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ABSTRACT. Drought stress is a serious obstacle for crop 
production, especially in arid and semi-arid areas of the world. 
Sorghum is a useful crop to grow in areas with erratic, poorly 
distributed or inadequate rainfall. To help determine the best 
alternatives, we evaluated 30 sorghum cultivars with and without 
water stress in the post-flowering plant stage. The work was carried 
out at the Experimental Station of Gorutuba, in Nova Porteirinha, 
MG, Brazil, during 2013 and 2014 seasons. The experimental design 
was a randomized complete block, with three replications and two 
water regimes. The traits evaluated were grain yield, number of days 
to flowering, plant height and 1,000 grain mass. Water restriction 
reduced the grain yield by 68.9% in 2013, 31.2% in 2014 and 50.1% 
in the average of the two years. The genotypes with best grain yield 
stability were B.Tx635, SC 720 and BR012RxSC566. Water stress 
significantly reduced plant height and grain mass. 
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INTRODUCTION 
 
Sorghum (Sorghum bicolor) is an important crop for food and feed in several 

regions of the globe, being the fifth most important cereal in the world. It presents good 
adaptation for growing in environments with a water deficit, because of its dense and deep 
root system, ability to reduce transpiration through leaf rolling and stomatal closure, and 
reduced metabolic processes under drought stress (Blum, 2004; Reddy et al., 2009). 
Consequently, sorghum has great potential for cultivation in regions and seasons subjected 
to water stress, for instance as a succession crop (soybean-sorghum) in Brazil´s Cerrado 
biome, also called an off-season crop. 

Worldwide, drought is perhaps the most significant abiotic stress limiting crop 
productivity. Water deficit is one of the main causes of damage in metabolic and 
physiological processes of plants, leading to reductions in productivity (Taiz et al., 2017). 
Plant breeding mitigates the effects of drought by creating cultivars adapted to new climatic 
conditions, and resistant to evolving pests and diseases. The exploitation of drought tolerant 
crops, such as sorghum, reduce the impact of climate changes.  

Despite being among the most drought tolerant cereals, the sorghum plant can 
suffer significant damage during its development, under strong water stress (Reddy et al., 
2011; Menezes et al., 2015). Sorghum damage caused by drought stress is greater during 
reproductive stages than during the vegetative stage.  

The area planted to grain sorghum in Brazil has not increased in the last decade. 
The main production areas are in Center-West region, in the states of Goiás and Mato 
Grosso, and in the Southeast region in the state of Minas Gerais. Sorghum yields in this 
country have failed to increase or have even declined because production has been pushed 
to marginal areas, poorer soils and late season. After harvesting soybeans, farmers sow corn 
in late January and early February. After that, they finish planting sorghum in the rest of the 
area, when the risk of water stress for corn is high. In addition, they usually plant sorghum 
without any fertilizers.  

Rainfall during the months of April to July is erratic or poorly distributed. The rains 
often have a normal start but terminate prematurely, thereby exposing the crop to post-
flowering water stress. Other times, the season may start normally, but stop temporally for 
about two to three weeks, thereby exposing the plant to early season stress referred to as 
pre-flowering water stress. 

Sorghum breeding must consider the unpredictability of the environment during the 
off-season, selecting hybrids that are tolerant to drought and efficient in nutrient uptake. 
Also, the genotypes x environments and genotype x year interactions play an important role 
in the phenotypic expression of the drought tolerance (Menezes et al., 2015; Batista et al., 
2017). Therefore, for efficient selection for rought tolerance it is essential to evaluate 
genotypes in different years and locations.  We evaluated the grain yield of 30 sorghum 
cultivars grown under two post-flowering water regimes, in order to select the more tolerant 
ones to use as parental lines in hybrids and for population development.  

MATERIAL AND METHODS 
 
Trials were carried out at the Experimental Station of Embrapa Maize and 

Sorghum, in Nova Porteirinha - MG, in the 2013 and 2014 seasons. Nova Porteirinha is in 
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The following characteristics were measured: grain yield, days to flowering, plant 
height and mass of 1,000 grains. Yield was obtained by weighing the grain mass, corrected 
to 13% moisture, transforming the results to kg ha-1. Days to flowering was estimated by 
counting the number of days between sowing and the moment when more than 50% of the 
plants in the plot achieved anthesis. The height of the plants was obtained by measuring the 
distance between the ground and the apex of the panicle at physiological grain maturity. 
The mass of 1,000 grains was obtained from two samples of grains taken randomly from 
each plot.  

