Publications

Found 21 results
Filters: Author is T. Wang  [Clear All Filters]
2016
T. Wang, Zou, Q. D., Qi, S. Y., Wang, X. F., Wu, Y. Y., Liu, N., Zhang, Y. M., Zhang, Z. J., Li, H. T., Wang, T., Zou, Q. D., Qi, S. Y., Wang, X. F., Wu, Y. Y., Liu, N., Zhang, Y. M., Zhang, Z. J., and Li, H. T., Analysis of genetic diversity and population structure in a tomato (Solanum lycopersicum L.) germplasm collection based on single nucleotide polymorphism markers, vol. 15, p. -, 2016.
T. Wang, Zou, Q. D., Qi, S. Y., Wang, X. F., Wu, Y. Y., Liu, N., Zhang, Y. M., Zhang, Z. J., Li, H. T., Wang, T., Zou, Q. D., Qi, S. Y., Wang, X. F., Wu, Y. Y., Liu, N., Zhang, Y. M., Zhang, Z. J., and Li, H. T., Analysis of genetic diversity and population structure in a tomato (Solanum lycopersicum L.) germplasm collection based on single nucleotide polymorphism markers, vol. 15, p. -, 2016.
Y. N. Ma, Du, Y. Y., Zhang, Y. P., Wang, T., Ma, Y. N., Du, Y. Y., Zhang, Y. P., and Wang, T., Population genetic structure and its implication in the conservation of Schizopygopsis pylzovi in Yellow River as inferred from mitochondrial DNA sequence analysis, vol. 15. p. -, 2016.
Y. N. Ma, Du, Y. Y., Zhang, Y. P., Wang, T., Ma, Y. N., Du, Y. Y., Zhang, Y. P., and Wang, T., Population genetic structure and its implication in the conservation of Schizopygopsis pylzovi in Yellow River as inferred from mitochondrial DNA sequence analysis, vol. 15. p. -, 2016.
G. N. Sui, Liu, Z. W., Wang, T., Li, X., Ding, X. B., Liu, X. F., Guo, H., Sui, G. N., Liu, Z. W., Wang, T., Li, X., Ding, X. B., Liu, X. F., and Guo, H., Promoter analysis of bovine cardiomyopathy-associated protein 1 gene, vol. 15, p. -, 2016.
G. N. Sui, Liu, Z. W., Wang, T., Li, X., Ding, X. B., Liu, X. F., Guo, H., Sui, G. N., Liu, Z. W., Wang, T., Li, X., Ding, X. B., Liu, X. F., and Guo, H., Promoter analysis of bovine cardiomyopathy-associated protein 1 gene, vol. 15, p. -, 2016.
2015
T. Wang, Zhang, Y., Wang, H. D., Shen, Y., Liu, N., Cao, J., Yu, X. J., Dong, C. S., and He, X. Y., Alpaca fiber growth is mediated by microRNA let-7b via down-regulation of target gene FGF5, vol. 14, pp. 13754-13763, 2015.
B. Wang, Wang, T., Cao, X. L., and Li, Y., Critical genes in head and neck squamous cell carcinoma revealed by bioinformatic analysis of gene expression data, vol. 14, pp. 17406-17415, 2015.
M. Xiao, Wang, T., Zhu, T., and Wen, F., Dual role of vitamin D-binding protein 1F allele in chronic obstructive pulmonary disease susceptibility: a meta-analysis, vol. 14, pp. 3534-3540, 2015.
J. Wang, Wang, T., Yin, G. - Y., Yang, L., Wang, Z. - G., and Bu, X. - B., Glutathione S-transferase polymorphisms influence chemotherapy response and treatment outcome in breast cancer, vol. 14, pp. 11126-11132, 2015.
L. Li, Li, E., Zhang, L. H., Jian, L. G., Liu, H. P., and Wang, T., IL-6-174G/C and IL-6-572C/G polymorphisms are associated with increased risk of coronary artery disease, vol. 14, pp. 8451-8457, 2015.
H. Xiao, Zhang, H., Li, T., Wu, D., Qin, L. T., Wang, T., Zhang, B., and Liao, S. X., New compound heterozygous mutations of p. Thr101Ilefs*2 and p. Thr306Ale in a child from a Chinese family with 17α-hydroxylase/17, 20-lyase deficiency, vol. 14, pp. 9318-9324, 2015.
