Effect of *Rhizoma paridis* total saponins on apoptosis of colorectal cancer cells and imbalance of the JAK/STAT3 molecular pathway induced by IL-6 suppression

1The First Clinical College, Shandong University of Chinese Medicine, Changqing District, Jinan, Shandong Province, China
2Oncology Department of Changshu Hospital of Traditional Chinese Medicine, Shixin District, Changshu, Jiangsu Province, China
3Medical Oncology, Auxiliary Fuding Hospital, Fujian Traditional Chinese Medicine University of Fujian Province, Shizhong District, Fuding, Fujian Province, China
4Department of Health Toxicology, Second Military Medical University, Yangpu District, Shanghai, China
5Cancer Center, Weifang Traditional Chinese Medicine Hospital, Kuiwen District, Weifang, Shandong Province, China

*These authors contributed equally to this study.
Corresponding author: C.-G. Sun
E-mail: tengwenjing_twj@163.com

Received September 16, 2014
Accepted February 10, 2015
Published May 29, 2015
DOI http://dx.doi.org/10.4238/2015.May.29.11

ABSTRACT. We observed the influence of different concentrations of *Rhizoma paridis* total saponins (RPTS) on the apoptosis of colorectal cancer cells and explored the internal mechanism involved. We determined whether RPTS influences the interleukin-6 (IL-6)/Janus kinase (JAK)-signal transducer and activator of transcription-3 (STAT3) apoptosis
molecular pathway and looked for colon cancer-related signal transduction pathways or targets inducing apoptosis. We also cultured SW480 colorectal cancer cells using different concentrations of RPTS (10, 20, 40, and 80 µg/mL), and observed the effect of RPTS on SW480 cell morphology under a fluorescence inverted microscope. We detected serum IL-6 using the polymerase chain reaction and the expression of JAK-STAT3 protein by western blot. After treating SW480 with RPTS and Hoechst 33258 dyeing, we found that the typical apoptosis morphology had changed. Secretion of IL-6 in the serum decreased significantly (P < 0.05), and STAT3 levels were reduced. RPTS can significantly promote apoptosis in SW480 colorectal cancer cells. The mechanism may be that it suppresses the secretion of IL-6 and inhibits the IL-6/JAK-STAT3 protein signaling pathway.

Key words: *Rhizoma paridis* total saponins (RPTS); Apoptosis; IL-6/JAK-STAT3 pathway; Colorectal cancer