Publications

Found 1 results
Filters: Author is R. Margis  [Clear All Filters]
2011
J. C. Lima, Arenhart, R. A., Margis-Pinheiro, M., and Margis, R., Aluminum triggers broad changes in microRNA expression in rice roots, vol. 10, pp. 2817-2832, 2011.
Abdel-Ghany SE and Pilon M (2008). MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J. Biol. Chem. 283: 15932-15945. http://dx.doi.org/10.1074/jbc.M801406200 PMid:18408011    PMCid:3259626 Baier AC, Somers DJ and Gustafson JP (1995). Aluminium tolerance in wheat: correlating hydroponic evaluations with field and soil performances. Plant Breed. 114: 291-296. http://dx.doi.org/10.1111/j.1439-0523.1995.tb01236.x Bari R, Datt PB, Stitt M and Scheible WR (2006). PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol. 141: 988-999. http://dx.doi.org/10.1104/pp.106.079707 PMid:16679424    PMCid:1489890 Brennecke J, Stark A, Russell RB and Cohen SM (2005). Principles of microRNA-target recognition. PLoS Biol. 3: e85. http://dx.doi.org/10.1371/journal.pbio.0030085 PMid:15723116    PMCid:1043860 Chen C, Ridzon DA, Broomer AJ, Zhou Z, et al. (2005). Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 33: e179. http://dx.doi.org/10.1093/nar/gni178 PMid:16314309    PMCid:1292995 Chen Z, Zhang J, Kong J, Li S, et al. (2006). Diversity of endogenous small non-coding RNAs in Oryza sativa. Genetica 128: 21-31. http://dx.doi.org/10.1007/s10709-005-2486-0 PMid:17028937 Ding D, Zhang L, Wang H, Liu Z, et al. (2009). Differential expression of miRNAs in response to salt stress in maize roots. Ann. Bot. 103: 29-38. http://dx.doi.org/10.1093/aob/mcn205 PMid:18952624    PMCid:2707283 Fukuda T, Saito A, Wasaki J, Shinano T, et al. (2007). Metabolic alterations proposed by proteome in rice roots grown under low P and high Al concentration under low pH. Plant Sci. 172: 1157-1165. http://dx.doi.org/10.1016/j.plantsci.2007.02.020 Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, et al. (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34: D140-D144. http://dx.doi.org/10.1093/nar/gkj112 PMid:16381832    PMCid:1347474 Grotz N and Guerinot ML (2002). Limiting nutrients: an old problem with new solutions? Curr. Opin. Plant Biol. 5: 158-163. http://dx.doi.org/10.1016/S1369-5266(02)00247-9 Huang CF, Yamaji N and Ma JF (2010). Knockout of a bacterial-type ATP-binding cassette transporter gene, AtSTAR1, results in increased aluminum sensitivity in Arabidopsis. Plant Physiol. 153: 1669-1677. http://dx.doi.org/10.1104/pp.110.155028 PMid:20498340    PMCid:2923911 Huang SQ, Xiang AL, Che LL, Chen S, et al. (2010). A set of miRNAs from Brassica napus in response to sulphate deficiency and cadmium stress. Plant Biotechnol. J 8: 887-899. http://dx.doi.org/10.1111/j.1467-7652.2010.00517.x PMid:20444207 Jung HJ and Kang H (2007). Expression and functional analyses of microRNA417 in Arabidopsis thaliana under stress conditions. Plant Physiol. Biochem. 45: 805-811. http://dx.doi.org/10.1016/j.plaphy.2007.07.015 PMid:17845858 Khan MS, Tawaraya K, Sekimoto H, Koyama H, et al. (2009). Relative abundance of Delta(5)-sterols in plasma membrane lipids of root-tip cells correlates with aluminum tolerance of rice. Physiol. Plant 135: 73-83. http://dx.doi.org/10.1111/j.1399-3054.2008.01175.x PMid:19121101 Kikui S, Sasaki T, Maekawa M, Miyao A, et al. (2005). Physiological and genetic analyses of aluminium tolerance in rice, focusing on root growth during germination. J. Inorg. Biochem. 99: 1837-1844. http://dx.doi.org/10.1016/j.jinorgbio.2005.06.031 PMid:16095709 Li YF, Zheng Y, Addo-Quaye C, Zhang L, et al. (2010). Transcriptome-wide identification of microRNA targets in rice. Plant J. 62: 742-759. http://dx.doi.org/10.1111/j.1365-313X.2010.04187.x PMid:20202174 Liang G, Yang F and Yu D (2010). MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana. Plant J. 62: 1046-1057. PMid:20374528 Lindow M, Jacobsen A, Nygaard S, Mang Y, et al. (2007). Intragenomic matching reveals a huge potential for miRNA-mediated regulation in plants. PLoS Comput. Biol. 3: e238. http://dx.doi.org/10.1371/journal.pcbi.0030238 PMid:18052543    PMCid:2098865 Livak KJ and Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408. Lu XY and Huang XL (2008). Plant miRNAs and abiotic stress responses. Biochem. Biophys. Res. Commun. 