Research Article

Related GMR Articles

Brazil; Edible Grain; environment; genomic instability; Genotype; Plant breeding; Quantitative Trait, Heritable; Selection, Genetic; Selective breeding; Soybeans

Biplot analysis has often been used to recommend genotypes from different crops in the presence of the genotype x environment interaction (GxE). The objective of this study was to verify the association between the AMMI and GGE biplot methods and to select soybean genotypes that simultaneously meet high grain yield and stability to the environments belonging to the Edaphoclimatic Region 402, ... more

E.U.Ramos Junior; R.L. Brogin; V.P.C. Godinho; F.J.E. Botelho; F.D. Tardin; P.E. Teodoro
Adaptation, Physiological; environment; Gene-Environment Interaction; Genetic variation; Genotype; Plant breeding; Quantitative Trait, Heritable; Saccharum; Selection, Genetic

The recommendation of sugarcane clones depends on several factors, as the response or performance of the clones over different cuts or harvests. The clone by harvest interaction might be difficult to identify superior clones in the final stages of the sugarcane breeding program. Thus, the objective of this study was to investigate and describe the implications of the genotype by harvest ... more

D.N.A. Cabral; J.A.R. Nunes; P.D.S. Cabral; J. Zuchi; A.J. Raizer; T.O.M. De Paula
Droughts; environment; genomic instability; Hybridization, Genetic; Models, Genetic; Plant breeding; Quantitative Trait, Heritable; Stress, Physiological; Zea mays

In several crops, the water deficit is perhaps the main limiting factor in the search for high yields. The objective of this study was to evaluate the phenotypic stability of maize hybrids in environments with and without water restriction using the analytical factor (AF) approach. We evaluated 171 maize hybrids in 14 environments, divided into environments with (A1, A2, A3, A4, A5, A6, and A7 ... more

A.O. Santos; J.J. Nuvunga; C.P. Silva; L.P.M. Pires; R.G. Von Pinho; L.J.M. Guimarães; M. Balestre
Edible Grain; Models, Genetic; Plant breeding; Quantitative Trait, Heritable; Selection, Genetic; Selective breeding; Zea mays

Selection indices commonly utilize economic weights, which become arbitrary genetic gains. In popcorn, this is even more evident due to the negative correlation between the main characteristics of economic importance - grain yield and popping expansion. As an option in the use of classical biometrics as a selection index, the optimal procedure restricted maximum likelihood/best linear unbiased ... more

C. Vittorazzi; A.T.Amaral Júnior; A.G. Guimarães; A.P. Viana; F.H.L. Silva; G.F. Pena; R.F. Daher; I.F.S. Gerhardt; G.H.F. Oliveira; M.G. Pereira
Gene-Environment Interaction; Genetic variation; genomic instability; Hypocotyl; Models, Genetic; Plant breeding; Plant Leaves; Quantitative Trait, Heritable; Selective breeding; Soybeans

In order to obtain the certificate of cultivar protection, it is necessary to prove its distinctiveness, homogeneity, and stability. Currently, there are 37 descriptors for differentiating soybeans cultivars. However, they are still not enough and, as a result, it is necessary to create, identify, and evaluate new descriptors. This study was aimed at evaluating the genotypic and environment ... more

M.V.A. Chaves; N.S. Silva; R.H.O. Silva; G.L. Jorge; I.C. Silveira; L.A. Medeiros; R.L. Hamawaki; O.T. Hamawaki; A.P.O. Nogueira; C.D.L. Hamawaki
Edible Grain; Genotype; Inbreeding; Models, Genetic; Plant breeding; Quantitative Trait, Heritable; Selection, Genetic; Selective breeding; Vigna

The aim of this study was to estimate the genotypic gain with simultaneous selection of production, nutrition, and culinary traits in cowpea crosses and backcrosses and to compare different selection indexes. Eleven cowpea populations were evaluated in a randomized complete block design with four replications. Fourteen traits were evaluated, and the following parameters were estimated: ... more

D.G. Oliveira; M.M. Rocha; K.J. Damasceno-Silva; F.V. Sá; L.R.L. Lima; M.D.V. Resende
Alleles; Crops, Agricultural; Gene frequency; Genetic markers; Genetic variation; Genotype; Microsatellite Repeats; Phylogeny; Plant breeding; Polymorphism, Genetic; Random Amplified Polymorphic DNA Technique; Zea mays

Genetic diversity in crops is essential to make improvements related to superior germplasms. Implementation of molecular markers to identify suitable genotypes speeds up the breeding progress by enhancing selection efficiency. This study was carried out to probe genetic diversity among 21 maize genotypes using 20 inter simple sequence repeat (ISSR) markers. We identified a total of 190 ... more

R.W. Muhammad; A. Qayyum; M.Q. Ahmad; A. Hamza; M. Yousaf; B. Ahmad; M. Younas; W. Malik; S. Liaqat; E. Noor
Genetic variation; Hybridization, Genetic; Plant breeding; Quantitative Trait, Heritable; Silage; Zea mays

We assessed the impact of genetic divergence and the ability to combine corn hybrids used for the production of silage on the agronomic and bromatological traits of silage quality. We evaluated 18 corn hybrids used as genitors in a circulant diallel scheme in which each genitor hybrid participated in 9 hybrid combinations, and evaluated 100 treatments [18 genitor hybrids, 81 diallelic hybrids ... more

E. Gralak; M.V. Faria; A.S.T. Figueiredo; D.A. Rizzardi; M. Neumann; M.C. Mendes; C.A. Scapim; S. Galbeiro
Fusarium; Gene Expression Regulation, Plant; Genetic markers; Genetic variation; Heat-shock proteins; Inbreeding; Lipoxygenase; maternal inheritance; Plant breeding; Plant Immunity; Plant Proteins; Selection, Genetic; Zea mays

In recent years, there has been a large incidence of fungi causing "ear rot" in maize in Brazil, the main fungus being Fusarium verticillioides. The most efficient and competitive alternative for control of this disease consists of using maize hybrids resistant to this pathogen. Thus, the aims of this study were to analyze the genetic variability of maize inbred lines in regard to resistance ... more

G.S. Pereira; R.G.V. Pinho; E.V.R.V. Pinho; L.P.M. Pires; L.A.Y.Bernar Junior; J.L.A. Pereira; M.P. Melo
DNA, Plant; Edible Grain; Genetic variation; Hordeum; Minerals; Plant breeding; Quantitative trait loci; Selection, Genetic

Mineral elements in barley (Hordeum vulgare) play an important physiological role in global human health. In this study, quantitative trait loci (QTLs) for concentration of nine mineral elements in barley grain and grass powder were detected in a population of 193 recombinant inbred lines of the barley cross Ziguangmangluoerling x Schooner and the parents. We observed large genetic variation ... more

Y.W. Zeng; J. Du; X.M. Yang; X.Y. Pu; L.X. Wang; J.Z. Yang; L.J. Du; T. Yang; S.M. Yang; Z.H. Sun