Data were subjected to the individual variance analysis, considering the effect of the 
hybrids as fixed and the other effects as random. The yields under the water regimes were 
compared using the Tukey test (P<0.05). These analyses were performed using Sisvar 
Software 5.3 (Ferreira, 2011). Means of each water condition were presented using boxplot 
figures, produced by using the R package (R Development Core Team, 2016). Since the 
ratio between the greatest and the smallest mean square of the individual analysis of 
variance for grain yield did not exceed 7:1, a joint analysis of the trials was performed 
(Banzatto and Kronka, 2006). After that, the grain yield data were submitted to adaptability 
and stability analysis using the GGE biplot method (Yan et al., 2000). 

 The GGE Biplot model used was:  
 

Yij – μ - βj =  y1εi1ρj1 + y2εi2ρj2 + εij                           (Eq.1) 
 

where Yij is the grain yield average of genotype in environment j; μ is the general 
mean of the observations; βj is the principal effect of the environments;  y1 and y2 are the 
scores associated with the first (PC1) and the second principal component (PC2) 
respectively; εi1 and εi2 are the values of PC1 and PC2 of the genotype i respectively; ρj1 
and ρj2 are the values of PC1 and PC2 for the environment j respectively; and εij is the 
error associated with the model of the i-th genotype and j-th environment (Yan et al., 2000). 
The GGE biplot analysis used the GGEGui package implemented in the R software (R 
Development Core Team, 2016). 

RESULTS 
 
The number of days to flowering in 2013 under stressed (WS13) and non-stressed 

conditions (NS13) varied from 60 to 83 and from 61 to 79 respectively. In 2014, the number 
of days for flowering varied from 49 to 70 under non-stressed (NS14) and from 53 to 63 
under stressed conditions. The cultivars were earlier in 2014 than in 2013, but there were no 
significant differences between the two water conditions in the two years (Table 1; Figure 
2a). The earliest cultivars were SC704, Hegari, SC1345, Ajabsido and P898012, and the 
latest cultivars were 9503062, BR012R (BR012RxSC549), CMSXS180R and 
BR012R(BR012RxCMSXS225)-2.  

In 2013 under non-stressed conditions, the plant height varied from 83 to 166cm 
and under stressed condition from 68 to 128cm. In 2014 under non-stressed conditions, 
plant height varied from 74 to 159cm and under stressed conditions from 92 to 152cm.The 
plants were smaller under stressed conditions (Table 1; Figure 2b) and in 2013 it was 
smaller than in 2014. The shortest plant cultivars were SC1038, 9503062, SC704, BR012R 
(BR012RxSC566) and BR012R (BR012RxSC549), and the tallest plant cultivars were 
SC720, SC373, HEGARI, SC672 and SC971. 
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Grain mass was strongly reduced by water restriction, and most genotypes 
showed a significant reduction under stressed conditions (Table 1; Figure 2c). In 2013, 
under non-stressed conditions, the mean was 21g and under stressed conditions, it was 
reduced to 16g. In 2014, under non-stressed conditions, the mean was 25g, and under 
stressed conditions, it was reduced to 18g. On average, water restriction reduced the 
weight of a thousand grains by 23% in 2013 and 31% in 2014.  

 
Table 1. Average grain yield (kg ha-1) of 30 sorghum genotypes grown under water stress (WS) and non-stressed 
(NS) conditions, during the years 2013 and 2014. Nova Porteirinha, MG, Brazil. 

Treatment Genotypes NS13/1 WS13 NS14 WS14 General Mean 
1 SC704 3747 1122 2765 2035 2417 
2 SC1345 3433 1267 2808 3474 2745 
3 SC720 5020 2500 4715 3877 4028 
4 HEGARI 5010 1111 3784 2979 3221 
5 Ajabsido 4998 1467 4167 2869 3375 
6 SC373 3214 1656 3509 2707 2771 
7 P898012 5504 1900 4348 4120 3968 
8 SC103 3891 900 3734 2070 2649 
9 SC502 4541 1100 2983 2045 2667 
10 SC645 3613 1767 4617 3230 3307 
11 B.Tx2752 5011 1178 4860 3565 3653 
12 SC627 5721 1589 5052 2729 3773 
13 SC672 4987 1567 4057 2045 3164 
14 SC971 5495 2322 4439 4258 4129 
15 SC414_12 4999 1150 6246 2416 3703 
16 SC209 3852 483 2907 1559 2200 
17 SC115 3852 1044 3226 2602 2681 
18 SC1124 3143 1256 2658 2443 2375 
19 B.AZ9504 4597 1600 5410 2074 3420 
20 R.Tx436 3953 267 4218 1478 2479 
21 R.Tx2903 4334 967 5494 2550 3336 
22 SC1038 3449 556 3511 1755 2318 
23 Lian Tang Ai 5705 1489 4458 3386 3759 
24 B.Tx635 4957 1567 4835 4498 3964 
25 R.Tx432 4503 844 5679 3652 3670 
26 BR012RxSC549 4464 1844 4992 3667 3742 
27 BR012RxSC566 4919 2844 4868 4396 4257 
28 BR012RxCMSXS225 5550 2400 4165 3447 3891 
29 CMSXS180R 4439 1244 3983 2734 3100 
30 9503062 4086 1000 5053 3033 3293 
General mean 4500 1400 4251 2923 3269 
† NS13: Non-stressed in 2013 season; WS13: under water stress in the 2013 season; NS14: Non-stressed in 
the 2014 season; WS14: under water stress in the 2014 season. 

