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ABSTRACT. We modeled the problem of identifying how close two
proteins are structurally by measuring the dissimilarity of their contact
maps. These contact maps are colored images, in which the chromatic
information encodes the chemical nature of the contacts. We studied
two conceptually distinct image-processing algorithms to measure the
dissimilarity between these contact maps; one was a content-based im-
age retrieval method, and the other was based on image registration. In
experiments with contact maps constructed from the protein data bank,
our approach was able to identify, with greater than 80% precision, in-
stances of monomers of apolipoproteins, globins, plastocyanins, retinol
binding proteins and thioredoxins, among the monomers of Protein Data
Bank Select. The image registration approach was only slightly more
accurate than the content-based image retrieval approach.
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INTRODUCTION

Bioinformatics is an emerging field undergoing rapid growth. This growth has mainly
been fueled by advances in DNA sequencing and mapping techniques. The Genome Project
has resulted in an exponentially growing database of genetic sequences, while the Structural
Genomics Initiative is doing the same for the Protein Data Bank (PDB; Berman et al., 2000).
One of the most active research areas in bioinformatics is the study of the relation between
protein structure and function.

Proteins are the most versatile macromolecules in living systems, serving crucial func-
tions in all biological processes. They function as catalysts and transporters, store other mol-
ecules, such as oxygen, provide mechanical support and immune protection, generate move-
ment, transmit nerve impulses, and control growth and differentiation. Proteins are composed of
sequences of amino acids, which is called primary structure. Different regions of the sequence
form organized secondary structures, such as α-helices or β-strands. The tertiary structure,
which is the three-dimensional structure of the protein, is formed by packing these structural
elements into one or several compact globular units, called domains.

The functional properties of proteins depend upon their three-dimensional structures.
These structures arise because a particular sequence of amino acids folds to generate domains
with specific three-dimensional structure, from a linear chain. It is known that the amino acid
chain completely determines the structure of a protein. However, many proteins can have the
same structure and the same function, but with very little sequence identity or similarity (see
Gan et al., 2002). The study of a protein structure is very important, because the structure deter-
mines the protein function. In Figures 1-5, we present five proteins with different topologies.

Figure 1. Human apolipoprotein from the protein data bank 1b68.

Figure 2. Whale globin from the protein data bank 101m.
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Figure 5. Human thioredoxin from the protein data bank 1aiu.

Figure 4. Pig retinol-binding protein from the protein data bank 1aqb.

Figure 3. Spinach plastocyanin from the protein data bank 1ag6.

By January 2005, the PDB had approximately 29,000 proteins in its archives; this num-
ber is increasing continuously. In 2004, approximately 5,000 proteins were added. Even though
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the PDB is now a huge data set, considerable information still needs to be added, especially
concerning protein structure.

The inter-residue chemical interactions are very important for the folding of a protein
and for keeping its shape once it is folded. Each protein family presents a specific pattern of
contacts that we believe can produce a structural signature for that family.

Here, we have used the traditional contact maps and an image-matching approach to
analyze the similarity of protein structures. We selected proteins with different topologies, and
we used PDB Select (Hobohm et al., 1992; Hobohm and Sander, 1994) to evaluate the perfor-
mance of this approach. The PDB Select database is a subset of the structures in the PDB that
does not contain (highly) homolog sequences. For each selected protein, we built the respective
contact map, which is an image in which the colors represent types of chemical interactions
between two amino acids. These contact maps are a two-dimensional representation of the
protein structure. Content-Based Image Retrieval (CBIR) and Image Registration (IR) tech-
niques are used to measure the dissimilarity between contact maps, making it possible to meas-
ure the similarity between protein structures.

In fact, a chain folds in a three-dimensional structure because of chemical interactions
between its amino acids. These interactions are also indispensable for the action of the proteins.
In the enzymes, for example, they are responsible for the binding of the substrate, and they are
involved in catalysis as well. Thus, it is as important to study the similarity of proteins based on
their internal chemical interactions, as it is to find a pattern of chemical interactions for each
protein family.

The three most important kinds of interactions are hydrophobic, electrostatic and hy-
drogen bonds:

• The hydrophobic interactions consist of the attraction between hydrophobic side
chains of residues of amino acids because of their water aversion. This makes
water-soluble proteins fold in a hydrophobic core and a hydrophilic surface.

• The electrostatic interactions are the attraction or repulsion between amino acids
with different or equal charges. Most of them are located on the surface of the
proteins.

• The hydrogen bonds are strong, short-distance interactions between amino acids
that share a common hydrogen atom. They are very important to stabilize the α-
helices and the β-strands, structures that maintain the folding of the protein (Branden
and Tooze, 1999).

We used the spatial location of these three types of interactions as the features from
which protein structure is identified. Structural comparison is a central task in biomedical re-
search. Identifying structural similarities can provide significant insights into the relation be-
tween structure and function in proteins. Reliable and efficient structural matching plays a key
role in rational drug design and in assessing the structure prediction methods. Other applications
of protein structure analysis include validation of protein models, identification of native folding
motifs among incorrect alternatives, identification of possible folds for a sequence of unknown
structure, and finding sequences compatible with given structures.

