Publications

Found 5 results
Filters: Author is S. Klinbunga  [Clear All Filters]
2011
A. Buaklin, Klinbunga, S., and Mensveta, P., Identification and expression analysis of the Broad-Complex core protein isoform 6 (BR-C Z6) gene in the giant tiger shrimp Penaeus monodon (Penaeidae: Decapoda), vol. 10, pp. 2290-2306, 2011.
Altschul SF, Gish W, Miller W, Myers EW, et al. (1990). Basic local alignment search tool. J. Mol. Biol. 215: 403-410. PMid:2231712 Bayer CA, Holley B and Fristrom JW (1996). A switch in Broad-Complex zinc-finger isoform expression is regulated posttranscriptionally during the metamorphosis of Drosophila imaginal discs. Dev. Biol. 177: 1-14. http://dx.doi.org/10.1006/dbio.1996.0140 PMid:8660872 Benzie JAH (1998). Penaeid genetics and biotechnology. Aquaculture 164: 23-47. http://dx.doi.org/10.1016/S0044-8486(98)00175-6 Brown MR, Sieglaff DH and Rees HH (2009). Gonadal ecdysteroidogenesis in arthropoda: occurrence and regulation. Annu. Rev. Entomol. 54: 105-125. http://dx.doi.org/10.1146/annurev.ento.53.103106.093334 PMid:18680437 Chan S-M (1995). Possible roles of 20-hydroxyecdysone in the control of ovary maturation in the white shrimp Penaeus vannamei (Crustacea: Decapoda). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 112: 51-59. Chen L, Zhu J, Sun G and Raikhel AS (2004). The early gene Broad is involved in the ecdysteroid hierarchy governing vitellogenesis of the mosquito Aedes aegypti. J. Mol. Endocrinol. 33: 743-761. http://dx.doi.org/10.1677/jme.1.01531 PMid:15591032 Costoya JA and Pandolfi PP (2001). The role of promyelocytic leukemia zinc finger and promyelocytic leukemia in leukemogenesis and development. Curr. Opin. Hematol. 8: 212-217. http://dx.doi.org/10.1097/00062752-200107000-00006 PMid:11561158 DiBello PR, Withers DA, Bayer CA, Fristrom JW, et al. (1991). The Drosophila Broad-Complex encodes a family of related proteins containing zinc fingers. Genetics 129: 385-397. PMid:1743483    PMCid:1204631 Fingerman M (1997). Roles of neurotransmitters in regulating reproductive hormone release and gonadal maturation in decapod crustaceans. Inver. Reprod. Dev. 31: 47-54. http://dx.doi.org/10.1080/07924259.1997.9672562 Gilbert LI, Serafin RB, Watkins NL and Richard DS (1998). Ecdysteroids regulate yolk protein uptake by Drosophila melanogaster oocytes. J. Insect Physiol. 44: 637-644. http://dx.doi.org/10.1016/S0022-1910(98)00020-1 Gruntenko NE and Rauschenbach IY (2008). Interplay of JH, 20E and biogenic amines under normal and stress conditions and its effect on reproduction. J. Insect Physiol. 54: 902-908. http://dx.doi.org/10.1016/j.jinsphys.2008.04.004 PMid:18511066 Gunamalai V, Kirubagaran R and Subramoniam T (2004). Hormonal coordination of molting and female reproduction by ecdysteroids in the mole crab Emerita asiatica (Milne Edwards). Gen. Comp. Endocrinol. 138: 128-138. http://dx.doi.org/10.1016/j.ygcen.2004.06.002 PMid:15302262 Johnson JL and Toft DO (1994). A novel chaperone complex for steroid receptors involving heat shock proteins, immunophilins, and p23. J. Biol. Chem. 269: 24989-24993. PMid:7929183 Huberman A (2000). Shrimp endocrinology. A review. Aquaculture 191: 191-208. http://dx.doi.org/10.1016/S0044-8486(00)00428-2 Kokoza VA, Martin D, Mienaltowski MJ, Ahmed A, et al. (2001). Transcriptional regulation of the mosquito vitellogenin gene via a blood meal-triggered cascade. Gene 274: 47-65. http://dx.doi.org/10.1016/S0378-1119(01)00602-3 Kuo CM and Lin WW (1996). Changes in morphological characteristics and ecdysteroids during the molting cycle of tiger shrimp, Penaeus monodon Fabricus. Zool. Stud. 35: 118-127. Meunpol O, Meejing P and Piyatiratitivorakul P (2005). Maturation diet based on fatty acid content for male Penaeus monodon (Fabricius) broodstock. Aquacult. Res. 36: 1216-1225. http://dx.doi.org/10.1111/j.1365-2109.2005.01342.x Meunpol O, Iam-Pai S, Suthikrai W and Piyatiratitivorakul S (2007). Identification of progesterone and 17α-hydroxyprogesterone in polychaetes (Perinereis sp.) and the effects of hormone extracts on penaeid oocyte development in vitro. Aquaculture 270: 485-492. http://dx.doi.org/10.1016/j.aquaculture.2007.05.031 Meusy JJ and Payen GG (1988). Female reproduction in malacostracan Crustacea. Zool. Sci. 5: 217-265. Okumura T and Sakiyama K (2004). Hemolymph levels of vertebrate-type steroid hormones in female kuruma prawn Marsupenaeus japonicus (Crustacea: Decapoda: Penaeidae) during natural reproductive cycle and induced ovarian development by eyestalk ablation. Fish. Sci. 70: 372-380. http://dx.doi.org/10.1111/j.1444-2906.2004.00816.x Palli SR, Hormann RE, Schlattner U and Lezzi M (2005). Ecdysteroid receptors and their applications in agriculture and medicine. Vitam. Horm. 73: 59-100. http://dx.doi.org/10.1016/S0083-6729(05)73003-X Piulachs MD, Pagone V and Belles X (2010). Key roles of the Broad-Complex gene in insect embryogenesis. Insect Biochem. Mol. Biol. 40: 468-475. http://dx.doi.org/10.1016/j.ibmb.2010.04.006 PMid:20403438 Preechaphol R, Leelatanawit R, Sittikankeaw K, Klinbunga S, et al. (2007). Expressed sequence tag analysis for identification and characterization of sex-related genes in the giant tiger shrimp Penaeus monodon. J. Biochem. Mol. Biol. 40: 501-510. http://dx.doi.org/10.5483/BMBRep.2007.40.4.501 PMid:17669265 Preechaphol R, Klinbunga S, Ponza P and Menasveta P (2010a). Isolation and characterization of progesterone receptor-related protein p23 (Pm-p23) differentially expressed during ovarian development of the giant tiger shrimp Penaeus monodon. Aquaculture 308: S75-S82. http://dx.doi.org/10.1016/j.aquaculture.2010.06.037 Preechaphol R, Klinbunga S, Yamano K and Menasveta P (2010b). Molecular cloning and expression of progestin membrane receptor component 1 (Pgmrc1) of the giant tiger shrimp Penaeus monodon. Gen. Comp. Endocrinol. 