Efficient production of transgenic melon via
Agrobacterium-mediated transformation

I. Bezirganoglu¹, S.Y. Hwang², J.F. Shaw³ and T.J. Fang¹,

¹Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, China
²Department of Entomology, National Chung Hsing University, Taichung, Taiwan, China
³Agricultural Biotechnology Research Center, Academia Sinica, Taipei, China
⁴Department of Biological Science and Technology, I-Shou University, Kaohsiung, Taiwan, China
⁵Department of Nutrition, China Medical University, Taichung, Taiwan, China
⁶Department of Molecular Biology and Genetics Erzurum Technical University, Erzurum, Turkey

Corresponding author: T.J. Fang
E-mail: tjfang@nchu.edu.tw

Received January 23, 2013
Accepted July 3, 2013
Published April 25, 2014
DOI http://dx.doi.org/10.4238/2014.April.25.7

ABSTRACT. Oriental melon (*Cucumis melo* L. var. *makuwa*) is an important fruit for human consumption. However, this plant species is one of the most recalcitrant to genetic transformation. The lack of an efficient *in vitro* system limits the development of a reproducible genetic transformation protocol for Oriental melon. In this study, an efficient transgenic production method for *Agrobacterium*-mediated transformation using cotyledon explants of Oriental melon was developed. Cotyledon explants were pre-cultivated for two days in the dark, and the optimal conditions for transformation of melon were determined to be a bacteria concentration of OD₆₀₀ 0.6, inoculation for 30 min, and two days of co-cultivation. Transgenic melon plants were produced from kanamycin-resistant shoots. A total of 11 independent transgenic plants were regenerated with a transformation efficiency...
of 0.8% of the inoculated explants. The transgenic plants were phenotypically normal and fully fertile, which might be a consequence of the co-cultivation time.

Key words: *Agrobacterium tumefaciens; nptII; Genetic transformation; Transgenic melon*