RELATED STUDIES

Protein structure has been a topic of great interest during recent years. Some researchers
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have explored the positioning of the secondary structures to classify protein structures; others
work on atomic detail and try to develop templates for each protein family. There is also some
research on contact maps, in an attempt to align protein pairs structurally.

TOPS (Westhead et al., 1998) is a web site for protein structure classification. It pre-
sents an atlas of drawings representing the structure of proteins. These are two-dimensional
schemes that display a fold as a sequence of secondary structures, along with their relative
orientation and spatial position. TOPS performs protein classification, based on pattern search-
ing, using a string-graph algorithm. Another method used for the comparison of protein struc-
tures is TOPSCAN (Martin, 2000). This system also uses secondary structures and their rela-
tive direction, proximity, accessibility, and length. This method uses the Needleman and Wunsch
dynamic programming algorithm called Needleman. The CATH (Orengo et al., 1997) database
is a hierarchical domain classification of proteins. Structures are grouped into fold families,
depending on the shape and connectivity of the secondary structures. This is done using the
structure comparison algorithm, SSAP (Orengo and Taylor, 1996). Parameters for clustering
domains into fold families were determined by empirical trials throughout the database. SCOP
(Murzin et al., 1995) is a web site of protein hierarchy. It was created by manual inspection and
abetted by automated methods, aiming to provide a description of the structural and evolutionary
relationships between proteins with known structures.

In a study on atomic detail (Chew and Kedem, 2002), coordinates of the α-carbons
were used to generate a signature for each protein, and a protein consensus was compiled for
each family of proteins. Through this consensus, it is possible to analyze the similarity of protein
families and also to classify protein structures into families. Gan et al. (2002) also examined
atomic detail to analyze the variations in the three-dimensional structures of two proteins through
their root mean square values, and they compared their findings with the sequence similarity of
these proteins.

All of these studies used information on the chemical interactions between residues in
the proteins. We believe that each family of proteins presents a specific structural signature that
can be extracted from contact map images. With our methodology, we can analyze the similarity
of interactions between the molecules. Furthermore, using dissimilarity measurements that are
well-defined mathematically and continuously valued, we can measure how much proteins from
a single family differ from each other.

Lancia (2001) and Carr et al. (2002) used the traditional contact maps to align pairs of
proteins structurally. Their maps do not differentiate among types of contacts, while ours do.
They attempted to overlap contact maps, mapping contacts of one map to contacts of the other;
this overlap gives a score that indicates how many contacts were matched. This score makes it
possible to use their methodology for protein classification. However, these algorithms are very
expensive computationally. Among the 528 alignments that they examined, only 42 were opti-
mally solved in less than an hour. With our methodology, the dissimilarity between a pair of
proteins can be computed in a minute, or even less.

MATERIAL AND METHODS

The contact maps

Contact maps are useful tools to study protein structure. In our system, each contact
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map consists of a colored image that represents different kinds of chemical interactions be-
tween all the amino acids of a protein. Our database is composed of contact map images with n
x n pixels, where n is the number of residues of amino acids of the protein sequence. We define
the color of each pixel [i,j] as:

• white if there is no interaction between amino acids i and j;
• blue if there is a hydrophobic interaction;
• green if there is an electrostatic interaction, and
• red if there is a hydrogen bond.
These maps have the limitation that amino acids can have more than one kind of inter-

action, which cannot be expressed in these two-dimensional images. So, we decided to prioritize
the electrostatic interactions, followed by the hydrogen bonds, and finally the hydrophobic inter-
actions. This is the increasing frequency order of these types of contact. Because of the high
frequency of the hydrophobic interactions, we believe that ignoring a few of them will not affect
the general distribution of these contacts.

Also, since the value of n varies from a protein to another, all the images must be
normalized to the same dimensions before applying the image-matching algorithms.

In Figures 6-10, we present plots of protein chemical interactions as contact map im-
ages in our database. These figures came from the proteins presented in Figures 1, 2, 3, 4, and
5, respectively.

Figure 6. Contact map of apolipoprotein from the protein data bank 1b68 (Figure 1). The hydrophopic interactions are
presented in blue, the electrostatic interactions in green and the hydrogen bonds in red.
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Figure 7. Contact map of globin from the protein data bank 101m (Figure 2).

Figure 8. Contact map of plastocyanin from the protein data bank 1ag6 (Figure 3).
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Figure 9. Contact map of pig retinol-binding protein from the protein data bank 1aqb (Figure 4).