Z. W. Liu, Fan, H. L., Liu, X. F., Ding, X. B., Wang, T., Sui, G. N., Li, G. P., and Guo, H., Overexpression of the A-FABP gene facilitates intermuscular fat deposition in transgenic mice, vol. 14, pp. 2742-2749, 2015.
2013
C. - P. Liu, Jiang, J. - A., Wang, T., Liu, X. - M., Gao, L., Zhu, R. - R., Shen, Y., Wu, M., Xu, T., and Zhang, X. - G., CTLA-4 and CD86 genetic variants and haplotypes in patients with rheumatoid arthritis in southeastern China, vol. 12, pp. 1373-1382, 2013.
Abdallah AM, Renzoni EA, Anevlavis S, Lagan AL, et al. (2006). A polymorphism in the promoter region of the CD86 (B7.2) gene is associated with systemic sclerosis. Int. J. Immunogenet. 33: 155-161. http://dx.doi.org/10.1111/j.1744-313X.2006.00580.x PMid:16712644   Almasi S, Erfani N, Mojtahedi Z, Rajaee A, et al. (2006). Association of CTLA-4 gene promoter polymorphisms with systemic sclerosis in Iranian population. Genes Immun. 7: 401-406. http://dx.doi.org/10.1038/sj.gene.6364313 PMid:16775619   Arnett FC, Edworthy SM, Bloch DA, McShane DJ, et al. (1988). The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 31: 315-324. http://dx.doi.org/10.1002/art.1780310302 PMid:3358796   Catalan D, Aravena O, Sabugo F, Wurmann P, et al. (2010). B cells from rheumatoid arthritis patients show important alterations in the expression of CD86 and FcgammaRIIb, which are modulated by anti-tumor necrosis factor therapy. Arthritis Res. Ther. 12: R68. http://dx.doi.org/10.1186/ar2985 PMid:20398308 PMCid:2888223   Chang JC, Liu CA, Chuang H, Ou CY, et al. (2004). Gender-limited association of cytotoxic T-lymphocyte antigen-4 (CTLA-4) polymorphism with cord blood IgE levels. Pediatr. Allergy Immunol. 15: 506-512. http://dx.doi.org/10.1111/j.1399-3038.2004.00161.x PMid:15610363   Fox D (2005). Etiology and Pathogenesis of Rheumatoid Arthritis. In: Arthritis and Allied Conditions (Koopman W, ed.). Lippincott Williams & Wilkins, Philadephia, 1089-1115.   Haimila K, Einarsdottir E, de Kauwe A, Koskinen LL, et al. (2009). The shared CTLA4-ICOS risk locus in celiac disease, IgA deficiency and common variable immunodeficiency. Genes Immun. 10: 151-161. http://dx.doi.org/10.1038/gene.2008.89 PMid:19020530   Howson JM, Walker NM, Smyth DJ and Todd JA (2009). Analysis of 19 genes for association with type I diabetes in the Type I Diabetes Genetics Consortium families. Genes Immun. 10 (Suppl 1): S74-S84. http://dx.doi.org/10.1038/gene.2009.96 PMid:19956106 PMCid:2810493   Jones AL, Holliday EG, Mowry BJ, McLean DE, et al. (2009). CTLA-4 single-nucleotide polymorphisms in a Caucasian population with schizophrenia. Brain Behav. Immun. 23: 347-350. http://dx.doi.org/10.1016/j.bbi.2008.09.008 PMid:18848621   Kouki T, Gardine CA, Yanagawa T and Degroot LJ (2002). Relation of three polymorphisms of the CTLA-4 gene in patients with Graves' disease. J. Endocrinol. Invest. 25: 208-213. PMid:11936461   Kusztal M, Kościelska-Kasprzak K, Drulis-Fajdasz D, Magott-Procelewska M, et al. (2010). The influence of CTLA-4 gene polymorphism on long-term kidney allograft function in Caucasian recipients. Transpl. Immunol. 