368: 458-462. http://dx.doi.org/10.1016/j.bbrc.2008.02.007 PMid:18267107 Maron LG, Kirst M, Mao C, Milner MJ, et al. (2008). Transcriptional profiling of aluminum toxicity and tolerance responses in maize roots. New Phytol. 179: 116-128. http://dx.doi.org/10.1111/j.1469-8137.2008.02440.x PMid:18399934 Millar AA and Gubler F (2005). The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell 17: 705-721. http://dx.doi.org/10.1105/tpc.104.027920 PMid:15722475    PMCid:1069693 Nagasaki H, Itoh J, Hayashi K, Hibara K, et al. (2007). The small interfering RNA production pathway is required for shoot meristem initiation in rice. Proc. Natl. Acad. Sci. U. S. A. 104: 14867-14871. http://dx.doi.org/10.1073/pnas.0704339104 PMid:17804793    PMCid:1976227 Navarro L, Dunoyer P, Jay F, Arnold B, et al. (2006). A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312: 436-439. http://dx.doi.org/10.1126/science.1126088 PMid:16627744 Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, et al. (2002). MicroRNAs in plants. Genes Dev. 16: 1616-1626. http://dx.doi.org/10.1101/gad.1004402 Sharma P and Dubey RS (2007). Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Rep. 26: 2027-2038. http://dx.doi.org/10.1007/s00299-007-0416-6 PMid:17653721 Stirnberg P, Furner IJ and Ottoline Leyser HM (2007). MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. Plant J. 50: 80-94. http://dx.doi.org/10.1111/j.1365-313X.2007.03032.x PMid:17346265 Sunkar R (2010). MicroRNAs with macro-effects on plant stress responses. Semin. Cell Dev. Biol. 21: 805-811. http://dx.doi.org/10.1016/j.semcdb.2010.04.001 Vanzin GF, Madson M, Carpita NC, Raikhel NV, et al. (2002). The mur2 mutant of Arabidopsis thaliana lacks fucosylated xyloglucan because of a lesion in fucosyltransferase AtFUT1. Proc. Natl. Acad. Sci. U. S. A. 99: 3340-3345. http://dx.doi.org/10.1073/pnas.052450699 PMid:11854459    PMCid:122520 Xie Q, Frugis G, Colgan D and Chua NH (2000). Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev. 14: 3024-3036. http://dx.doi.org/10.1101/gad.852200 Xie Z, Khanna K and Ruan S (2010). Expression of microRNAs and its regulation in plants. Semin. Cell Dev. Biol. 21: 790-797. http://dx.doi.org/10.1016/j.semcdb.2010.03.012 Xue LJ, Zhang JJ and Xue HW (2009). Characterization and expression profiles of miRNAs in rice seeds. Nucleic Acids Res. 37: 916-930. http://dx.doi.org/10.1093/nar/gkn998 PMid:19103661    PMCid:2647296 Yamaji N, Huang CF, Nagao S, Yano M, et al. (2009). A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice. Plant Cell 21: 3339-3349. http://dx.doi.org/10.1105/tpc.109.070771 PMid:19880795    PMCid:2782276 Yang Q, Wang Y, Zhang J, Shi W, et al. (2007). Identification of aluminum-responsive proteins in rice roots by a proteomic approach: cysteine synthase as a key player in Al response. Proteomics. 7: 737-749. http://dx.doi.org/10.1002/pmic.200600703 PMid:17295357 Zhang Y (2005). miRU: an automated plant miRNA target prediction server. Nucleic Acids Res. 33: W701-W704. http://dx.doi.org/10.1093/nar/gki383 PMid:15980567    PMCid:1160144 Zhang Z, Yu J, Li D, Zhang Z, et al. (2010). PMRD: plant microRNA database. Nucleic Acids Res. 38: D806-D813. http://dx.doi.org/10.1093/nar/gkp818 PMid:19808935    PMCid:2808885 Zhao B, Liang R, Ge L, Li W, et al. (2007). Identification of drought-induced microRNAs in rice. Biochem. Biophys. Res. Commun. 354: 585-590. http://dx.doi.org/10.1016/j.bbrc.2007.01.022 PMid:17254555 Zhao B, Ge L, Liang R, Li W, et al. (2009). Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Mol. Biol. 10: 29. http://dx.doi.org/10.1186/1471-2199-10-29 PMid:19351418    PMCid:2670843 Zhu QH and Helliwell CA (2011). Regulation of flowering time and floral patterning by miR172. J. Exp. Bot. 62: 487-495. http://dx.doi.org/10.1093/jxb/erq295 PMid:20952628