Figure 10. Contact map of thioredoxin from the protein data bank 1aiu (Figure 5).
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With the increasing growth rates of the public protein databases, as observed in the
PDB, retrieving relevant proteins from a given query is becoming a difficult task. Current data-
base searches are performed by text query on protein identifications, names and other features,
but all of them include analyses of structural similarity. Using contact maps, as visual represen-
tations of proteins, allows us to use an image-matching methodology in order to analyze struc-
tural similarity between them. Hence, we expect to, given a specific protein, select the protein
maps that have similar interaction patterns and thus similar protein structures.

The database

We can distinguish among different kinds of chemical interactions through the different
colors in the images in our database. This is useful because each type of interaction has a
different rule in the folding and in the activity of the proteins. The contact maps contain informa-
tion about the hydrophobic and electrostatic interactions and about the hydrogen bonds, the main
interactions that govern the folding of a protein. The cut-off distances between amino acids
used to select the contacts presented in the map were [2.0, 3.8] Å for hydrophobic contacts,
[2.0, 6.0] Å for the electrostatic interactions and [2.0, 3.2] Å for the hydrogen bonds. There are
other kinds of contacts that we intend to analyze in the future.

All biological data came from the PDB. The contact maps were generated using a
module of STING (Neshich et al., 2003). To test the performance of our approach, we selected
all the monomers with five different protein topologies from the PDB. We selected the globins,
which are the oxygen carriers in the muscles and the blood and which are very well-studied
proteins. This family of proteins is composed only of α-helices. There are 224 globins in the
PDB. We also used the 13 apolipoproteins, which are lipoproteins composed of bundled α-
helices. The plastocyanins are electron transporters, composed mostly of β-sheets. We found
15 of them in the PDB. Another family used is the retinol-binding proteins (RBP), which are
also composed of β-sheets, but are barrel shaped. There are actually 18 of them in the PDB.
Finally, we used the thioredoxins, which are electron transporters composed of both α-helices
and β-sheets. We found eight of them in the PDB. The identifications of all of this test set are
indicated in Table 1.

Our objective was to retrieve all proteins of similar structures, within a mixture with
other proteins of different topologies. We tested this with 187 proteins of different topologies.
These proteins are all monomers of the PDB Select list (Table 2).

Image-matching methodology

We examined how different image-matching approaches may be used to compute meas-
ures of structural similarity between two arbitrary proteins from their contact maps. In particu-
lar, we consider two conceptually distinct ways of treating this problem: as a CBIR problem or
as a problem of IR.

CBIR is a scientific discipline largely based on the notion that it is ideally possible to
perform some form of semantics-preserving compression (Pentland et al., 1994) of each image
in a database into a signature vector, which should be as small as possible to maximize the
efficiency of image-based queries to the database later on. Usually, such signature vectors are
computed from low-level primitives and their perceptual groupings (Mojsilovic et al., 2004), i.e.,
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Table 1. Protein data bank identification for the protein families used in our experiments.

Protein family PDB identification

Apolipoproteins 1aep, 1b68, 1bz4, 1ea8, 1gs9, 1h7i, 1le2, 1le4, 1lpe, 1nfn, 1nfo, 1or2, 1or3

Globins 101m, 102m, 103m, 104m, 105m, 106m, 107m, 108m, 109m, 110m, 111m, 112m, 1a6g,
1a6k, 1a6m, 1a6n, 1abs, 1ajg, 1ajh, 1ash, 1azi, 1b0b, 1b2v, 1bje, 1bvc, 1bvd, 1bz6, 1bzp,
1bzr, 1ch1, 1ch2, 1ch3, 1ch5, 1ch7, 1ch9, 1cik, 1cio,1co8, 1co9, 1cp0, 1cp5, 1cpw, 1dlw,
1dly, 1dm1, 1do1, 1do3, 1do4, 1do7, 1dti, 1dtm, 1duk, 1duo, 1dwr, 1dws, 1dwt, 1dxc, 1dxd,
1ebc, 1ebt, 1eca, 1ecd, 1ecn, 1eco, 1emy, 1f63, 1f65, 1f6h, 1fcs, 1flp, 1gdi, 1gdj, 1gdk,
1gdl,1gjn, 1h1x, 1hbg, 1hjt, 1hlb, 1hlm, 1hrm, 1hsy, 1iop, 1irc, 1j52, 1jdo, 1jl6, 1jl7, 1jp6,
1jp8, 1jp9, 1jpb, 1jw8, 1kfr, 1kr7, 1lh1, 1lh2, 1lh3, 1lh5, 1lh6, 1lh7, 1lhs, 1lht, 1ltw, 1lue,
1mba, 1mbc, 1mbd, 1mbi, 1mbn, 1mbo,1mbs, 1mcy, 1mgn, 1mlf, 1mlg, 1mlh, 1mlj, 1mlk,
1mll, 1mlm, 1mln, 1mlo, 1mlq, 1mlr, 1mls, 1mlu, 1mnh, 1moa, 1mob, 1moc, 1mod, 1moh,
1mti, 1mtj, 1mtk, 1mym, 1myt, 1myz, 1mz0, 1n9f, 1n9h, 1n9i, 1n9x, 1naz, 1npf, 1npg,
1nz2,1nz3, 1nz4, 1nz5, 1o16, 1obm, 1ofj, 1ofk, 1q1f, 1rse, 1rtx, 1spe, 1swm, 1tes, 1tu9,
1utg, 1uvy, 1v07, 1v5h, 1vxa, 1vxb, 1vxc, 1vxd, 1vxe, 1vxf, 1vxg, 1vxh, 1wla, 1xch, 1yma,
1ymb, 1ymc, 1yog, 1yoh, 1yoi, 2cmm, 2fal, 2fam,2gdm, 2hbg, 2lh1, 2lh2, 2lh3, 2lh5, 2lh6,
2lh7, 2lhb, 2mbw, 2mga, 2mgb, 2mgc, 2mgd, 2mge, 2mgf, 2mgg, 2mgh, 2mgi, 2mgj, 2mgk,
2mgl, 2mgm, 2mm1, 2mya, 2myb, 2myc, 2myd, 2mye, 2spl, 2spm, 2spn, 2spo, 3mba,
4mba, 4mbn, 5mba, 5mbn