168: 440-449. http://dx.doi.org/10.1016/j.ygcen.2010.06.002 PMid:20566361 Qiu GF and Yamano K (2005). Three forms of cyclin B transcripts in the ovary of the kuruma prawn Marsupenaeus japonicus: their molecular characterizations and expression profiles during oogenesis. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 141: 186-195. http://dx.doi.org/10.1016/j.cbpc.2005.03.003 PMid:15878299 Qiu GF, Yamano K and Unuma T (2005). Cathepsin C transcripts are differentially expressed in the final stages of oocyte maturation in kuruma prawn Marsupenaeus japonicus. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 140: 171-181. http://dx.doi.org/10.1016/j.cbpc.2004.09.027 PMid:15649764 Quackenbush LS (2001). Yolk synthesis in the marine shrimp, Penaeus vanname. Am. Zool. 41: 458-464. http://dx.doi.org/10.1668/0003-1569(2001)041[0458:YSITMS]2.0.CO;2 Riddiford LM, Hiruma K, Zhou X and Nelson CA (2003). Insights into the molecular basis of the hormonal control of molting and metamorphosis from Manduca sexta and Drosophila melanogaster. Insect Biochem. Mol. Biol. 33: 1327-1338. http://dx.doi.org/10.1016/j.ibmb.2003.06.001 PMid:14599504 Sambrook J and Russell DW (2001). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York. Soller M, Bownes M and Kubli E (1999). Control of oocyte maturation in sexually mature Drosophila females. Dev. Biol. 208: 337-351. http://dx.doi.org/10.1006/dbio.1999.9210 PMid:10191049 Styrishave B, Lund T and Andersen O (2008). Ecdysteroids in female shore crabs Carcinus maenas during the moulting cycle and oocyte development. J. Mar. Biol. Assoc. 88: 575-581. http://dx.doi.org/10.1017/S0025315408000878 Subramoniam T (2000). Crustacean ecdysteriods in reproduction and embryogenesis. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 125: 135-156. PMid:11790337 Tan-Fermin JD and Pudadera RA (1989). Ovarian maturation stages of the wild giant tiger prawn, Penaeus monodon Fabricius. Aquaculture 77: 229-242. http://dx.doi.org/10.1016/0044-8486(89)90205-6 Thummel CS (2002). Ecdysone-regulated puff genes 2000. Insect Biochem. Mol. Biol. 32: 113-120. http://dx.doi.org/10.1016/S0965-1748(01)00112-6 Treerattrakool S, Panyim S, Chan SM, Withyachumnarnkul B, et al. (2008). Molecular characterization of gonad-inhibiting hormone of Penaeus monodon and elucidation of its inhibitory role in vitellogenin expression by RNA interference. FEBS J. 275: 970-980. http://dx.doi.org/10.1111/j.1742-4658.2008.06266.x PMid:18221491 Withyachumnarnkul B, Boonsaeng V, Flegel TW, Panyim S, et al. (1998). Domestication and Selective Breeding of Penaeus monodon in Thailand. In: Proceedings to the Special Session on Advances in Shrimp Biotechnology (Flegel T, ed.). The Fifth Asian Fisheries Forum: International Conference on Fisheries and Food Security Beyond the Year 2000, Thailand, 73-77. Yano I (1987). Effect of 17-α-OH-progesterone on vitellogenin secretion in kuruma prawn, Penaeus japonicus. Aquaculture 61: 46-57. http://dx.doi.org/10.1016/0044-8486(87)90337-1 Yano I and Hoshino R (2006). Effects of 17 beta-estradiol on the vitellogenin synthesis and oocyte development in the ovary of kuruma prawn (Marsupenaeus japonicus). Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 144: 18-23. http://dx.doi.org/10.1016/j.cbpa.2006.01.026 Zhu J, Miura K, Chen L and Raikhel AS (2003). Cyclicity of mosquito vitellogenic ecdysteroid-mediated signaling is modulated by alternative dimerization of the RXR homologue Ultraspiracle. Proc. Natl. Acad. Sci. U. S. A. 100: 544-549. http://dx.doi.org/10.1073/pnas.0235695100 PMid:12522263    PMCid:141032 Zhu J, Chen L and Raikhel AS (2007). Distinct roles of Broad isoforms in regulation of the 20-hydroxyecdysone effector gene, Vitellogenin, in the mosquito Aedes aegypti. Mol. Cell Endocrinol. 267: 97-105. http://dx.doi.org/10.1016/j.mce.2007.01.006 PMid:17303321    PMCid:1929017 Zollman S, Godt D, Prive GG, Couderc JL, et al. (1994). The BTB domain, found primarily in zinc finger proteins, defines an evolutionarily conserved family that includes several developmentally regulated genes in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 91: 10717-10721. http://dx.doi.org/10.1073/pnas.91.22.10717
2010
M. Theeraapisakkun, Klinbunga, S., and Sittipraneed, S., Development of a species-diagnostic marker and its application for population genetics studies of the stingless bee Trigona collina in Thailand, vol. 9, pp. 919-930, 2010.