23: 121-124. http://dx.doi.org/10.1016/j.trim.2010.05.002 PMid:20470888   Landi D, Moreno V, Guino E, Vodicka P, et al. (2011). Polymorphisms affecting micro-RNA regulation and associated with the risk of dietary-related cancers: a review from the literature and new evidence for a functional role of rs17281995 (CD86) and rs1051690 (INSR), previously associated with colorectal cancer. Mutat. Res. 717: 109-115. http://dx.doi.org/10.1016/j.mrfmmm.2010.10.002 PMid:20971123   Liang YL, Wu H, Li PQ, Xie XD, et al. (2011). Signal transducer and activator of transcription 4 gene polymorphisms associated with rheumatoid arthritis in Northwestern Chinese Han population. Life Sci. 89: 171-175. http://dx.doi.org/10.1016/j.lfs.2011.05.012 PMid:21683716   Ligers A, Teleshova N, Masterman T, Huang WX, et al. (2001). CTLA-4 gene expression is influenced by promoter and exon 1 polymorphisms. Genes Immun. 2: 145-152. http://dx.doi.org/10.1038/sj.gene.6363752 PMid:11426323   Liu MF, Kohsaka H, Sakurai H, Azuma M, et al. (1996). The presence of costimulatory molecules CD86 and CD28 in rheumatoid arthritis synovium. Arthritis Rheum. 39: 110-114. http://dx.doi.org/10.1002/art.1780390115 PMid:8546719   Liu Y, Liang WB, Gao LB, Pan XM, et al. (2010). CTLA4 and CD86 gene polymorphisms and susceptibility to chronic obstructive pulmonary disease. Hum. Immunol. 71: 1141-1146. http://dx.doi.org/10.1016/j.humimm.2010.08.007 PMid:20732370   Magistrelli G, Jeannin P, Herbault N, Benoit De CA, et al. (1999). A soluble form of CTLA-4 generated by alternative splicing is expressed by nonstimulated human T cells. Eur. J. Immunol. 29: 3596-3602. http://dx.doi.org/10.1002/(SICI)1521-4141(199911)29:11<3596::AID-IMMU3596>3.0.CO;2-Y   Marin LA, Moya-Quiles MR, Miras M, Muro M, et al. (2005). Evaluation of CD86 gene polymorphism at +1057 position in liver transplant recipients. Transpl. Immunol. 15: 69-74. http://dx.doi.org/10.1016/j.trim.2005.04.003 PMid:16223675   Matsushita M, Tsuchiya N, Oka T, Yamane A, et al. (2000). New polymorphisms of human CD80 and CD86: lack of association with rheumatoid arthritis and systemic lupus erythematosus. Genes Immun. 1: 428-434. http://dx.doi.org/10.1038/sj.gene.6363704 PMid:11196673   Maurer M, Loserth S, Kolb-Maurer A, Ponath A, et al. (2002). A polymorphism in the human cytotoxic T-lymphocyte antigen 4 (CTLA4) gene (exon 1 +49) alters T-cell activation. Immunogenetics 54: 1-8. http://dx.doi.org/10.1007/s00251-002-0429-9 PMid:11976786   Orozco G, Rueda B and Martin J (2006). Genetic basis of rheumatoid arthritis. Biomed. Pharmacother. 60: 656-662. http://dx.doi.org/10.1016/j.biopha.2006.09.003 PMid:17055211   Pawlak E, Karabon L, Wlodarska-Polinska I, Jedynak A, et al. (2010). Influence of CTLA-4/CD28/ICOS gene polymorphisms on the susceptibility to cervical squamous cell carcinoma and stage of differentiation in the Polish population. Hum. Immunol. 71: 195-200. http://dx.doi.org/10.1016/j.humimm.2009.11.006 PMid:19913589   Plant D, Flynn E, Mbarek H, Dieude P, et al. (2010). Investigation of potential non-HLA rheumatoid arthritis susceptibility loci in a European cohort increases the evidence for nine markers. Ann. Rheum. Dis. 69: 1548-1553. http://dx.doi.org/10.1136/ard.2009.121020 PMid:20498205 PMCid:2938898   Rai E and Wakeland EK (2011). Genetic predisposition to autoimmunity - what have we learned? Semin. Immunol. 23: 67-83. http://dx.doi.org/10.1016/j.smim.2011.01.015 PMid:21288738   Scalapino KJ and Daikh DI (2008). CTLA-4: a key regulatory point in the control of autoimmune disease. Immunol. Rev. 223: 143-155. http://dx.doi.org/10.1111/j.1600-065X.2008.00639.x PMid:18613834   Sharpe AH and Freeman GJ (2002). The B7-CD28 superfamily. Nat. Rev. Immunol. 