Plastocyanins 1ag6, 1byp, 1iuz, 1kdi, 1oow, 1plc, 1pnc, 1pnd, 2pcy, 2plt, 3pcy, 4pcy, 5pcy, 6pcy, 7pcy

Retinol-binding 1aqb, 1brp, 1brq, 1erb, 1fel, 1fem, 1fen, 1hbp, 1hbq, 1iiu, 1jyd, 1jyj, 1kt3, 1kt4, 1kt5, 1kt6,
proteins 1kt7, 1rbp

Thioredoxins 1aiu, 1faa, 1gh2, 1h75, 1tho, 1thx, 1wou, 2tir

Table 2. Protein data bank identification for all monomers of PDB Select.

PDB identification Classification Number of  residues

1c53 Electron transport 79
2ila Cytokine 145
1efm Elongation factor 158
1tia Hydrolase (carboxylic esterase) 271
1dpi Nucleotidyltransferase 546
1aat Aminotransferase 411
1ian Serine/threonine-protein kinase 328
1pho Outer membrane protein 330
1xrc Methyltransferase 377
1cne Oxidoreductase  (nitrogenous acceptor) 260
1nom Nucleotidyltransferase 242
4hb1 Designed helical bundle 44
1fdi Oxidoreductase 715
1bpm Hydrolase (α-aminoacylpeptide) 481
1rgs Kinase 264
1lfb Transcription regulation 77
1fsz Cell-division protein 334

Continued on next page
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Table 2. Continued.

PDB identification Classification Number of  residues

Continued on next page

1bbs Aspartic proteinase 331
1ysc Hydrolase (carboxypeptidase) 421
1bgw DNA-binding protein 679
2cah Oxidoreductase (H

2
O

2
 acceptor) 475

1pex Metalloprotease 192
1glv Glutathione biosynthesis ligase 299
1a0i Ligase 332
1wkd tRNA-modifying enzyme 372
1cby Toxin 227
1aod Hydrolase 274
1914 ALU domain 171
1gwz Hydrolase 280
1dtp Toxin 190
1hup C-type lectin 141
1cyw Electron transport 159
1vdc Oxidoreductase 322
1juk Lyase 247
1pdy Lyase (carbon-oxygen) 433
1ax8 Cytokine 130
1ah5 Lyase 299
8ohm Helicase 435
1a41 Isomerase 221
1c25 Hydrolase 161
1bob Acetyltransferase 306
1aln Hydrolase 294
1auq Willebrand 208
1gal Oxidoreductase (flavoprotein) 581
1cen Cellulose degradation 334
8prn Membrane protein 289
1pfo Toxin 471
1gcb DNA-binding protein 452
1grj Transcription regulation 151
1kte Electron transport 105
1am2 Intein 181
1tul Telokin-like protein 102
1ash Oxygen storage 107
1br9 Proteinase inhibitor 182
1rmd DNA-binding protein 116
1ryt Electron transport 190
1a3k Galectin 137
1pht Phosphotransferase 83
1aol Viral glycoprotein 228
1a1x Proto-oncogene 106
1tig Ribosome-binding factor 88
1btn Signal transduction protein 106
1amx Bacterial adhesin 150
1hoe Glycosidase inhibitor 74
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Table 2. Continued.