Amano K, Nemoto T and Heaed TA (2000). What are stingless bees, and why and how to use them as crop pollinators? A review. Jpn. Agric. Res. Q. 34: 183-190.   Blears MJ, De Grandis SA, Lee H and Trevors JT (1998). Amplified fragment length polymorphism (AFLP): a review of the procedure and its applications. J. Ind. Microbiol. Biotechnol. 21: 99-114. http://dx.doi.org/10.1038/sj.jim.2900537   Deowanish S, Nakamura J, Matsuka M and Kimura K (1996). MtDNA variation among subspecies of Apis cerana using restriction fragment length polymorphism. Apidologie 27: 407-413. http://dx.doi.org/10.1051/apido:19960508   Dollin AE, Dollin LJ and Sakagami SF (1997). Australian stingless bees of the genus Trigona (Hymenoptera: Apidae). Invert. Taxon. 11: 861-896. http://dx.doi.org/10.1071/IT96020   Franck P, Cameron E, Good G, Rasplus JY, et al. (2004). Nest architecture and genetic differentiation in a species complex of Australian stingless bees. Mol. Ecol. 13: 2317-2331. http://dx.doi.org/10.1111/j.1365-294X.2004.02236.x PMid:15245404   Heard TA (1999). The role of stingless bees in crop pollination. Annu. Rev. Entomol. 44: 183-206. http://dx.doi.org/10.1146/annurev.ento.44.1.183 PMid:15012371   Hoelzel AR and Green A (1992). Analysis of Population-Level Variation by Sequencing PCR-Amplified DNA. In: Molecular Genetic Analyses of Populations: a Practical Approach (Hoelzel AR, ed.). IRL Press, Oxford, 159-187.   Insuan S, Deowanish S, Klinbunga S, Sittipraneed S, et al. (2007). Genetic differentiation of the giant honey bee (Apis dorsata) in Thailand analyzed by mitochondrial genes and microsatellites. Biochem. Genet. 45: 345-361. http://dx.doi.org/10.1007/s10528-007-9079-9 PMid:17342419   Klakasikorn A, Wongsiri S, Deowanish S and Duangphakdee O (2005). New record of stingless bees (Meliponini: Trigona) in Thailand. Nat. Hist. J. Chulalongkorn Univ. 5: 1-7.   Klinbunga S, Khetpu K, Khamnamtong B and Menasveta P (2007). Development of a species-diagnostic SCAR marker of the blue swimming crab (Portunus pelagicus). Biochem. Genet. 45: 755-760. http://dx.doi.org/10.1007/s10528-007-9108-8 PMid:18000751   Liu Z and Cordes JF (2004). DNA markers technologies and their applications in aquaculture genetics. Aquaculture 238: 1-37. http://dx.doi.org/10.1016/j.aquaculture.2004.05.027   Michener CD (1961). Observations on the nests and behavior of Trigona in Australia and New Guinea (Hymenoptera, Apidae). Am. Mus. Novit. 2026: 1-46.   Michener CD (1974). The Social Behavior of the Bees, a Comparative Study. Belknap Press of Harvard University Press, Cambridge.   Michener CD (2007). The Bees of the World. Johns Hopkins Press, Baltimore.   Michener CD and Sakagami SF (1990). Classificarion of the Apidae (Hymenoptera). Appendix: Trigona genalis Friese, a hitherto unplaced New Guinea species. Univ. Kansas Sci. Bull. 54: 75-164.   Michener CD and Boongird S (2004). A new species of Trigona from peninsular Thailand (Hymenoptera: Apidae: Meliponini). J. Kansas Entomol. Soc. 77: 143-146. http://dx.doi.org/10.2317/0310.08.1   Mueller UG and Wolfenbarger LL (1999). AFLP genotyping and fingerprinting. Trends Ecol. Evol. 14: 389-394. http://dx.doi.org/10.1016/S0169-5347(99)01659-6   Orita M, Iwahana H, Kanazawa H, Hayashi K, et al. (1989). Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. Natl. Acad. Sci. U. S. A. 86: 2766-2770. http://dx.doi.org/10.1073/pnas.86.8.2766 PMid:2565038 PMCid:286999   Sakagami SF (1978). Tetragonula stingless bees of the Continental Asia and Sri Lanka (Hymenoptera, Apidae). J. Fac. Sci. Hokkaido Univ. Ser. VI. Zool. 21: 165-247.   Sakagami SF and Khoo SG (1987). Taxonomic status of the Malaysian stingless bee Trigona reepeni, with discovery of Trigona pagdeni from northern Malaya. Kontyû 55: 207-214.   Sakagami SF, Inoue T, Yamane S and Salmah S (1983). Nest architecture and colony composition of the Sumatran stingless bee Trigona (Tetragonula) laeviceps. Kontyû 51: 100-111.   Sakagami SF, Inoue T and Salmah S (1985). Key to the Stingless Bee Species Found or Expected from Sumatra. In: Evolutionary Ecology of Insects in Humid Tropics, Especially in Central Sumatra (Ohgushi RI, ed.). Kanazawa University, Japan, Sumatra Nature Study, 37-43.   Sambrook J and Russell DW (2001). Molecular Cloning: A Laboratory Manual. 3rd edn. Cold Spring Harbor Laboratory Press, New York.   Schwarz HF (1939). The Indo-Malayan species of Trigona. Bull. Am. Mus. Nat. Hist. 76: 83-141.   Sihanuntavong D, Sittipraneed S and Klinbunga S (1999). Mitochondrial DNA diversity and population structure of the honey bee, Apis cerana, in Thailand. J. Apic. Res. 38: 211-219.   Slaa EJ, Sanchez LA, Sandi M and Salazar W (2000). A scientific note on the use of stingless bees for commercial pollination in enclosures. Apidologie 31: 141-142. http://dx.doi.org/10.1051/apido:2000112   Slaa EJ, Chaves LAS, Malagodi-Braga KS and Hofstede FE (2006). Stingless bees in applied pollination: practice and perspectives. Apidologie 37: 293-315. http://dx.doi.org/10.1051/apido:2006022   Smith DR and Hagen RH (1996). The biogeography of Apis cerana as revealed by mitochondrial DNA sequence data. J. Kansas Entomol. Soc. 69: 294-310.   