Association between miR-137 polymorphism and risk of schizophrenia: a meta-analysis

M.L. Ou1,2*, G. Liu4*, D. Xiao1, B.H. Zhang1, C.C. Guo1, X.G. Ye1, Y. Liu1, N. Zhang1, M. Wang1, Y.J. Han1, X.H. Ye1, C.X. Jing1,3 and G. Yang2,3

1Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
2Department of Parasitology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
3Key Laboratory of Environmental Exposure and Health in Guangzhou, Jinan University, Guangzhou, Guangdong, China
4Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China

*These authors contributed equally to this study.
Corresponding authors: G. Yang / C.X. Jing
E-mail: guangyangphd@gmail.com / jcxphd@gmail.com

Received April 8, 2016
Accepted June 7, 2016
Published September 16, 2016
DOI http://dx.doi.org/10.4238/gmr.15038703

ABSTRACT. miR-137, a brain-enriched microRNA, is involved in the control of neuronal proliferation, differentiation, and dendritic arborization, all of which are important for proper neurogenesis and relevant to schizophrenia. miR-137 is also known to regulate many genes implicated in schizophrenia risk. Although reports have associated the miR-137 polymorphism rs1625579 with this disease, their results have been inconsistent. The aim of this meta-analysis was to evaluate the relationship between rs1625579 and schizophrenia. Data were obtained from an electronic database, and pooled odds ratios (ORs) with 95%
confidence intervals (95%CI) were used to test the association using the RevMan 5.3 software. Twelve case-control studies comprising 11,583 cases and 14,315 controls were included. An estimated lambda value of 0.46 was recorded, suggesting that a codominant model of inheritance was most likely. A statistically significant association was established under allelic (T vs G: OR = 1.15, 95%CI = 1.10-1.21, P < 0.001) and homogeneous codominant models (TT vs GG: OR = 1.32, 95%CI = 1.13-1.54, P < 0.001), but no such relationship was detected using the heterogeneous codominant model (GT vs GG: OR = 1.14, 95%CI = 0.97-1.34, P = 0.11). This meta-analysis demonstrates that the rs1625579 miR-137 genetic variant significantly increases schizophrenia risk.

Keywords: Schizophrenia; miR-137; Single nucleotide polymorphism; Meta-analysis; Fixed-effect analysis