PDB identification Classification Number of  residues

Continued on next page

1uox Oxidoreductase 295
4mt2 Metallothionein 61
1sra Calcium-binding protein 151
1vid Transferase (methyltransferase) 214
1poc Hydrolase 134
1by2 Extracellular module 112
1xer Electron transport 103
3tdt Acyltransferase 274
2dtr Repressor 214
1ptq Phosphotransferase 50
1bea Serine protease inhibitor 116
1rss Ribosomal protein 140
1at0 Developmental signaling molecule 145
1alu Cytokine 157
1mai Signal transduction protein 119
1cif Electron transport (heme protein) 108
1dxy Oxidoreductase 130
1fen Transport protein 176
1rec Calcium-binding protein 185
1cpo Oxidoreductase 299
4bcl Electron transport 350
1sfp Spermadhesin 111
3tss Toxin 190
1fit Chromosomal translocation 126
1vls Chemotaxis 146
2abk Endonuclease 211
3mag mRNA processing 292
1ak0 Endonuclease 264
1mml Reverse transcriptase 251
1ayl Kinase (transphosphorylating) 532
1bdo Transferase 80
1hyp Hydrophobic seed protein 75
1tml β-amylase 286
2sak Plasminogen activator 121
1al3 Transcription regulation 237
2acy Acylphosphatase 98
1pgs Endoglycosidase 311
1nar Plant seed protein 289
1iab Zinc endopeptidase 200
1bkb Translation 136
1cv8 Cysteine protease 173
1chd Carboxyl methylesterase 198
1amf Binding protein 231
3cla Transferase (acyltransferase) 213
1ajj Receptor 37
1nkr Inhibitory receptor 195
1vie Oxidoreductase 60
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Table 2. Continued.

PDB identification Classification Number of  residues

1pdo Phosphotransferase 129
1ako Nuclease 268
1mof Coat protein 53
1dhn Pterine binding 121
1cnv Seed protein 283
1vcc DNA binding 77
1gvp DNA-binding protein 87
1ads Oxidoreductase 315
1jer Electron transport 110
1a3c Transcription regulation 166
1edg Cellulose degradation 380
16pk Kinase 415
1b6a Angiogenesis inhibitor 355
1a8e Iron transport 329
1aru Peroxidase (donor:H

2
O

2
 oxidoreductase) 336

3cyr Electron transport 107
1nif Oxidoreductase (nitric oxide(a)) 333
1mrj Ribosome-inactivating protein 247
2ilk Cytokine 155
1ppn Hydrolase (sulfhydryl proteinase) 212
1nox Flavoenzyme 200
2a0b Sensory transduction 118
1a8d Neurotoxin 452
1moq Glutamine amidotransferase 366
1a62 Transcription termination 125
1orc Gene-regulating protein 64
1kpf Protein kinase inhibitor 111
1whi Ribosomal protein 122
1rie Electron transport 127
1mla Acyltransferase 305
1opd Phosphotransferase 85
1ezm Hydrolase 298
1cyo Electron transport 88
1brt Haloperoxidase 277
2sns Hydrolase (phosphoric diester) 141
8abp Binding proteins 305
3seb Toxin 238
1g3p Minor coat protein 192
1bgf Transcription factor 124
1aba Electron transport 87
1yge Dioxygenase 839
3vub CCDB 101
1eca Oxygen transport 136
2ctc Hydrolase (C-terminal peptidase) 307
1nxb Neurotoxin (post-synaptic) 62
1ppt Pancreatic hormone 36
1rhs Transferase 293

Continued on next page
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1utg Steroid binding 70
1plc Electron transport 99
1bk0 B-lactam antibiotic 329
1dcs Oxidoreductase 279
1c52 Electron transport protein 131
1oaa Oxidoreductase 259
2pth Hydrolase 193
2sn3 Toxin 65
1amm Crystallin 174
1bx7 Anti-coagulant 51
1mun DNA repair 225
1ifc Lipid-binding protein 131
1b6g Hydrolase 310
1ctj Electron transport 89
2igd IGG-binding protein 61
1nkd Transcription regulation 59
3sil Glycosidase 379
2erl Pheromone 40
1a6m Oxygen transport 151
1cex Serine esterase 197
1ixh Phosphate transport 321
1byi Ligase 224
1aho Neurotoxin 64
1nls Agglutinin 237
2fdn Electron transport 55
3lzt Hydrolase 129
1rb9 Iron-sulfur protein 52
3pyp Photoreceptor 125
1gci Serine protease 269

Table 2. Continued.

PDB identification Classification Number of  residues

from attributes that can be measured directly in images, such as color, texture and geometric
primitives (lines, segments, curves, boundaries, junctions, etc.), and their spatial relationships in
the image, which convey higher-level semantic cues.

A strong motivation to apply CBIR techniques to the protein classification problem is
the growing size of protein databases such as the PDB. Even though indexing such large data-
bases can be a costly operation, it may be done incrementally, and once it is finished, queries to
the database are answered very efficiently. On the other hand, in spite of the fact that seman-
tics-preserving encoding of complex protein structural properties into very small vectors is pos-
sible (that is what the primary structure is), it is not clear that performing such encoding directly
from the contact maps is a computationally feasible problem.