Smith DR and Hagen RH (1999). Phylogeny and Biogeography of Apis cerana Subspecies: Testing Alternative Hypotheses. In: Apiculture for the 21st Century (Hoopingarner R and Connor L, eds.). Wicwas Press, Cheshire, 60-68.   Souza RO, Moretto G, Arias MC and Del Lama MA (2008). Differentiation of Melipona quadrifasciata L. (Hymenoptera, Apidae, Meliponini) subspecies using cytochrome b PCR-RFLP patterns. Genet. Mol. Biol. 31: 445-450. http://dx.doi.org/10.1590/S1415-47572008000300009   Starr CK and Sakagami SF (1987). An extraordinary concentration of stingless bee colonies in the Philippines, with notes on nest structure (Hymenoptera: Apidae: Trigona spp.). Insect. Soc. 34: 96-107. http://dx.doi.org/10.1007/BF02223828   Thummajitsakul S, Klinbunga S, Smith D and Sittipraneed S (2008). Genetic diversity and population structure of Trigona pagdeni Schwarz in Thailand. Apidologie 39: 446-455. http://dx.doi.org/10.1051/apido:2008026   Thummajitsakul S, Klinbunga S and Sittipraneed S (2010). Development of a species-diagnostic marker for identification of the stingless bee Trigona pagdeni in Thailand. Biochem. Genet. 48: 181-192. http://dx.doi.org/10.1007/s10528-009-9300-0 PMid:20020196   Vos P, Hogers R, Bleeker M, Reijans M, et al. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23: 4407-4414. http://dx.doi.org/10.1093/nar/23.21.4407 PMid:7501463 PMCid:307397   Waldschmidt AM, de Barros EG and Campos LAO (2000). A molecular marker distinguishes the subspecies Melipona quadrifasciata quadrifasciata and Melipona quadrifasciata anthidioides (Hymenoptera: Apidae, Meliponinae). Genet. Mol. Biol. 23: 609-611. http://dx.doi.org/10.1590/S1415-47572000000300019   Warrit N, Smith DR and Lekprayoon C (2006). Genetic subpopulations of Varroa mites and their Apis cerana hosts in Thailand. Apidologie 37: 19-30. http://dx.doi.org/10.1051/apido:2005051   Weder JKP, Rehbein H and Kaiser KP (2001). On the specificity of tuna-directed primers in PCR-SSCP analysis of fish and meat. Eur. Food Res. Technol. 213: 139-144. http://dx.doi.org/10.1007/s002170100339
P. Praipue, Klinbunga, S., and Jarayabhand, P., Genetic diversity of wild and domesticated stocks of Thai abalone, Haliotis asinina (Haliotidae), analyzed by single-strand conformational polymorphism of AFLP-derived markers, vol. 9, pp. 1136-1152, 2010.
Allendorf FW and Ryman N (1987). Genetic Management of Hatchery Stocks. In: Population Genetics and Fishery Management (Ryman N and Utter F, eds.). University of Washington, Seattle, 141-159.   Altschul SF, Gish W, Miller W, Myers EW, et al. (1990). Basic local alignment search tool. J. Mol. Biol. 215: 403-410. PMid:2231712   Carvalho GR and Hauser L (1994). Molecular genetics and the stock concept in fisheries. Rev. Fish Biol. Fish. 4: 326-350. http://dx.doi.org/10.1007/BF00042908   Conover DO, Clarke LM, Munch SB and Wagner GN (2006). Spatial and temporal scales of adaptive divergence in marine fishes and the implications for conservation. J. Fish Biol. 69: 21-47. http://dx.doi.org/10.1111/j.1095-8649.2006.01274.x   Cruz P, Ibarra AM, Mejia-Ruiz H, Gaffney PM, et al. (2004). Genetic variability assessed by microsatellites in a breeding program of Pacific white shrimp (Litopenaeus vannamei). Mar. Biotechnol. 6: 157-164. http://dx.doi.org/10.1007/s10126-003-0017-5 PMid:14595549   Dale WL (1956). Wind and drift currents in the South China Sea. Malays. J. Trop. Geogr. 8: 1-31.   Evans B, Conod N and Elliott NG (2001). Evaluation of microsatellite primer conservation in abalone. J. Shellfish Res. 20: 1065-1070.   Geiger DL (2000). Distribution and biogeography of the Haliotidae (Gastropoda: Vetigastropoda) world-wide. Boll. Malacol. 35: 57-120.   Gordon HR and Cook PA (2004). World abalone fisheries and aquaculture update: supply and market dynamics. J. Shellfish Res. 23: 935-939.   Gruenthal KM and Burton RS (2008). Genetic structure of natural populations of the California black abalone (Haliotis cracherodii Leach, 1814), a candidate for endangered species status. J. Exp. Mar. Biol. Ecol. 355: 47-58. http://dx.doi.org/10.1016/j.jembe.2007.11.013   Gruenthal KM, Acheson LK and Burton RS (2007). Genetic structure of natural populations of California red abalone (Haliotis rufescens) using multiple genetic markers. Mar. Biol. 152: 1237-1248. http://dx.doi.org/10.1007/s00227-007-0771-4   Imron JB, Hale P, Degnan BM and Degnan SM (2007). Pleistocene isolation and recent gene flow in Haliotis asinina, an Indo-Pacific vetigastropod with limited dispersal capacity. Mol. Ecol. 16: 289-304. PMid:17217345   Jarayabhand P and Paphavasit N (1996). A review of the culture of tropical abalone with special reference to Thailand. Aquaculture 140: 159-168. http://dx.doi.org/10.1016/0044-8486(95)01194-3   Jarayabhand P, Pripue P, Khamnamtong N and Klinbunga S (2002). Identification of species-diagnostic markers of abalone in Thailand using PCR-RFLP of 16S rDNA. Fisheries Sci. 68 (Suppl A): 1091-1094.   