Research Article

Related GMR Articles

2017 Aug 17
Adaptation, Physiological; Crop Production; Gene-Environment Interaction; Glycine max; Microsatellite Repeats; Models, Genetic

Genotypes x environment (G x E) interaction consists of different behavior of genotypes cultivated in different environments. This interaction occurs due to the performance variation of each genotype in different environments. To reduce the effect of the interaction in soybean crops, some studies have been reported in the literature to study their adaptability and stability. However, these ... more

I.O. Soares; A.T. Bruzi; E.V. Zambiazzi; S.R. Guilherme; M.C. Bianchi; K.B. Silva; V. Fronza; C.M. Teixeira
08/17/2017
Edible Grain; Genotype; Inbreeding; Models, Genetic; Plant breeding; Quantitative Trait, Heritable; Selection, Genetic; Selective breeding; Vigna

The aim of this study was to estimate the genotypic gain with simultaneous selection of production, nutrition, and culinary traits in cowpea crosses and backcrosses and to compare different selection indexes. Eleven cowpea populations were evaluated in a randomized complete block design with four replications. Fourteen traits were evaluated, and the following parameters were estimated: ... more

D.G. Oliveira; M.M. Rocha; K.J. Damasceno-Silva; F.V. Sá; L.R.L. Lima; M.D.V. Resende
08/31/2017
Alleles; Genotype; Hybridization, Genetic; Models, Genetic; Plant breeding; Polymorphism, Genetic; Quantitative Trait, Heritable; seeds; Zea mays

Genetic improvement is essential to achieve increments in maize (Zea mays L.) grain yield components. It may be obtained through crosses, which enable to exploit the effects of intervarietal heterosis, allelic complementarity, as well as gene actions and effects. This study estimated the components of variance and genetic parameters (REML/BLUP) of an intervarietal diallel to select and predict ... more

I.R. Carvalho; A.J. de Pelegrin; V.J. Szareski; M. Ferrari; T.C. da Rosa; T.S. Martins; N.L.Dos Santos; M. Nardino; V.Q. de Souza; A.C. de Oliveira; L.C. da Maia
09/27/2017
Edible Grain; Models, Genetic; Plant breeding; Quantitative Trait, Heritable; Selection, Genetic; Selective breeding; Zea mays

Selection indices commonly utilize economic weights, which become arbitrary genetic gains. In popcorn, this is even more evident due to the negative correlation between the main characteristics of economic importance - grain yield and popping expansion. As an option in the use of classical biometrics as a selection index, the optimal procedure restricted maximum likelihood/best linear unbiased ... more

C. Vittorazzi; A.T.Amaral Júnior; A.G. Guimarães; A.P. Viana; F.H.L. Silva; G.F. Pena; R.F. Daher; I.F.S. Gerhardt; G.H.F. Oliveira; M.G. Pereira
2017 Sep 27
Evolution, Molecular; Models, Genetic; Polymorphism, Genetic; Ricinus communis

Castor bean (Ricinus communis L.) is a tropical plant of great commercial interest and a potential source of biodiesel. The development of genetically improved cultivars with high amounts of oil in the seeds and low ricin toxicity is crucial to increase the productivity of this crop. The use of TRAP (target region amplification polymorphism) markers to develop elite lineages and study genetic ... more

K.S. Simões; S.A. Silva; E.L. Machado; M.S. Silva
09/27/2017
Models, Genetic; Pennisetum; Plant breeding; Polymorphism, Genetic; Quantitative Trait, Heritable; Selective breeding

Genetically improved cultivars of elephant grass need to be adapted to different ecosystems with a faster growth speed and lower seasonality of biomass production over the year. This study aimed to use selection indices using mixed models (REML/BLUP) for selecting families and progenies within full-sib families of elephant grass (Pennisetum purpureum) for biomass production. One hundred and ... more

V.B. Silva; R.F. Daher; M.S.B. Araújo; Y.P. Souza; S. Cassaro; B.R.S. Menezes; L.M. Gravina; A.A.C. Novo; F.D. Tardin; A.T.Amaral Júnior
09/27/2017
Evolution, Molecular; Mimiviridae; Models, Genetic; Phylogeny; Protein Biosynthesis; Sequence Homology; Viral Proteins

The natural history of mimiviruses (i.e., viruses that are members of the Mimivirus genus) is a challenge for modern biology. A new domain of life to include these organisms has been proposed from analysis of gene conservation. We analyzed the evolutionary relationship of proteins involved in the translation system, and our data show that mimiviruses are a sister group of Eukarya. New data ... more

V.M. Marcelino; M.V.P.C. Espinola; V. Serrano-Solis; S.T. Farias
09/27/2017
Ascomycota; Capsicum; Disease resistance; Fruit; Genotype; Models, Genetic; Plant breeding; Plant Diseases; Plant Leaves; Potyvirus; Quantitative Trait, Heritable; Selective breeding; Xanthomonas

This study aimed to identify Capsicum genotypes with resistance to bacterial spot (BS), anthracnose and Pepper yellow mosaic virus (PepYMV). Fifty-four genotypes of Capsicum spp were evaluated. Resistance reaction against BS was evaluated using three replicates, testing hypersensitivity and quantitative resistance in leaves. After evaluation, inoculated leaves were detached from the plants, ... more

C.S. Bento; A.G. de Souza; C.P. Sudré; S. Pimenta; R. Rodrigues
2017 Sep 27
Gene-Environment Interaction; Genetic variation; genomic instability; Glycine max; Hypocotyl; Models, Genetic; Plant breeding; Plant Leaves; Quantitative Trait, Heritable; Selective breeding

In order to obtain the certificate of cultivar protection, it is necessary to prove its distinctiveness, homogeneity, and stability. Currently, there are 37 descriptors for differentiating soybeans cultivars. However, they are still not enough and, as a result, it is necessary to create, identify, and evaluate new descriptors. This study was aimed at evaluating the genotypic and environment ... more

M.V.A. Chaves; N.S. Silva; R.H.O. Silva; G.L. Jorge; I.C. Silveira; L.A. Medeiros; R.L. Hamawaki; O.T. Hamawaki; A.P.O. Nogueira; C.D.L. Hamawaki
09/27/2017
Cotton Fiber; Genotype; Gossypium; Models, Genetic; Neural Networks, Computer; Plant breeding; Quantitative Trait, Heritable; Selection, Genetic; Selective breeding

Breeding programs currently use statistical analysis to assist in the identification of superior genotypes at various stages of a cultivar's development. Differently from these analyses, the computational intelligence approach has been little explored in genetic improvement of cotton. Thus, this study was carried out with the objective of presenting the use of artificial neural networks as ... more

E.G.Silva Júnior; D.B.O. Cardoso; M.C. Reis; A.F.O. Nascimento; D.I. Bortolin; M.R. Martins; L.B. Sousa

Pages