Thus, alternatively, we propose a means of measuring how dissimilar any two proteins
are based on the cost of registering the images formed by their contact maps. The IR paradigm
(Brown, 1992) is often used to match multiple images of a single object that suffers non-rigid
deformations (Maintz and Viergever, 1998). A cost is attributed to each deformation that the
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object may suffer and the image-to-image dissimilarity is computed by finding the lowest-cost
deformation that maps one image onto the other.

A motivation to apply this idea to contact maps is that distinct proteins evolved from
common ancestral molecules, and consequently proteins with the same structure (thus similar
contact maps) can be more than 80% different in their amino acid composition. Thus, if we can
somehow model the “deformations” needed to “warp” a contact map into another, as a se-
quence of simple transformations that mimic the effects of evolutionary changes in protein
structure, the structural dissimilarity between any two proteins can be computed by finding the
minimum-cost sequence of such transformations between their contact maps.

This proposed methodology was tested with two techniques from different paradigms;
there are trade-offs in the choice between them. Like feature-based methods, CBIR techniques
tend to be more efficient with very large data sets, but on the other hand, like direct methods, IR
techniques tend to be more accurate, at least in terms of matching pairs of images that are
indeed closely related.

The content-based image retrieval approach

In order to fully specify a CBIR algorithm, it is necessary to define how the signature
vector of each possible image is generated and how the dissimilarity between two arbitrary
vectors is computed (Del Bimbo, 1999). Figure 11 presents a schematic representation of our
proposed CBIR system.

Figure 11. Content-based image retrieval (CBIR) system for protein similarity analysis. IR= image registration.

We used the Color Correlogram (Huang et al., 1997) as the image signature, the d
1

distance measure for dissimilarity analysis and image-based queries as input to the system. The
Color Correlogram expresses how the spatial correlation of pairs of colors changes with dis-
tance. It specifies the probability of finding a pixel of color j at distance k from a given pixel of
color i. Let I be an n x n image with a color space quantized into m colors c

1
,…, c

m
. Also let a

Color
correlogram

Signature
database

L1 dissimilarity
metric

Color
correlogram
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The d
1
 measure is known to be relatively insensitive to the contents of individual vector

elements. Instead, it corresponds to a weighted average of discrepancy across the entire set of
features in the image signatures. In the case of the correlograms of two images I and I’, these
weights are inversely proportional to the sum of the correlograms, i.e., the larger this sum is, the
smaller is the influence of the pair of colors (c

i
, c

j
) in the overall measure. More specifically, the

d
1
 measure for the correlogram of images I and I’ is

(Equation 4)

where 1 in the denominator avoids division by zero. Importantly, once the color correlograms of
two images have been built, the calculation time increases linearly, based on the signature vector
size to be computed, which means that queries on large databases are answered efficiently.

The image registration approach

With IR, it is not necessary to compute a signature for each image, but, as with the
Color Correlogram, this method computes a dissimilarity measure between two maps.

This methodology is loosely inspired on the Approximate Stereo work of Kutulakos
(2000), which introduced an algorithm to match multiple images in a way that is invariant within
a class of transformations called shuffle transforms. A shuffle transform is a geometric trans-
formation that causes a repositioning of individual pixels bounded by a dispersion radius, r. More
specifically, two images I and I’ are related by an r-shuffle if, and only if, for every pixel in I,
there is a pixel of identical color within a disk of radius r in I’.

distance d ≤ n be fixed a priori. Then, the correlogram of I is defined for i, j ∈ [m], k ∈ [d] as:

(Equation 1)

where the notation p
1
 ∈ I

i
 means that the color of pixel p

1
 in image I is c

i
, i.e., that p

1
 ∈ I,

I(p
1
) = c

i
.

To compute the correlogram we have to evaluate the following equation:

(Equation 2)

where h
ci
 is the color histogram value of c

i
 and

(Equation 3)
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(Equation 5)

(Equation 6)

where

Thus, to compute the dissimilarity index between a query map, and another which we
call base map, for each contact in the query map, the closest contact (of the same type) to the
corresponding position in the base map is searched, and the distance between these two posi-
tions is calculated. The distances are accumulated for all the searches. Then, the maps have
their roles inverted, such that the base map becomes the query map, and vice-versa. This
process is repeated, and the distances obtained are accumulated with the previous values. In
this way, the measure is not dependent on which one is taken as query or base map. Finally, the
accumulated distance is divided by the number of searches. The dissimilarity measure is then
defined as the mean distance in the searches.

RESULTS AND DISCUSSION

Given a database of contact map images and an algorithm, we need to use a specific
image as a query to search for similar proteins. That is, when we want to search for globins in
the database we have to use one specific globin as query. Thus, to verify the accuracy of the
methodology and of the proposed algorithms in retrieving globins, we are expected to query the
database using all the globin contact maps of the database.

