Research Article

Related GMR Articles

06/29/2017
Droughts; environment; genomic instability; Hybridization, Genetic; Models, Genetic; Plant breeding; Quantitative Trait, Heritable; Stress, Physiological; Zea mays

In several crops, the water deficit is perhaps the main limiting factor in the search for high yields. The objective of this study was to evaluate the phenotypic stability of maize hybrids in environments with and without water restriction using the analytical factor (AF) approach. We evaluated 171 maize hybrids in 14 environments, divided into environments with (A1, A2, A3, A4, A5, A6, and A7 ... more

A.O. Santos; J.J. Nuvunga; C.P. Silva; L.P.M. Pires; R.G. Von Pinho; L.J.M. Guimarães; M. Balestre
07/06/2017
environment; Gene-Environment Interaction; Genotype; Plant breeding; Soybeans

Stratification of environments is a strategy to capitalize genotype x environment (GxE) interaction, which can optimize the process of assessment and cultivar recommendation, increasing productivity in a target environmental population. The objective of this study was to assess environmental stratification methods based on the analysis of GxE interaction, to identify consistent agronomic zones ... more

R.M. Pacheco; J.B. Duarte; R.G. Branquinho; P.I.D.M. Souza
08/17/2017
Capsicum; Colletotrichum; Genotype; Plant breeding; Plant Immunity; Selection, Genetic; Selective breeding

Anthracnose is among the major diseases of the Capsicum culture. It is caused by different species of the genus Colletotrichum, which may result in major damages to the cultivation of this genus. Studies aiming to search for cultivars resistant to diseases are essential to reduce financial and agricultural losses. The objective of this study was to evaluate the correlation between the ... more

A.C. Maracahipes; J.W.S. Correa; P.E. Teodoro; K.L. Araújo; M.A.A. Barelli; L.G. Neves
08/17/2017
Capsicum; Colletotrichum; Genotype; Plant breeding; Plant Immunity; Selection, Genetic; Selective breeding

Anthracnose is among the major diseases of the Capsicum culture. It is caused by different species of the genus Colletotrichum, which may result in major damages to the cultivation of this genus. Studies aiming to search for cultivars resistant to diseases are essential to reduce financial and agricultural losses. The objective of this study was to evaluate the correlation between the ... more

A.C. Maracahipes; J.W.S. Correa; P.E. Teodoro; K.L. Araújo; M.A.A. Barelli; L.G. Neves
08/17/2017
Capsicum; Colletotrichum; Genotype; Plant breeding; Plant Immunity; Selection, Genetic; Selective breeding

Anthracnose is among the major diseases of the Capsicum culture. It is caused by different species of the genus Colletotrichum, which may result in major damages to the cultivation of this genus. Studies aiming to search for cultivars resistant to diseases are essential to reduce financial and agricultural losses. The objective of this study was to evaluate the correlation between the ... more

A.C. Maracahipes; J.W.S. Correa; P.E. Teodoro; K.L. Araújo; M.A.A. Barelli; L.G. Neves
09/21/2017
Annona; Genotype; Plant breeding; Polymorphism, Genetic; Selection, Genetic; Selective breeding

The aim of this study was to evaluate repeated measures over the years to estimate repeatability coefficient and the number of the optimum measure to select superior genotypes in Annona muricata L. The fruit production was evaluated over 16 years in 71 genotypes without an experimental design. The estimation of variance components and the prediction of the permanent phenotypic value were ... more

C.F.B. Sánchez; R.S. Alves; A.D.P. Garcia; P.E. Teodoro; L.A. Peixoto; L.A. Silva; L.L. Bhering; M.D.V. Resende
09/27/2017
Edible Grain; Models, Genetic; Plant breeding; Quantitative Trait, Heritable; Selection, Genetic; Selective breeding; Zea mays

Selection indices commonly utilize economic weights, which become arbitrary genetic gains. In popcorn, this is even more evident due to the negative correlation between the main characteristics of economic importance - grain yield and popping expansion. As an option in the use of classical biometrics as a selection index, the optimal procedure restricted maximum likelihood/best linear unbiased ... more

C. Vittorazzi; A.T.Amaral Júnior; A.G. Guimarães; A.P. Viana; F.H.L. Silva; G.F. Pena; R.F. Daher; I.F.S. Gerhardt; G.H.F. Oliveira; M.G. Pereira
09/27/2017
Dietary Fiber; Hybridization, Genetic; Plant breeding; Polymorphism, Genetic; Quantitative Trait, Heritable; Saccharum; Selective breeding; Sucrose

The forecast of a growing energy demand in the coming years has aroused particular interest in biomass for energy cogeneration, to diversify the energy matrix by using clean and renewable sources. To meet the new demands of the sugarcane industry, this study evaluated the agronomic performance and estimated genetic parameters for yield traits in sugar- and energy cane families derived from ... more

A.R.Fernande Júnior; A.A.C. de Azeredo; R.A. de Oliveira; J.C.Bespalho Filho; O.T. Ido; E. Daros; B.P. Brasileiro
09/27/2017
Models, Genetic; Pennisetum; Plant breeding; Polymorphism, Genetic; Quantitative Trait, Heritable; Selective breeding

Genetically improved cultivars of elephant grass need to be adapted to different ecosystems with a faster growth speed and lower seasonality of biomass production over the year. This study aimed to use selection indices using mixed models (REML/BLUP) for selecting families and progenies within full-sib families of elephant grass (Pennisetum purpureum) for biomass production. One hundred and ... more

V.B. Silva; R.F. Daher; M.S.B. Araújo; Y.P. Souza; S. Cassaro; B.R.S. Menezes; L.M. Gravina; A.A.C. Novo; F.D. Tardin; A.T.Amaral Júnior
09/27/2017
Alleles; Ascomycota; Basidiomycota; Disease resistance; Genotype; Hybridization, Genetic; Plant breeding; Plant Diseases; Selective breeding; Vigna

This study aimed at identifying and selecting through partial diallel analysis, segregating populations of cowpea resistant to Macrophomina phaseolina and Thanatephorus cucumeris, based on the evaluation of general (GCA) and specific combining ability (SCA), involved in the genetic control of resistance. For this reason, 19 grouped cowpea genotypes, considering the resistance to these ... more

L.R.L. Lima; K.J. Damasceno-Silva; M.A. Noronha; D.A. Schurt; M.M. Rocha

Pages