Khamnamtong B, Klinbunga S and Menasveta P (2005). Species identification of five penaeid shrimps using PCR-RFLP and SSCP analyses of 16S ribosomal DNA. J. Biochem. Mol. Biol. 38: 491-499. http://dx.doi.org/10.5483/BMBRep.2005.38.4.491 PMid:16053718   Khamnamtong B, Thumrungtanakit S, Klinbunga S, Aoki T, et al. (2006). Identification of sex-specific expression markers in the giant tiger shrimp (Penaeus monodon). J. Biochem. Mol. Biol. 39: 37-45. http://dx.doi.org/10.5483/BMBRep.2006.39.1.037 PMid:16466636   Kimura M (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120. http://dx.doi.org/10.1007/BF01731581 PMid:7463489   Klinbunga S, Pripue P, Khamnamtong N, Puanglarp N, et al. (2003). Genetic diversity and molecular markers of the tropical abalone (Haliotis asinina) in Thailand. Mar. Biotechnol. 5: 505-517. http://dx.doi.org/10.1007/s10126-002-0108-8 PMid:12913813   Klinbunga S, Amparyup P, Leelatanawit R, Tassanakajon A, et al. (2004). Species identification of the tropical abalone (Haliotis asinina, Haliotis ovina, and Haliotis varia) in Thailand using RAPD and SCAR markers. J. Biochem. Mol. Biol. 37: 213-222. http://dx.doi.org/10.5483/BMBRep.2004.37.2.213 PMid:15469698   Klinbunga S, Preechaphol R, Thumrungtanakit S, Leelatanawit R, et al. (2006). Genetic diversity of the giant tiger shrimp (Penaeus monodon) in Thailand revealed by PCR-SSCP of polymorphic EST-derived markers. Biochem. Genet. 44: 222-236. http://dx.doi.org/10.1007/s10528-006-9027-0 PMid:17028786   Klinbunga S, Khetpu K, Khamnamtong B and Menasveta P (2007). Development of a species-diagnostic SCAR marker of the blue swimming crab (Portunus pelagicus). Biochem. Genet. 45: 755-760. http://dx.doi.org/10.1007/s10528-007-9108-8 PMid:18000751   Li Z, Li J, Wang Q, He Y, et al. (2006). The effects of selective breeding on the genetic structure of shrimp Fenneropenaeus chinensis populations. Aquaculture 258: 278-282. http://dx.doi.org/10.1016/j.aquaculture.2006.04.040   Lui ZJ and Cordes JF (2004). DNA marker technologies and their applications in aquaculture genetics. Aquaculture 238: 1-37. http://dx.doi.org/10.1016/j.aquaculture.2004.05.027   Miller MP (1997). Tools for population genetic analyses TFPGA 1.3: a window program for the analysis of allozyme and molecular population genetic data. Northern Arizona University, Flagstaff.   Nei M (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583-590. PMid:17248844 PMCid:1213855   Nei M (1987). Molecular Evolutionary Genetics. Columbia University Press, New York.   Orita M, Iwahana H, Kanazawa H, Hayashi K, et al. (1989). Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. Natl. Acad. Sci U. S. A. 86: 2766-2770. http://dx.doi.org/10.1073/pnas.86.8.2766 PMid:2565038 PMCid:286999   Rice WR (1989). Analyzing tables of statistical tests. Evolution 43: 223-225. http://dx.doi.org/10.2307/2409177   Sambrook J and Russell DW (2001). Molecular Cloning: A Laboratory Manual. 3rd edn. Cold Spring Harbor Laboratory Press, New York.   Selvamani MJ, Degnan SM, Paetkau D and Degnan BM (2000). Highly polymorphic microsatellite loci in the Heron Reef population of the tropical abalone Haliotis asinina. Mol. Ecol. 9: 1184-1186. http://dx.doi.org/10.1046/j.1365-294x.2000.00954-9.x PMid:10964245   Shephred SA and Brown LD (1993). What is an abalone stock: implications for the role of refugia in conservation. Can. J. Fish. Aquat. Sci. 50: 2001-2009. http://dx.doi.org/10.1139/f93-224   Singhagraiwan T and Doi M (1993). Seed Production and Culture of a Tropical Abalone Haliotis asinina Linne. The Research Project of Fishery Resource Development in the Kingdom of Thailand. Ministry of Agriculture and Cooperatives, Thailand.   Tang S, Tassanakajon A, Klinbunga S, Jarayabhand P, et al. (2004). Population structure of tropical abalone (Haliotis asinina) in coastal waters of Thailand determined using microsatellite markers. Mar. Biotechnol. 6: 604-611. http://dx.doi.org/10.1007/s10126-004-2300-5 PMid:15747095   Vos P, Hogers R, Bleeker M, Reijans M, et al. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23: 4407-4414. http://dx.doi.org/10.1093/nar/23.21.4407 PMid:7501463 PMCid:307397   Ward RD and Grewe PM (1994). Appraisal of molecular genetic techniques in fisheries. Rev. Fish Biol. Fisheries 4: 300-325. http://dx.doi.org/10.1007/BF00042907   Weir BS and Cockerham CC (1984). Estimating F-statistics for the analysis of population structure. Evolution 38: 1358-1370. http://dx.doi.org/10.2307/2408641   Williams JG, Kubelik AR, Livak KJ, Rafalski JA, et al. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535. http://dx.doi.org/10.1093/nar/18.22.6531 PMid:1979162 PMCid:332606   Yu DH and Chu KH (2006). Low genetic differentiation among widely separated populations of the pearl oyster Pinctada fucata as revealed by AFLP. J. Exp. Mar. Biol. Ecol. 333: 140-146. http://dx.doi.org/10.1016/j.jembe.2005.12.046   Zhang J, Wang H and Cai Z (2007). The application of DGGE and AFLP-derived SCAR for discrimination between Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). Food Cont. 18: 672-676. http://dx.doi.org/10.1016/j.foodcont.2006.02.015   Zhao C, Li Q and Kong L (2009). Inheritance of AFLP markers and their use for genetic diversity analysis in wild and farmed scallop (Chlamys farreri). Aquaculture 287: 67-74. http://dx.doi.org/10.1016/j.aquaculture.2008.10.033
S. Klinbunga, Yuvanatemiya, V., Wongphayak, S., Khetpu, K., Menasveta, P., and Khamnamtong, B., Genetic population differentiation of the blue swimming crab Portunus pelagicus (Portunidae) in Thai waters revealed by RAPD analysis, vol. 9, pp. 1615-1624, 2010.
