Characteristics of Cyclin B and its potential role in regulating oogenesis in the red claw crayfish (*Cherax quadricarinatus*)

L.M. Wang¹,², W.W. Lv², D. Zuo², Z.J. Dong¹ and Y.L. Zhao²

¹Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, China
²Life Science College, East China Normal University, Shanghai, China

Corresponding authors: Y.L. Zhao / Z.J. Dong
E-mail: ylzhao@bio.ecnu.edu.cn / dongzj@ffrc.cn

Received February 10, 2015
Accepted May 15, 2015
Published September 9, 2015
DOI http://dx.doi.org/10.4238/2015.September.9.17

ABSTRACT. Cyclin B is a regulatory subunit of maturation-promoting factor (MPF), which has a key role in the induction of meiotic maturation of oocytes. MPF has been studied in a wide variety of animal species; however, its expression in crustaceans is poorly characterized. In this study, the complete cDNA sequence of Cyclin B was cloned from the red claw crayfish, *Cherax quadricarinatus*, and its spatiotemporal expression profiles were analyzed. Cyclin B cDNA (1779 bp) encoded a 401 amino acid protein with a calculated molecular weight of 45.1 kDa. Quantitative real-time PCR demonstrated that Cyclin B mRNA was expressed mainly in the ovarian tissue and that the expression decreased as the ovaries developed. Immunofluorescence analysis revealed that the Cyclin B protein relocated from the cytoplasm to the nucleus during oogenesis. These findings suggest that Cyclin B plays an important role in gametogenesis and gonad development in *C. quadricarinatus*.

Key words: Cyclin B; cDNA cloning; Cellular localization; Spatiotemporal expression profile; Oogenesis; *Cherax quadricarinatus*