Expression of an alfalfa (*Medicago sativa* L.) peroxidase gene in transgenic *Arabidopsis thaliana* enhances resistance to NaCl and H$_2$O$_2$

K. Teng1, G.Z. Xiao2, W.E. Guo1, J.B. Yuan1, J. Li3, Y.H. Chao1 and L.B. Han1

1Turfgrass Research Institute, College of Forestry, Beijing Forestry University, Beijing, China
2The College of Horticulture and Garden, Yangtze University, Jingzhou, China
3Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China

Corresponding authors: Y.H. Chao / L.B. Han
E-mail: chaoyuehui@163.com / hanliebao@163.com

Received November 5, 2015
Accepted February 12, 2016
Published May 23, 2016
DOI http://dx.doi.org/10.4238/gmr.15028002

ABSTRACT. Peroxidases (PODs) are enzymes that play important roles in catalyzing the reduction of H$_2$O$_2$ and the oxidation of various substrates. They function in many different and important biological processes, such as defense mechanisms, immune responses, and pathogeny. The POD genes have been cloned and identified in many plants, but their function in alfalfa (*Medicago sativa* L.) is not known, to date. Based on the POD gene sequence (GenBank accession No. L36157.1), we cloned the POD gene in alfalfa, which was named *MsPOD*. *MsPOD* expression increased with increasing H$_2$O$_2$. The gene was expressed in all of the tissues, including the roots, stems, leaves, and flowers, particularly in stems and leaves under light/dark conditions. A subcellular analysis showed that *MsPOD* was localized outside the cells. Transgenic *Arabidopsis* with *MsPOD* exhibited increased resistance to H$_2$O$_2$ and NaCl. Moreover, POD activity in the transgenic plants was significantly higher than that in wild-type
Arabidopsis. These results show that MsPOD plays an important role in resistance to H_2O_2 and NaCl.

Key words: Medicago sativa L.; Transgenic Arabidopsis thaliana; Peroxidase; Abiotic stress