 
The grain yield average considering the four environments was 3,269 kg ha-1. 

The non-stressed trial in 2013 (NS13) presented the highest yield (4,500 kg ha-1), and 
the trial under water stress in 2013 (WS13) the lowest yield (1,400 kg ha-1). In 2014, 
under non-stress conditions, the grain yield was 4,251 kg ha-1, and the trial under water 
stress yielded 2,923 kg ha-1. Water stress reduced the grain yield by 68.9% in 2013, 
31.2% in 2014 and 50.1% in the average of the two years (Table 1; Figure 2d). Under 
non-stressed conditions, grain yield did not differ from one year to another, but under 
stressed conditions in 2013 it was lower than in 2014.The cultivars with highest yield 
under non-stressed condition were B.AZ9504, Lian Tang Ai, R.Tx432, SC627 and 
SC414_12, and the cultivars with highest yield under stressed conditions were BR012R 
(BR012RxSC549), BR012RxCMSXS225, P898012, B.Tx635, SC720, SC971 and 
BR012R (BR012RxSC566). 
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Genotypes with high stability and low yield are not desirable. High stability is a 
characteristic that only makes possible the indication of a genotype when it also presents 
outstanding performance. In this sense, the biplot "classification of genotypes" (Figure 3c) 
supports the selection, combining the adaptability and stability with grain yield of each 
genotype. This biplot presents concentric circles around the horizontal axis. The genotype 
closest to the center of the concentric circles is the most desirable one; that is it presents the 
best average performance (Yan, 2011) and is the most stable. Thus, genotype B.Tx635 (24) 
was the most desirable cultivar, because it presented high grain yield associated with high 
stability. Genotypes SC720 (3), BR012RxSC566 (27), SC971 (14), P898012 (7), 
BR012RxCMSXS225 (28), Lian Tang Ai (23) and BR012RxSC549 (26) had high grain 
yield, but were less desirable than B.Tx635 (24) due to lower stability. 

DISCUSSION 
 
The international demand for soybeans has led growers to plant all their area with 

soybean as the main summer crop, which has left corn to be planted as a second crop during 
the off-season. As a consequence, corn has pushed sorghum sowing to late planting, when 
the risk of water deficit is eminent. When sorghum is sown in February it is capable of good 
yields, but when sown after March the risk of strong water deficit is eminent, reducing 
yield.  The development of a tolerant and adapted sorghum cultivar is essential for the late 
off-season in Brazil.  

In Brazil, sorghum has been grown as a succession crop after soybean, during the 
autumn-winter season, when the risk of crop failure due to drought stress is well-known. 
The winter season is characterized by erratic, poorly distributed, and inadequate rainfall. 
The rains often have a normal start but terminate prematurely, thereby exposing the crop to 
post-flowering stress. The grain yield drop in environments with water stress involves 
various physiological processes in the plant. Water stress intensities are different from one 
place to another, and in the same place but in different years, showing the importance of 
other edaphoclimatic factors linked to water stress, and of experimental investigations in 
different years and locations. Climatic variations that occur from one year to another, and 
climatic factors, such as temperature, directly influence the intensity of water stress.  