Evaluation of retrieval performance

We selected five different protein families to test this proposed methodology. Our ob-
jective was to determine if the system is able to retrieve similar protein structures using each of
the proteins of each family as queries. For that, we used the well-known statistical concepts of
the confusion matrix and receiver operating characteristic (ROC) curves. A confusion matrix
(Provost and Kohavi, 1998) contains information about actual and predicted classifications done

The use of this kind of transformation in the analysis of protein structural similarity is
attractive, because its spatially localized nature preserves high-level geometric features, much
as evolutionarily feasible changes in a protein’s primary structure do. However, the notion of
dispersion radius, as stated above, is not appropriate for our application, because it is a worst-
case global property, i.e., if even one pixel in image I does not have an r-radius neighbor on I’,
then I and I’ are not related by an r-shuffle.

Here, instead, we define the concept of Average Dispersion Radius between two im-
ages as the average Euclidean distance between pixels in one image and the closest pixels with
the same color in the other image. More formally, the Average Dispersion Radius between two
n x n images is defined as:
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by a classifier and makes it possible to evaluate the performance of classification systems. This
matrix gives the true-negative, true-positive, false-negative, and false-positive rates.

ROC curves are another way to examine the performance of classifiers (Swets, 1988).
An ROC graph is a plot with the false-positive rate on the X-axis and the true-positive rate on
the Y-axis. The false-positive rate is the number of negative instances predicted as positives
divided by the number of negative instances. The true-positive rate is the number of positive
instances predicted as positives divided by the number of positive instances.

In the ROC space, the point (0,1) is the perfect classifier: it classifies all positive cases
and negative cases correctly. It is (0,1) because the false-positive rate is 0 (none), and the true-
positive rate is 1 (all). The point (0,0) represents a classifier that predicts all cases to be nega-
tive, while the point (1,1) corresponds to a classifier that predicts every case to be positive. Point
(1,0) is the classifier that is incorrect for all classifications.

In many cases, a classifier has a parameter that can be adjusted to increase true-
positives at the cost of increasing false-positives or decreasing false-positives at the cost of
decreasing true-positives. Each parameter setting provides a (false-positive, true-positive) pair
and a series of such pairs can be used to plot an ROC curve. In our algorithms, the parameter
used is a threshold that we use to decide if a protein is or is not of a given family.

An ROC curve is independent of class distribution or error costs, and it encapsulates all
information contained in the confusion matrix, since false-negatives is the complement of true-
positives and true-negatives is the complement of false-positives (Swets, 1988). These curves
provide a visual tool for examining the tradeoff between the ability of a classifier to correctly
identify positive cases and the number of negative cases that are incorrectly classified. Another
interesting feature of these curves is that the area beneath them can be used as measure of
accuracy in many applications (Swets, 1988). Another way of comparing ROC points is by
using a formula that equates accuracy with the Euclidean distance from the perfect classifier,
point (0,1) on the graph.

It is necessary to evaluate the performance of our classifiers with all the proteins of the
families as queries. By doing that, we obtained 13 curves for apolipoproteins, 224 for globins, 15
for plastocyanins, 18 for RBPs, and 8 for thioredoxins. Each curve was a result of retrieving the
proteins of a specific family (among the above) from the database of 187 proteins from PDB
Select. We produced average curves with the standard errors for each protein family (Figures
12-16).

The values of the areas beneath each average curve and the false-positive rate and
true-positive rate for the better cases, that is, the points of the curves that present the smaller
Euclidean distances to point (0, 1) were calculated (Table 3). These rates are the ones obtained
with the threshold that presented the best trade-off between the false-positive and true-positive
rates.

We can see that it is possible to analyze the structural similarity between proteins and
also to classify them using only the information about chemical interactions between their resi-
dues (Table 3). We used five protein families of quite different topologies mixed with all the
monomers of PDB Select, which is a representative subset of the PDB, and we were always
able to identify the families with an average precision above 80%.

The IR approach gave slightly better results than CBIR for almost all the protein fami-
lies. The rightness probabilities (areas beneath the curves) were about 0.63% higher on aver-
age, and the standard errors were also smaller.
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Figure 13. Receiver operating characteristic curve for content-based image retrieval (CBIR) and image registration (IR)
approaches for the retrieval of 224 globins among the 187 different proteins.

Figure 12. Receiver operating characteristic curve for content-based image retrieval (CBIR) and image registration (IR)
for the retrieval of 13 apolipoproteins among the 187 different proteins.
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Figure 15. Receiver operating characteristic curve for content-based image retrieval (CBIR) and image registration (IR)
approaches for the retrieval of 18 retinol-binding proteins among the 187 different proteins.

Figure 14. Receiver operating characteristic curve for content-based image retrieval (CBIR) and image registration (IR)
approaches for the retrieval of 15 plastocyanins among the 187 different proteins.
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Figure 16. Receiver operating characteristic curve for content-based image retrieval (CBIR) and image registration (IR)
approaches for the retrieval of 8 thioredoxins among the 187 different proteins.

