Cloning and sequence analysis of sucrose phosphate synthase gene from varieties of *Pennisetum* species

H.C. Li1,2, H.B. Lu1,2, F.Y. Yang1,2, S.J. Liu1,2, C.J. Bai3 and Y.W. Zhang1,2

1Beijing Key Laboratory for Grassland Science, China Agricultural University, Beijing, China
2National Energy R&D Center for Biomass, China Agricultural University, Beijing, China
3Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Tropical Crops Genetic Resources Institute, CATAS, Danzhou, Hainan, China

Corresponding author: Y.W. Zhang
E-mail: zywei@126.com

Received February 28, 2014
Accepted July 23, 2014
Published March 31, 2015
DOI http://dx.doi.org/10.4238/2015.March.31.10

ABSTRACT. Sucrose phosphate synthase (SPS) is an enzyme used by higher plants for sucrose synthesis. In this study, three primer sets were designed on the basis of known SPS sequences from maize (GenBank: NM_001112224.1) and sugarcane (GenBank: JN584485.1), and five novel SPS genes were identified by RT-PCR from the genomes of *Pennisetum* spp (the hybrid *P. americanum* x *P. purpureum*, *P. purpureum* Schum., *P. purpureum* Schum. cv. Red, *P. purpureum* Schum. cv. Taiwan, and *P. purpureum* Schum. cv. Mott). The cloned sequences showed 99.9% identity and 80-88% similarity to the SPS sequences of other plants. The SPS gene of hybrid *Pennisetum* had one nucleotide and four amino acid polymorphisms compared to the other four germplasms, and cluster analysis was performed to assess genetic diversity in this species.
Additional characterization of the SPS gene product can potentially allow Pennisetum to be exploited as a biofuel source.

Key words: Pennisetum Rich.; Sucrose phosphate synthase; Gene clone; Sequence analysis