

Cloning and transformation analysis of isoflavone synthase gene into Minshan *Trifolium pratense*

H.H. Hu^{1*}, C.Q. Jing^{2*}, R. Liu¹, W.D. Li¹ and H.G. Feng²

¹College of Life Science and Technology, Sanquan School, Xinxiang Medical University, Xinxiang, China ²College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China

*These authors contributed equally to this study. Corresponding author: H.G. Feng E-mail: fenghuigen@126.com

Genet. Mol. Res. 14 (3): 9291-9297 (2015) Received November 13, 2014 Accepted March 26, 2015 Published August 10, 2015 DOI http://dx.doi.org/10.4238/2015.August.10.9

ABSTRACT. The aim of this study was to clone the isoflavone synthase (IFS) gene and establish the recombinant Minshan *Trifolium pratense*. The IFS gene was cloned from the callus of Minshan *T. pratense* using reverse transcription-polymerase chain reaction. The plant expression vector pRI101-AN-IFS was constructed and introduced into *Agrobacterium tumefaciens* strain LBA4404, and then screened under cephalosporin. IFS expression was detected by reverse transcription-polymerase chain reaction. The IFS gene was cloned successfully. Sequence analysis indicated that IFS gene had high homology with similar genes from other plants. The IFS-overexpressing callus was obtained by introducing the LBA4404-harboring IFS-pRI101-AN-IFS vector into *T. pratense* calluses.

Key words: Gene cloning; Isoflavone synthase; Sequence analysis; Callus; *Trifolium pretense*