Influence of chitosan nanoparticle-mediated
C-erbB-2 gene silencing on invasion and
apoptosis of Hep-2 cells

W.R. Liu*, L.R. Cao* and G.J. Zuo*

1Teaching and Research Division of Pathology,
Medical College of Yangtze University, Jingzhou, Hubei Province, China
2Teaching and Research Division of Surgical Medicine,
Hubei College of Chinese Medicine, Jingzhou, China
3Department of Ophthalmology, First Hospital of Jingzhou, Jingzhou,
Hubei Province, China

*These authors contributed equally to this study.
Corresponding author: G.J. Zuo
E-mail: zuoguojindo@yeah.net

Received June 7, 2016
Accepted July 26, 2016
Published October 17, 2016
DOI http://dx.doi.org/10.4238/gmr15048860

Copyright © 2016 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution ShareAlike (CC BY-SA) 4.0 License.

ABSTRACT. We aimed to measure the invasion ability of Hep-2 laryngeal cancer cells after treatment with C-erbB-2-small interfering RNA (siRNA)-chitosan nanoparticles, and assess the applied value of chitosan nanoparticle-mediated C-erbB-2 interference in inhibiting laryngeal cancer invasion and metastasis. Nanoparticles of approximately 100 nm, comprising C-erbB-2 siRNA packaged with chitosan, were prepared and used to treat Hep-2 cells. Silencing of C-erbB-2 was detected by western blot and polymerase chain reaction. Cell invasion and apoptosis were estimated by transwell assay and flow cytometry, respectively. C-erbB-2-siRNA-chitosan nanoparticles
significantly down-regulated \textit{C-erbB-2} expression in Hep-2 cells (P < 0.05), and cell invasion was noticeably decreased. Moreover, they significantly induced apoptosis of the Hep-2 cells (P < 0.05). Chitosan nanoparticle-mediated \textit{C-erbB-2} gene interference can inhibit the invasion of laryngeal cancer cells and induce their apoptosis.

\textbf{Key words:} Nanoparticles; Chitosan; C-erbB-2; Laryngeal cancer; Apoptosis