Aubert H and Lighter DV (2000). Identification of genetic populations of the Pacific blue shrimp Penaeus stylirostris of the Gulf of California, Mexico. Mar. Biol. 137: 875-885. http://dx.doi.org/10.1007/s002270000419   Bryars SR and Adams M (1999). An allozyme study of the blue swimming crab, Portunus pelagicus (Crustacean: Portunidae), in Australia: stock delineation in southern Australia and evidence for a cryptic species in northern waters. Mar. Freshwater Res. 50: 15-26. http://dx.doi.org/10.1071/MF98075   Carvalho GR and Hauser L (1994). Molecular genetics and the stock concept in fisheries. Rev. Fish Biol. Fish. 4: 326-350. http://dx.doi.org/10.1007/BF00042908   Conover DO, Clarke LM, Munch SB and Wagner GN (2006). Spatial and temporal scales of adaptive divergence in marine fishes and its implications for conservation. J. Fish B. 69 (Suppl C): 21-47. http://dx.doi.org/10.1111/j.1095-8649.2006.01274.x   Edgar GJ (1990). Predator-prey interactions in seagrass beds. II. Distribution and diet of the blue manna crab Portunus pelagicus Linnaeus at Cliff Head, Western Australia. J. Exp. Mar. Biol. Ecol. 139: 23-32. http://dx.doi.org/10.1016/0022-0981(90)90035-B   Hadrys H, Balick M and Schierwater B (1992). Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Mol. Ecol. 1: 55-63. http://dx.doi.org/10.1111/j.1365-294X.1992.tb00155.x PMid:1344984   Hualkasin W, Sirimontaporn P, Chotigeat W, Querci J, et al. (2003). Molecular phylogenetic analysis of white prawn species and the existence of two clades in Penaeus merguiensis. J. Exp. Mar. Biol. Ecol. 296: 1-11. http://dx.doi.org/10.1016/S0022-0981(03)00299-5   Hudson RR, Slatkin M and Maddison WP (1992). Estimation of levels of gene flow from DNA sequence data. Genetics 132: 583-589. PMid:1427045 PMCid:1205159   Kailola PJ, Williams MJ, Stewart PC and Reichelt RE (1993). Australian Fisheries Resources. Bureau of Resource Sciences, Department of Primary Industries and Energy, and the Fisheries Research and Development Corporation, Canberra, Australia, 422.   Kangas MI (2000). Synopsis of the biology and exploitation of the blue swimmer crab, Portunus pelagicus Linnaeus, in Western Australia. Fish Res. Rep. Fish West Aus. 121: 1-22.   Khamnamtong B, Klinbunga S and Menasveta P (2009). Genetic diversity and geographic differentiation of the giant tiger shrimp (Penaeus monodon) in Thailand analyzed by mitochondrial COI sequences. Biochem. Genet. 47: 42-55. http://dx.doi.org/10.1007/s10528-008-9205-3 PMid:19082881   Klinbunga S, Sodsuk S, Penman DJ and McAndrew BJ (1996). An improved protocol for total DNA isolation and visualisation of mtDNA-RFLP(s) in tiger prawn, Penaeus monodon. Thai J. Aquat. Sci. 3: 36-41.   Klinbunga S, Boonyapakdee A and Pratoomchat B (2000). Genetic diversity and species-diagnostic markers of mud crabs (genus Scylla) in eastern Thailand determined by RAPD analysis. Mar. Biotechnol. 2: 180-187.   Klinbunga S, Ampayup P, Tassanakajon A, Jarayabhand P, et al. (2001). Genetic diversity and molecular markers of cupped oysters (genera Crassostrea, Caccostrea, and Striostrea) in Thailand revealed by randomly amplified polymorphic DNA analysis. Mar. Biotechnol. 3: 133-144. http://dx.doi.org/10.1007/s101260000057 PMid:14961376   Klinbunga S, Pripue P, Khamnamtong N, Puanglarp N, et al. (2003). Genetic diversity and molecular markers of the tropical abalone (Haliotis asinina) in Thailand. Mar. Biotechnol. 5: 505-517. http://dx.doi.org/10.1007/s10126-002-0108-8 PMid:12913813   Klinbunga S, Khetpu K, Khamnamtong B and Menasveta P (2007). Genetic heterogeneity of the blue swimming crab (Portunus pelagicus) in Thailand determined by AFLP analysis. Biochem. Genet. 