2: 116-126. http://dx.doi.org/10.1038/nri727 PMid:11910893   Sole X, Guino E, Valls J, Iniesta R, et al. (2006). SNPStats: a web tool for the analysis of association studies. Bioinformatics 22: 1928-1929. http://dx.doi.org/10.1093/bioinformatics/btl268 PMid:16720584   Su TH, Chang TY, Lee YJ, Chen CK, et al. (2007). CTLA-4 gene and susceptibility to human papillomavirus-16- associated cervical squamous cell carcinoma in Taiwanese women. Carcinogenesis 28: 1237-1240. http://dx.doi.org/10.1093/carcin/bgm043 PMid:17341658   Tivol EA, Borriello F, Schweitzer AN, Lynch WP, et al. (1995). Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3: 541-547. http://dx.doi.org/10.1016/1074-7613(95)90125-6   Wang XB, Zhao X, Giscombe R and Lefvert AK (2002). A CTLA-4 gene polymorphism at position -318 in the promoter region affects the expression of protein. Genes Immun. 3: 233-234. http://dx.doi.org/10.1038/sj.gene.6363869 PMid:12058260   Yadav D and Sarvetnick N (2007). B7-2 regulates survival, phenotype, and function of APCs. J. Immunol. 178: 6236- 6241. PMid:17475851   Zaletel K, Krhin B, Gaberscek S and Hojker S (2006). Thyroid autoantibody production is influenced by exon 1 and promoter CTLA-4 polymorphisms in patients with Hashimoto's thyroiditis. Int. J. Immunogenet. 33: 87-91. http://dx.doi.org/10.1111/j.1744-313X.2006.00574.x PMid:16611252
Y. L. Hou, Ding, X., Hou, W., Song, B., Wang, T., Wang, F., Li, J., Zhong, J., Xu, T., Ma, B. X., Zhu, H. Q., Li, J. H., and Zhong, J. C., Overexpression, purification, and pharmacologic evaluation of anticancer activity of ribosomal protein L24 from the giant panda (Ailuropoda melanoleuca), vol. 12, pp. 4735-4750, 2013.
2012
W. - R. Hou, Hou, Y. - L., Ding, X., and Wang, T., cDNA, genomic sequence cloning and overexpression of giant panda (Ailuropoda melanoleuca) mitochondrial ATP synthase ATP5G1, vol. 11, pp. 3164-3174, 2012.
Abrahams JP, Leslie AG, Lutter R and Walker JE (1994). Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature 370: 621-628. http://dx.doi.org/10.1038/370621a0 PMid:8065448   Andersson U, Houstek J and Cannon B (1997). ATP synthase subunit c expression: physiological regulation of the P1 and P2 genes. Biochem. J. 323: 379-385. PMid:9163327 PMCid:1218330   Carbajo RJ, Kellas FA, Runswick MJ, Montgomery MG, et al. (2005). Structure of the F1-binding domain of the stator of bovine F1Fo-ATPase and how it binds an alpha-subunit. J. Mol. Biol. 351: 824-838. http://dx.doi.org/10.1016/j.jmb.2005.06.012 PMid:16045926   Collinson IR, Runswick MJ, Buchanan SK, Fearnley IM, et al. (1994). Fo membrane domain of ATP synthase from bovine heart mitochondria: purification, subunit composition, and reconstitution with F1-ATPase. Biochemistry 33: 7971-7978. http://dx.doi.org/10.1021/bi00191a026 PMid:8011660   De Grassi A, Lanave C and Saccone C (2006). Evolution of ATP synthase subunit c and cytochrome c gene families in selected Metazoan classes. Gene 371: 224-233. http://dx.doi.org/10.1016/j.gene.2005.11.022 PMid:16460889   Du YJ, Luo XY, Hao YZ, Zhang T, et al. (2007). cDNA cloning and overexpression of acidic ribosomal phosphoprotein P1 gene (RPLP1) from the giant panda. Int. J. Biol. Sci. 3: 428-433. http://dx.doi.org/10.7150/ijbs.3.428 PMid:18071584 PMCid:2043164   Dyer MR and Walker JE (1993). Sequences of members of the human gene family for the c subunit of mitochondrial ATP synthase. Biochem. J. 293: 51-64. PMid:8328972 PMCid:1134319   Farrell LB and Nagley P (1987). Human liver cDNA clones encoding proteolipid subunit 9 of the mitochondrial ATPase complex. Biochem. Biophys. Res. Commun. 