Association of regulator of G protein signaling (RGS5) gene variants and essential hypertension in Mongolian and Han populations

P.Y. Chang¹, L. Qin², P. Zhao³ and Z.Y. Liu²

¹Department of Nuclear Medicine, Inner Mongolia Medical University Affiliated Hospital, Hohhot, China
²Department of Pathophysiology, Inner Mongolia Medical University, Hohhot, China
³Department of Cardiology, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, China

Corresponding author: P.Y. Chang
E-mail: changpeiyie@126.com

Received August 23, 2015
Accepted October 29, 2015
Published December 21, 2015
DOI http://dx.doi.org/10.4238/2015.December.21.37

ABSTRACT. Genetic variants of the RGS5 gene are believed to be risk factors for hypertension and cardiovascular diseases. In this study, we investigated the association between RGS5 gene variants and hypertension in the Mongolian and Han populations. Peripheral blood was obtained from 429 unrelated Mongolian herdsmen and 416 Han farmers [including essential hypertension (EH) patients and controls]. Nine tagSNPs within the RGS5 genes were retrieved from HapMap, and the samples were individually genotyped using the polymerase chain reaction/ligase detection reaction assay. The distribution of the allele frequency of rs12035879 differed significantly between hypertensive subjects and controls in the Han population, while the distribution of the allele and genotype frequencies of rs16849802 differed significantly between hypertensive subjects and controls in the Mongolian population. We
observed an association between rs16849802 and EH in the Mongolian population. The frequency of haplotype GAA was significantly higher in the EH group than in controls in the Mongolian population. However, the EH group and controls did not differ significantly in all 6 haplotypes in the Han population. The rs16849802 and haplotype GAA independently increased the risk of EH in Mongolian patients, and may be used as a risk factor for the prediction of high blood pressure.

Key words: Essential hypertension; Mongolian population; RGS5; Single nucleotide polymorphism