45: 725-736. http://dx.doi.org/10.1007/s10528-007-9110-1 PMid:17879155   Klinbunga S, Thamniemdee N, Yuvanatemiya V, Khetpu K, et al. (2010). Species identification of the blue swimming crab Portunus pelagicus in Thai waters using mtDNA and RAPD-derived SCAR markers. Aquaculture (in press). http://dx.doi.org/10.1016/j.aquaculture.2010.06.033   Lu R, Qiu T, Xiang C and Xie H (2000). RAPD and AFLP techniques for the analysis of genetic relationships in two genera of Decapoda. Crustaceana 73: 1027-1036. http://dx.doi.org/10.1163/156854000505056   Lui ZJ and Cordes JF (2004). DNA markers, technologies and their applications in aquaculture genetics. Aquaculture 238: 1-37. http://dx.doi.org/10.1016/j.aquaculture.2004.05.027   Meagher TD (1971). Ecology of the Crab Portunus pelagicus (Crustacean: Portunidae) in South Western Australia. Ph.D. thesis, University of Western Australia, Perth.   Miller MP (1997). Tools for Population Genetic Analyses (TFPGA) 1.3: A Window Program for the Analysis of Allozyme and Molecular Population Genetic Data. Department of Biological Sciences, Northern Arizona University, Flagstaff.   Ministry of Commerce Thailand (2005). Total Production Volume and Value. 2001-2005. Ministry of Commerce Thailand, Bangkok.   Naiyanetr P (1998). Checklist of the Crustacean Fauna in Thailand (Decapoda and Stomatopoda). Office of Environmental Policy and Planning Biodiversity, Series 5, 161, Bangkok.   Nei M (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583-590. PMid:17248844 PMCid:1213855   Pillay KK and Nair NB (1971). The annual reproductive cycles of Uca annulipes, Portunus pelagicus and Metapenaeus affinis (Decapoda: Crustacea) from the south-west coast of India. Mar. Biol. 11: 152-166.   Potter IC, Chrystal PJ and Loneragan NR (1983). The biology of the blue manna crab Portunus pelagicus in an Australian estuary. Mar. Biol. 78: 75-85. http://dx.doi.org/10.1007/BF00392974   Praipue P, Klinbunga S and Jarayabhand P (2010). Genetic diversity of wild and domesticated stocks of Thai abalone, Haliotis asinina (Haliotidae), analyzed by single-strand conformational polymorphism of AFLP-derived markers. Genet. Mol. Res. 9: 1136-1152. http://dx.doi.org/10.4238/vol9-2gmr808 PMid:20568059   Raymond M and Rousset F (1995). An exact test for population differentiation. Evolution 49: 1280-1283. http://dx.doi.org/10.2307/2410454   Rice WR (1989). Analyzing tables of statistical tests. Evolution 43: 223-225. http://dx.doi.org/10.2307/2409177   Sambrook J and Russell DW (2001). Molecular Cloning: A Laboratory Manual. 3rd edn. Cold Spring Harbor Laboratory Press, New York.   Sezmis E (2004). The Population Genetic Structure of Portunus pelagicus in Australian Waters. Ph.D. thesis, Murdoch University, Perth.   Tang S, Popongviwat A, Klinbunga S, Tassanakajon A, et al. (2005). Genetic heterogeneity of the tropical abalone (Haliotis asinina) revealed by RAPD and microsatellite analyses. J. Biochem. Mol. Biol. 38: 182-190. http://dx.doi.org/10.5483/BMBRep.2005.38.2.182 PMid:15826495   Tassanakajon A, Pongsomboon S, Jarayabhand P, Klinbunga S, et al. (1998). Genetic structure in wild populations of black tiger shrimp (Penaeus monodon) using randomly amplified polymorphic DNA analysis. J. Mar. Biotechnol. 6: 249-254. PMid:9852621   Tyler-Walters H and Hawkins AR (1995). The application of RAPD markers to the study of the bivalve mollusc Lasaea rubra. J. Mar. Biol. Assoc. 75: 563-569. http://dx.doi.org/10.1017/S0025315400039011   Weir BS and Cockerham CC (1984). Estimating F-statistics for the analysis of population structure. Evolution 38: 1358-1370. http://dx.doi.org/10.2307/2408641   Weising K, Nybom H, Wolf K and Meyer W (1995). DNA Fingerprinting in Plant and Fungi. CRC Press, Boca Raton, Florida. PMCid:307286   Welsh J and McClelland M (1990). Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 18: 7213-7218. http://dx.doi.org/10.1093/nar/18.24.7213 PMid:2259619 PMCid:332855   Williams JG, Kubelik AR, Livak KJ, Rafalski JA, et al. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535. http://dx.doi.org/10.1093/nar/18.22.6531 PMid:1979162 PMCid:332606
J. Techaprasan, Klinbunga, S., Ngamriabsakul, C., and Jenjittikul, T., Genetic variation of Kaempferia (Zingiberaceae) in Thailand based on chloroplast DNA (psbA-trnH and petA-psbJ) sequences, vol. 9, pp. 1957-1973, 2010.