144: 1257-1264. http://dx.doi.org/10.1016/0006-291X(87)91446-X   Fearnley IM, Walker JE, Martinus RD, Jolly RD, et al. (1990). The sequence of the major protein stored in ovine ceroid lipofuscinosis is identical with that of the dicyclohexylcarbodiimide-reactive proteolipid of mitochondrial ATP synthase. Biochem. J. 268: 751-758. PMid:2141977 PMCid:1131504   Fillingame RH (1992). Subunit c of F1F0 ATP synthase: structure and role in transmembrane energy transduction. Biochim. Biophys. Acta 1101: 240-243. PMid:1385981   Gay NJ and Walker JE (1985). Two genes encoding the bovine mitochondrial ATP synthase proteolipid specify precursors with different import sequences and are expressed in a tissue-specific manner. EMBO J. 4: 3519-3524. PMid:2868890 PMCid:554691   Groth G (2000). Molecular models of the structural arrangement of subunits and the mechanism of proton translocation in the membrane domain of F(1)F(0) ATP synthase. Biochim. Biophys. Acta 1458: 417-427. http://dx.doi.org/10.1016/S0005-2728(00)00091-8   Higuti T, Kuroiwa K, Kawamura Y, Morimoto K, et al. (1993a). Molecular cloning and sequence of cDNAs for the import precursors of oligomycin sensitivity conferring protein, ATPase inhibitor protein, and subunit c of H(+)-ATP synthase in rat mitochondria. Biochim. Biophys. Acta 1172: 311-314. http://dx.doi.org/10.1016/0167-4781(93)90219-4   Higuti T, Kawamura Y, Kuroiwa K, Miyazaki S, et al. (1993b). Molecular cloning and sequence of two cDNAs for human subunit c of H(+)-ATP synthase in mitochondria. Biochim. Biophys. Acta 1173: 87-90. http://dx.doi.org/10.1016/0167-4781(93)90249-D   Hou WR, Du YJ, Chen Y, Wu X, et al. (2007). Nucleotide sequence of cDNA encoding the mitochondrial precursor protein of the ATPase inhibitor from the giant panda (Ailuropoda melanoleuca). DNA Cell Biol. 26: 799-802. http://dx.doi.org/10.1089/dna.2007.0626 PMid:17822358   Hou YL, Hou WR, Ren ZL, Hao YZ, et al. (2009). cDNA cloning and overexpression of ribosomal protein S19 gene (RPS19) from the giant panda. DNA Cell Biol. 28: 41-47. http://dx.doi.org/10.1089/dna.2008.0799 PMid:19072723   Houstek J, Andersson U, Tvrdík P, Nedergaard J, et al. (1995). The expression of subunit c correlates with and thus may limit the biosynthesis of the mitochondrial F0F1-ATPase in brown adipose tissue. J. Biol. Chem. 270: 7689-7694. http://dx.doi.org/10.1074/jbc.270.13.7689 PMid:7706317   Kandil E, Kohda K, Ishibashi T, Tanaka K, et al. (1997). PA28 subunits of the mouse proteasome: primary structures and chromosomal localization of the genes. Immunogenetics 46: 337-344. http://dx.doi.org/10.1007/s002510050281 PMid:9218537   Kramarova TV, Shabalina IG, Andersson U, Westerberg R, et al. (2008). Mitochondrial ATP synthase levels in brown adipose tissue are governed by the c-Fo subunit P1 isoform. FASEB J. 22: 55-63. http://dx.doi.org/10.1096/fj.07-8581com PMid:17666453   Li HS, Zhang JY, Thompson BS, Deng XY, et al. (2001). Rat mitochondrial ATP synthase ATP5G3: cloning and upregulation in pancreas after chronic ethanol feeding. Physiol. Genomics 6: 91-98. PMid:11459924   Liao MJ, Zhu MY, Zhang ZH, Zhang AJ, et al. (2003a). Cloning and sequence analysis of FSH and LH in the giant panda (Ailuropoda melanoleuca). Anim. Reprod. Sci. 77: 107-116. http://dx.doi.org/10.1016/S0378-4320(02)00275-0   