The trials in 2013 and 2014 were sowed in June and May respectively. When water 
was cut in stressed trials (late July and late June respectively), the temperatures in 2013 
were much higher than in 2014, which explains, in part, the differences in the results 
(Figure 1). The stress under stressed condition in 2013 was greater than in 2014, resulting in 
a lower grain yield. Water stress reduced the grain yield by 68.9% in 2013, 31.2% in 2014 
and 50.1% in the average of the two years. Reduction caused by water stress were also 
observed by Menezes et al. (2015), who found reductions of 39% in grain sorghum lines 
and by Batista et al. (2017), who found reductions of 35 and 65% in two years of evaluation 
in grain sorghum hybrids. Albuquerque et al. (2011) evaluated sorghum cultivars in a semi-
arid region, obtaining an average yield of 1,710 kg ha-1 under low rainfall and 5,090 kg ha-1 
under good rainfall conditions. Sorghum is a cereal tolerant to drought, when compared to 
maize and wheat, but when it is exposed to intense water deficit, mainly during flowering, 
grain yield is significantly reduced.  

The cultivars B.Tx635 (24), SC720 (3), BR012RxSC566 (27), SC971 (14), 
P898012 (7), BR012RxCMSXS225 (28), Lian Tang Ai (23), BR012xSC549 (26), 
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B.Tx2752 (11), SC627 (12) and R.Tx432 (25) presented high yield and stability. These 
cultivars could be used as parental lines for hybrids production and/or in hybridization for 
population development. 

The cultivars SC720 (Mutava, 2009), and P898012 (Leslie, 2008) are reported as 
drought tolerant, similar to what we found. Cultivars BR012RxSC566 (27), 
BR012RxCMSXS225 (28) and BR012xSC549 (26) are tolerant to aluminum (Carvalho Jr. 
et al., 2016), which means they have a good root system; this probably helps to mitigate the 
water deficit.  

In addition to productivity, other characteristics are also important for selection of 
sorghum genotypes, under water restriction conditions, such as days to flowering, plant 
height and 1,000 grain mass. The number of days to flowering is a very important trait when 
selecting under post-flowering stress. Sorghum is sown as an off-season crop, at the end of 
the rainfall, and earlier maturity genotypes may escape from the water stress (Tardin et al., 
2013). Besides that, the use of earlier genotypes allows anticipation of harvesting (Silva et 
al., 2009). Climatic conditions during the crop growth may directly influence the crop cycle.  

There were no differences for days to flowering, under stressed and non-stressed 
conditions, in both years. This was expected, because water stress was applied after 
flowering. Comparing the two years, in 2014 the cultivars were earlier. The colder days 
(Figure 1) in the period prior to flowering, in 2013, may have increased the number of days 
to flowering. The second season has a very short period of rainfall, so one of the purposes 
of sorghum breeders is to select cultivars that are as early as possible, for drought escape, 
allowing the plant produce grain before the rain shortage. Considering the cultivars with 
highest yield and stability, SC720, P898012 and Lian Tang Ai were the earliest ones. These 
cultivars should be preferred when working for development of populations and hybrids for 
the late off-season in Brazil.   

Other important trait for grain sorghum is plant height. According to Silva et al. 
(2009), genotypes that present shorter height, associated with greater stem resistance, had 
less susceptibility to lodging or plant breakage. For grain sorghum, plant height should be 
between 100 and 150 cm (Santos, 2005), since sorghum harvesting uses adaptations of 
machines normally used for corn or soybeans, which operate in this height range. Plants 
taller than 100 cm are better because height correlates with grain yield (Tardin et al., 2013). 
In our study, this correlation occurred in the WS13 environment, in which most of 
genotypes had a shorter height and lower grain yield. The best cultivars based on yield and 
stability had a plant height between 100 and 150cm, and can be used for grain sorghum 
hybrid development. 

Decrease of grain mass in environments with water restriction can be explained by 
the reduction in the photosynthetic efficiency of the plants. Considering that the leaves are 
the centers of photoassimilate production, a reduction in photosynthesis reduces the 
exportation of these products to the other organs of the plants, especially the grains. This 
reduction in photosynthesis caused by water stress will result in lower carbohydrate 
production, which would result in a lower volume of dry matter in the grains (Magalhães 
and Durães, 2003). The grain mass was strongly reduced by water restriction, and most 
genotypes showed a significant reduction under stress conditions (Figure 2c). On average, 
water restriction reduced the weight of a thousand grains by 23% in 2013 and 31% in 2014. 
The main cause of reduced grain yield was grain size, which was severely affected by water 
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stress. This trait should be explored when selecting sorghum for drought tolerance. The 
most stable cultivars presented heavier grains under stress conditions. 

CONCLUSIONS 
 
 Water restriction significantly reduced grain yield during the two years of 

evaluation. The most stable and productive cultivars were B.Tx635, SC720, 
BR012RxSC566, SC971, P898012, BR012RxCMSXS225, Lian Tang Ai and 
BR012xSC549.The water restriction reduced plant height and grain mass. 
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