Chuakul W (2003). Ethnomedical Uses of Thai Zingiberaceous Plants. In: Proceedings of the 3rd International Symposium on the Family Zingiberaceae (Chantaranothai P, Larsen K, Sirirugsa P and Simpson D, eds.). Applied Taxonomic Research Center, Khon Kaen University, Khon Kaen, July 7-12, 2002, 201-207.   Doyle JJ and Doyle JL (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytoch. Bull. 19: 11-15.   Hall TA (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 41: 95-98. Available at [http://www.mbio.ncsu.edu/BioEdit/bioedit.html]. Accessed July 25, 2008.   Holttum RE (1950). The Zingiberaceae of the Malay Peninsula. Gard. Bull. Singap. 13: 117-123.   Ibrahim H (1999). Kaempferia. In: Plant Resources of South-East Asia (de Padua LS, Bunyapraphatsara N and Lemmens RHMJ, eds.). Vol. 12. Backhuys Publisher, Leiden, 331-335.   Jenjittikul T and Larsen K (2000). Kaempferia candida Wall. (Zingiberaceae), a new record for Thailand. Thai For. Bull. 28: 45-49.   Kelchner SA and Wendel JF (1996). Hairpins create minute inversions in non-coding regions of chloroplast DNA. Curr. Genet. 30: 259-262. http://dx.doi.org/10.1007/s002940050130 PMid:8753656   Kim KJ and Lee HL (2004). Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res. 11: 247-261. http://dx.doi.org/10.1093/dnares/11.4.247 PMid:15500250   Kimura M (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120. http://dx.doi.org/10.1007/BF01731581 PMid:7463489   Kress WJ, Prince LM and Williams KJ (2002). The phylogeny and a new classification of the gingers (Zingiberaceae): evidence from molecular data. Am. J. Bot. 89: 1682-1696. http://dx.doi.org/10.3732/ajb.89.10.1682 PMid:21665595   Kress WJ, Liu AZ, Newman M and Li QJ (2005a). The molecular phylogeny of Alpinia (Zingiberaceae): a complex and polyphyletic genus of gingers. Am. J. Bot. 92: 167-178. http://dx.doi.org/10.3732/ajb.92.1.167 PMid:21652395   Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, et al. (2005b). Use of DNA barcodes to identify flowering plants. Proc. Natl. Acad. Sci. U. S. A. 102: 8369-8374. http://dx.doi.org/10.1073/pnas.0503123102 PMid:15928076 PMCid:1142120   Larsen K and Saksuwan Larsen S (2006). Gingers of Thailand. Queen Sirikit Botanic Garden. The Botanical Garden Organization, Chiang Mai.   Loesener T (1930). Zingiberaceae. In: Die Natürlichen Pflanzenfamilien (Engler A and Prantl K, eds.). W. Engelmann, Leipzig, 541-640.   Saensouk S and Jenjittikul T (2001). Kaempferia grandifolia sp. nov. (Zingiberaceae) a new species from Thailand. Nord. J. Bot. 21: 139-142. http://dx.doi.org/10.1111/j.1756-1051.2001.tb01349.x   Searle RJ (1999). A new combination and new synonymy in Kaempferia (Zingiberaceae: Hedychieae). Telopea 8: 375-376.   Sirirugsa P (1992). Taxonomy of the genus Kaempferia (Zingiberaceae) in Thailand. Thai For. Bull. 19: 1-15.   Smith RM (1987). A review of Bornean Zingiberaceae: III (Hedychieae). Notes R. Bot. Gard. Edinb. 44: 203-232.   Sookkongwaree K, Geitmann M, Roengsumran S, Petsom A, et al. (2006). Inhibition of viral proteases by Zingiberaceae extracts and flavonoids isolated from Kaempferia parviflora. Pharmazie 61: 717-721. PMid:16964717   Soontornchainaksaeng P (2005). Reports on Chromosome Numbers of Plants in Thailand. BRT program. Chuan Printing Press Ltd., Part. Bangkok.   Swangpol S, Volkaert H, Sotto RC and Seelanan T (2007). Utility of selected non-coding chloroplast DNA sequences for lineage assessment of Musa interspecific hybrids. J. Biochem. Mol. Biol. 40: 577-587. http://dx.doi.org/10.5483/BMBRep.2007.40.4.577 PMid:17669275   Swofford DL (2004). PAUP*: Phylogenetic Analysis Using Parsimony (* and Other Methods). Version 4.0 Beta 10. Sinauer Associates, Sunderland. PMid:15336677   Techaprasan J, Ngamriabsakul C, Klinbunga S, Chusacultanachai S, et al. (2006). Genetic variation and species identification of Thai Boesenbergia (Zingiberaceae) analyzed by chloroplast DNA polymorphism. J. Biochem. Mol. Biol. 39: 361-370. http://dx.doi.org/10.5483/BMBRep.2006.39.4.361 PMid:16889678   Thongnest S, Mahidol C, Sutthivaiyakit S and Ruchirawat S (2005). Oxygenated pimarane diterpenes from Kaempferia marginata. J. Nat. Prod. 68: 1632-1636. http://dx.doi.org/10.1021/np050186l PMid:16309313   Vimala S, Norhanom AW and Yadav M (1999). Anti-tumour promoter activity in Malaysian ginger rhizobia used in traditional medicine. Br. J. Cancer 80: 110-116. http://dx.doi.org/10.1038/sj.bjc.6690329 PMCid:2362999   Yenjai C, Daodee S and Wangboonskul J (2003a). Antifungal Activity and Antimycobacterial Activity of Ethyl p-methoxycinnamate from Kaempferia galanga L. In: Proceedings of the 3rd International Symposium on the Family Zingiberaceae (Chantaranothai P, Larsen K, Sirirugsa P and Simpson D, eds.). Applied Taxonomic Research Center, Khon Kaen University, Khon Kaen, July 7-12, 2002, 193-195.   Yenjai C, Kittakoop P, Daodee S and Prasanphen K (2003b). Antimycobacterial and Antifungal Activities of Flavonoids from Kaempferia parviflora Wall. ex Bak. In: Proceedings of the 3rd International Symposium on the Family Zingiberaceae (Chantaranothai P, Larsen K, Sirirugsa P and Simpson D, eds.). Applied Taxonomic Research Center, Khon Kaen University, Khon Kaen, July 7-12, 2002, 190-192.   Yenjai C, Prasanphen K, Daodee S, Wongpanich V, et al. (2004). Bioactive flavonoids from Kaempferia parviflora. Fitoterapia 75: 89-92. http://dx.doi.org/10.1016/j.fitote.2003.08.017 PMid:14693228