Liao MJ, Zhu MY, Zheng X, Zhang ZH, et al. (2003b). cDNA cloning of growth hormone from giant panda (Ailuropoda melanoleuca) and its expression in Escherichia coli. Comp Biochem. Physiol. B Biochem. Mol. Biol. 135: 109-116. PMid:12781978   Mather JP, Moore A and Li RH (1997). Activins, inhibins, and follistatins: further thoughts on a growing family of regulators. Proc. Soc. Exp. Biol. Med. 215: 209-222. PMid:9207855   Montali RJ (1990). Causes of neonatal mortality in giant panda. Tokyo Zoolog. Park Soc.83-94.   Palmer DN, Fearnley IM, Medd SM, Walker JE, et al. (1989). Lysosomal storage of the DCCD reactive proteolipid subunit of mitochondrial ATP synthase in human and ovine ceroid lipofuscinoses. Adv. Exp. Med. Biol. 266: 211-222. PMid:2535017   Piko L, Nofziger DE, Western LM and Taylor KD (1994). Sequence of a mouse embryo cDNA clone encoding proteolipid subunit 9 (P1) of the mitochondrial H(+)-ATP synthase. Biochim. Biophys. Acta 1184: 139-141. http://dx.doi.org/10.1016/0005-2728(94)90164-3   Sambongi Y, Iko Y, Tanabe M, Omote H, et al. (1999). Mechanical rotation of the c subunit oligomer in ATP synthase (F0F1): direct observation. Science 286: 1722-1724. http://dx.doi.org/10.1126/science.286.5445.1722 PMid:10576736   Sangawa H, Himeda T, Shibata H and Higuti T (1997). Gene expression of subunit c(P1), subunit c(P2), and oligomycin sensitivity-conferring protein may play a key role in biogenesis of H+-ATP synthase in various rat tissues. J. Biol. Chem. 272: 6034-6037. http://dx.doi.org/10.1074/jbc.272.9.6034 PMid:9038226   Towbin H, Staehelin T and Gordon J (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. U. S. A. 76: 4350-4354. http://dx.doi.org/10.1073/pnas.76.9.4350 PMid:388439 PMCid:411572   Walker JE, Fearnley IM, Gay NJ, Gibson BW, et al. (1985). Primary structure and subunit stoichiometry of F1-ATPase from bovine mitochondria. J. Mol. Biol. 184: 677-701. http://dx.doi.org/10.1016/0022-2836(85)90313-4   Walker JE, Lutter R, Dupuis A and Runswick MJ (1991). Identification of the subunits of F1F0-ATPase from bovine heart mitochondria. Biochemistry 30: 5369-5378. http://dx.doi.org/10.1021/bi00236a007 PMid:1827992   Wang YF, Yu M, te Pas MF, Yerle M, et al. (2004). Sequence characterization, polymorphism and chromosomal localizations of the porcine PSME1 and PSME2 genes. Anim. Genet. 35: 361-366. http://dx.doi.org/10.1111/j.1365-2052.2004.01176.x PMid:15373739   Wickens M and Stephenson P (1984). Role of the conserved AAUAAA sequence: four AAUAAA point mutants prevent messenger RNA 3' end formation. Science 226: 1045-1051. http://dx.doi.org/10.1126/science.6208611 PMid:6208611   Wu ZA, Liu WX, Murphy C and Gall J (1990). Satellite 1 DNA sequence from genomic DNA of the giant panda Ailuropoda melanoleuca. Nucleic Acids Res. 18: 1054. http://dx.doi.org/10.1093/nar/18.4.1054 PMid:2315021 PMCid:330371   Yan WL, Lerner TJ, Haines JL and Gusella JF (1994). Sequence analysis and mapping of a novel human mitochondrial ATP synthase subunit 9 cDNA (ATP5G3). Genomics 24: 375-377. http://dx.doi.org/10.1006/geno.1994.1631 PMid:7698763
Q. Shen, Chen, Y. F., Wang, T., Wu, S. Y., Lu, X., Zhang, L., Zhang, F. Y., Jiang, W. M., Wang, G. F., and Tang, K. X., Overexpression of the cytochrome P450 monooxygenase (cyp71av1) and cytochrome P450 reductase (cpr) genes increased artemisinin content in Artemisia annua (Asteraceae), vol. 11, pp. 3298-3309, 2012.