The protein families that gave the best results in classification also had the smallest
structural deviations. This was the case for plastocyanins and RBPs. The thioredoxins gave the
worse results, and we can see that there are important structural deviations in these proteins.
These deviations can add, move or delete some of the inter-residue contacts. Some examples of
alignments are presented in Figures 17-21.

Evaluation of the dissimilarity measure through structural alignments

To analyze the reliability of the dissimilarity indexes of our proposed algorithms, we

Table 3. Area under receiver operating characteristic curves, false- and true-positive rates for the experiments with
apolipoproteins, globins, plastocyanins, retinol-binding proteins (RBPs), and thioredoxins.

IR = image registration; CBIR = content-based image retrieval; FPR = false-positive rate; TPR = true-positive rate.

Apolipoproteins Globins Plastocyanins RBPs Thioredoxins

Area FPR TPR Area FPR TPR Area FPR TPR Area FPR TPR Area FPR TPR
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

IR 99.36 5.41 98.72 99.00 3.15 97.08 99.68 0.53 100.00 99.84 0.54 100.00 81.69 13.36 75.00
CBIR 98.44 8.06 93.59 94.86 14.22 88.08 95.63 18.35 92.82 97.91 2.76 88.56 89.12 21.22 85.71
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Figure 18. Whale globin (in red, PDB identified as 101m) and some of the other globins used in our tests (in blue). A.
101m - 1st place in the classification rank. B. 2spo - 33rd place in the classification rank. C. 1dxc - 65th place in the
classification rank. D. 1hsy - 129th place in the classification rank. E. 1ymc - 161th place in the classification rank. F.
2lhb - 221st place in the classification rank.

Figure 17. Human apolipoprotein (in red, PDB identified as 1b68) and some of the other apolipoproteins used in our tests
(in blue). The blue proteins are ordered by the dissimilarity indexes in a way that the first one (A) is the most similar to
1b68. A. 1ea8 - 1st place in the classification rank. B. 1le4 - 3rd place in the classification rank. C. 1nfn - 5th place in
the classification rank. D. 1gs9 - 7th place in the classification rank. E. 1or2 - 9th place in the classification rank. F. 1aep
- 12th place in the classification rank.

A B

C D

E F

A B C

D E F
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Figure 20. Pig retinol-binding protein (in red, PDB identified as 1aqb) and some of the other retinol-binding proteins used
in our tests (in blue). A. 1iiu - 1st place in the classification rank. B. 1brp - 3rd place in the classification rank. C. 1kt5
- 7th place in the classification rank. D. 1erb - 11th place in the classification rank. E. 1jyd - 13th place in the
classification rank. F. 1fem - 17th place in the classification rank.

A B C

D E F

A B C

D E F

Figure 19. Spinach plastocyanin (in red, PDB identified as 1ag6) and some of the other plastocyanins used in our tests (in
blue). A. 1oow - 1st place in the classification rank. B. 2pcy - 3rd place in the classification rank. C. 4pcy - 5th place in
the classification rank. D. 1pnd - 9th place in the classification rank. E. 2plt - 11th place in the classification rank. F. 1iug
- 14th place in the classification rank.
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A B C

D E F

compared them to the deviations in the three-dimensional structures of the proteins. In Figures
17-21, we can see the structural alignments of the proteins used as queries (shown in red) and
some of the other proteins of the same family (in blue).

Through these images, we can see that the proteins that were best classified are really
much closer to the query than the others structurally. Thus, we believe that the dissimilarity
indexes of the developed algorithms are appropriate to describe the similarity of protein struc-
tures, even when they are very similar.

CONCLUSIONS AND FUTURE RESEARCH

We developed a methodology to analyze protein structure similarity. We used image-
matching techniques to retrieve the contact map images of proteins with similar chemical inter-
action patterns, given an image database and a contact map image as the query. We imple-
mented the Color Correlogram proposed by Huang et al., 1997 and proposed an algorithm-
based IR to evaluate our methodology.

Based on experimental analyses, this methodology is appropriate for the similarity anal-
ysis of a contact map image database. As each protein structure has a unique and specific
pattern of contact, the algorithms can distinguish between contact maps with different protein
structures. We analyzed the accuracy of this system and found that it produced good results
with apolipoproteins, globins, plastocyanins, RBPs, and thioredoxins as queries. We also identi-
fied the minimum set of interactions that exists in each protein family and its role in folding.

Figure 21. Human thioredoxin (in red, PDB identified as 1aiu) and some of the other retinol-binding proteins used in our
tests (in blue). A. 1gh2 - 1st place in the classification rank. B. 2tir - 2nd place in the classification rank. C. 1tho - 3rd
place in the classification rank. D. 1thx - 4th place in the classification rank. E. 1wou - 5th place in the classification rank.
F. 1faa - 6th place in the classification rank.
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We now intend to analyze other types of chemical interactions in the image database,
such as cysteine bridges, aromatic stacking, and disulfide bonds. We believe that including more
information in the images will improve the precision of the classification. We also intend to
evaluate the importance of each type of interaction in the analysis.
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