 

Table 3. Summary for 16 taxa. 
 

 
 

 

Average RF Proportion of accurately RF = 0 Proportion RF of 2 or Lower 
   

0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 
1.00 3.84 4.52 3.12 2.84 0.10 0.06 0.16 0.20 0.46 0.40 0.54 0.62 
0.75 3.60 3.24 4.00 2.96 0.08 0.14 0.10 0.16 0.44 0.52 0.42 0.62 
0.50 3.32 3.16 3.24 2.84 0.12 0.14 0.14 0.18 0.48 0.58 0.46 0.50 
0.25 2.92 3.04 2.92 2.88 0.20 0.16 0.10 0.12 0.54 0.54 0.56 0.66 

 
Furthermore, a bias exists in favor of balanced topologies when the gene tree 

topologies fail to exhibit variations (Alanzi and Degnan, 2017). This seems as dissimilar to 
the instance of deducing unrooted species trees from unrooted gene trees or rooted species 
trees from rooted gene trees, longer internal branches don’t naturally facilitate the 
inferences. Variation in the gene trees is needed to infer the rooted species tree from 
unrooted gene trees. This argument is in agreement with results obtained for all 
numbers of taxa in this study. The above figures only illustrate one iteration for every 
posterior probability on clade since every iteration provides a different species tree 
topology. This results into difficulties in computing the average of posterior probability for 
every iteration, because there is a change in the correct clade with every iteration. For 
the computation of the posterior probabilities when 8, 12, and16 taxa were possessed by the 
species tree, only split counts were utilized in the gene trees. The highly posterior 
probability tree could not be matched with the species tree. Thus, the RF distance was 
always equivalent to 2.0. In addition, the species trees are divided to two equal leaves or 
almost equally as seen in Figures 3, 4, and 5. Most of species trees that RF = 0 turned to 
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speciation events that go back in time to compute the MDC score tallies for the lowest base 
measure of these additional lineages that are required for taking place in a specific species 
tree from a gene tree. When combining the species tree with the gene trees, the development 
of MDC was initially in light of the concept to infer the rooted species tree that needed the 
least number of extra lineages. This eventually included unrooted gene trees through 
minimization for the replacement of rooted for gene trees. Hence, one would then be able to 
use it to restore a rooted species tree even when unrooted gene trees serve as input (Yu et al., 
2011). Thus, the MDC score that a gene tree contributes for a candidate species tree will be 
calculated, because of the minimum amounts of additional lineages. Moreover, the ABC 
approach in this study bears similarities to the method that Alanzi and Degnan (2017) 
developed. However, they did not make any inferences regarding the root of the gene trees. 

The MDC criterion, even though it was one of the principal criteria to be executed 
for gene trees to infer species trees (Maddison and Knowles, 2006), was determined as 
statistically conflicting when used within the rooted setting, which rooted gene trees used as 
inputs. This took place around the same time of publishing unrooted extension (Than and 
Rosenberg, 2011). This implies that it has a more prominent inclination to restore an 
inaccurate species tree the closer the quantity of info gene trees near interminability. It does 
not have frequent usage since methods with more accuracy have been developed. 
Furthermore, Alanzi and Degnan (2017) noted that PhyloNet is capable of utilizing 
unrooted MDC to restore a rooted species tree even at the four- taxa case. However, four-
taxon gene tree topologies are not capable of identifying the rooted species tree that is 
present underneath the multispecies coalescent (Allman et al., 2011). 

The ABC method for root location estimation is relatively slow because of the 
numerous computations. However, it scales sensibly well with the number of taxa. This 
study agrees with Alanzi and Degnan (2017) regarding the simulation time for various 
amounts of taxa. However, the simulation in this study is slower than that by Alanzi and 
Degnan (2017) because the species tree is not known, giving a rise to the need for 
calculating the priors for every new species tree. Alanzi and Degnan (2017) already owned 
a known species tree. Furthermore, the prior of this species and constant for all iterations 
were known as well. 

It could be concluded that the root location for 8-, 12-, 16-taxa species trees is 
hard to infer in practice within 100 loci, however, it is possible in a few cases. It could 
also be stated here that there is a need to do more work in order to observe the effect of 
adding more loci. The capacity of ABC for inferring the root additionally appears to be 
highly sensitive to the split and branch length combinations. 

One can use the ABC method with a flat or an informative prior. A flat prior was 
used in this study, with the assumption that a specific unrooted species tree was not known. 
If there is also uncertainty in the unrooted species tree, it could be reflected by including 
more rooted trees in the prior. Also, given characteristic birth-death processes, certain 
unrooted trees can be more likely than others in cases of six or more taxa (Steel, 2012). 
Thus, this could be the basis of the prior instead of making every labelled topology that has 
equal likelihood in the prior. This study concludes that the ABC method will not function 
well with very large amounts of taxa. When this method uses evaluated gene trees rather 
than known gene trees, the ABC method needs to estimate ܩ? ?  refers to ܩ gene trees. The	ܬ
the quantity of gene tree loci and J refers to the amount of data sets in simulation. This is a 
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more laborious approach since gene trees have to be estimated. However, it is also scaled 
linearly with the number of loci.  
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