Abdin MZ, Israr M, Rehman RU and Jain SK (2003). Artemisinin, a novel antimalarial drug: biochemical and molecular approaches for enhanced production. Planta Med. 69: 289-299. http://dx.doi.org/10.1055/s-2003-38871 PMid:12709893   Aquil S, Husaini AM, Abdin MZ and Rather GM (2009). Overexpression of the HMG-CoA reductase gene leads to enhanced artemisinin biosynthesis in transgenic Artemisia annua plants. Planta Med. 75: 1453-1458. http://dx.doi.org/10.1055/s-0029-1185775 PMid:19551613   Arsenault PR, Vail D, Wobbe KK, Erickson K, et al. (2010). Reproductive development modulates gene expression and metabolite levels with possible feedback inhibition of artemisinin in Artemisia annua. Plant Physiol. 154: 958-968. http://dx.doi.org/10.1104/pp.110.162552 PMid:20724645 PMCid:2949044   Banyai W, Kirdmanee C, Mii M and Supaibulwatana K (2010). Overexpression of farnesyl pyrophosphate synthase (FPS) gene affected artemisinin content and growth of Artemisia annua L. Plant Cell Tiss Org. 103: 255-265. http://dx.doi.org/10.1007/s11240-010-9775-8   Bhattarai A, Ali AS, Kachur SP, Martensson A, et al. (2007). Impact of artemisinin-based combination therapy and insecticide-treated nets on malaria burden in Zanzibar. PLoS Med. 4: e309. http://dx.doi.org/10.1371/journal.pmed.0040309 PMid:17988171 PMCid:2062481   Chen DH and Ronald PC (1999). A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol. Biol. Rep. 17: 53-57. http://dx.doi.org/10.1023/A:1007585532036   Doyle JJ and Doyle JL (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11-15.   Duke MV, Paul RN, Elsohly HN, Sturtz G, et al. (1994). Localization of artemisinin and artemisitene in foliar tissues of glanded and glandless biotypes of Artemisia annua L. Int. J. Plant Sci. 155: 365-372. http://dx.doi.org/10.1086/297173   Graham IA, Besser K, Blumer S, Branigan CA, et al. (2010). The genetic map of Artemisia annua L. identifies loci affecting yield of the antimalarial drug artemisinin. Science 327: 328-331. http://dx.doi.org/10.1126/science.1182612 PMid:20075252   Han JL, Liu BY, Ye HC, Wang H, et al. (2006). Effects of overexpression of the endogenous farnesyl diphosphate synthase on the artemisinin content in Artemisia annua L. J. Integr. Plant Biol. 48: 482-487. http://dx.doi.org/10.1111/j.1744-7909.2006.00208.x   Liu B, Wang H, Du Z, Li G, et al. (2011). Metabolic engineering of artemisinin biosynthesis in Artemisia annua L. Plant Cell Rep. 30: 689-694. http://dx.doi.org/10.1007/s00299-010-0967-9 PMid:21184232   Livak KJ and Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method. Methods 25: 402-408. http://dx.doi.org/10.1006/meth.2001.1262 PMid:11846609   Maes L, Van Nieuwerburgh FC, Zhang Y, Reed DW, et al. (2011). Dissection of the phytohormonal regulation of trichome formation and biosynthesis of the antimalarial compound artemisinin in Artemisia annua plants. New Phytol. 189: 176-189. http://dx.doi.org/10.1111/j.1469-8137.2010.03466.x PMid:20874804   McCormick S, Niedermeyer J, Fry J, Barnason A, et al. (1986). Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Rep. 5: 81-84. http://dx.doi.org/10.1007/BF00269239   McNellis TW, von Arnim AG and Deng XW (1994). Overexpression of Arabidopsis COP1 results in partial suppression of light-mediated development: evidence for a light-inactivable repressor of photomorphogenesis. Plant Cell 6: 1391-1400. PMid:7994173 PMCid:160528   Murashige T and Skoog F (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15: 473-497. http://dx.doi.org/10.1111/j.1399-3054.1962.tb08052.x   Mutabingwa TK (2005). Artemisinin-based combination therapies (ACTs): best hope for malaria treatment but inaccessible to the needy! Acta Trop. 95: 305-315. http://dx.doi.org/10.1016/j.actatropica.2005.06.009 PMid:16098946   Nafis T, Akmal M, Ram M, Alam P, et al. (2011). Enhancement of artemisinin content by constitutive expression of the HMG-CoA reductase gene in high-yielding strain of Artemisia annua L. Plant Biotechnol. Rep. 5: 53-60. http://dx.doi.org/10.1007/s11816-010-0156-x   Napoli C, Lemieux C and Jorgensen R (1990). Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. Plant Cell 2: 279-289. PMid:12354959 PMCid:159885   Ohashi Y, Oka A, Ruberti I, Morelli G, et al. (2002). Entopically additive expression of GLABRA2 alters the frequency and spacing of trichome initiation. Plant J. 29: 359-369. http://dx.doi.org/10.1046/j.0960-7412.2001.01214.x PMid:11844112   Ram M, Khan MA, Jha P, Khan S, et al. (2010). HMG-CoA reductase limits artemisinin biosynthesis and accumulation in Artemisia annua L. plants. Acta Physiol. Plant. 32: 859-866. http://dx.doi.org/10.1007/s11738-010-0470-5   Ro DK, Paradise EM, Ouellet M, Fisher KJ, et al. (2006). Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440: 940-943. http://dx.doi.org/10.1038/nature04640 PMid:16612385   Stewart CN Jr and Via LE (1993). A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques 14: 748-750. PMid:8512694   Teoh KH, Polichuk DR, Reed DW, Nowak G, et al. (2006). Artemisia annua L. (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin. FEBS Lett. 580: 1411-1416. http://dx.doi.org/10.1016/j.febslet.2006.01.065 PMid:16458889   Teoh KH, Polichuk DR, Reed DW, Nowak G, et al. (2009). Molecular cloning of an aldehyde dehydrogenase implicated in artemisinin biosynthesis in Artemisia annua. Botany 87: 635-642. http://dx.doi.org/10.1139/B09-032   Yang RY, Feng LL, Yang XQ, Yin LL, et al. (2008). Quantitative transcript profiling reveals down-regulation of A sterol pathway relevant gene and overexpression of artemisinin biogenetic genes in transgenic Artemisia annua plants. Planta Med. 74: 1510-1516. http://dx.doi.org/10.1055/s-2008-1081333 PMid:18816428   Zeng QP, Zeng XM, Yin LL, Yang RY, et al. (2009). Quantification of Three Key Enzymes Involved in Artemisinin Biogenesis in Artemisia annua by Polyclonal Antisera-Based ELISA. Plant Mol. Biol. Rep. 27: 50-57. http://dx.doi.org/10.1007/s11105-008-0056-1   Zhang L, Ding R, Chai Y, Bonfill M, et al. (2004). Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures. Proc. Natl. Acad. Sci. U. S. A. 101: 6786-6791. http://dx.doi.org/10.1073/pnas.0401391101 PMid:15084741 PMCid:404123   Zhang L, Jing F, Li F, Li M, et al. (2009). Development of transgenic Artemisia annua (Chinese wormwood) plants with an enhanced content of artemisinin, an effective anti-malarial drug, by hairpin-RNA-mediated gene silencing. Biotechnol. Appl. Biochem. 52: 199-207. http://dx.doi.org/10.1042/BA20080068 PMid:18564056   Zhang Y, Teoh KH, Reed DW, Maes L, et al. (2008). The molecular cloning of artemisinic aldehyde Delta11(13) reductase and its role in glandular trichome-dependent biosynthesis of artemisinin in Artemisia annua. J. Biol. Chem. 283: 21501-21508. http://dx.doi.org/10.1074/jbc.M803090200 PMid:18495659
2011
H. L. Wei, Pei, J. R., Jiang, C. X., Zhou, L. W., Lan, T., Liu, M., and Wang, T., Analysis of glutathione peroxidase 1 gene polymorphism and Keshan disease in Heilongjiang Province, China, vol. 10, pp. 2996-3001, 2011.
Chen X (1986). Selenium and cardiomyopathy (Keshan disease). Acta Pharmacol. Toxicol. 59 (Suppl 7): 325-330. http://dx.doi.org/10.1111/j.1600-0773.1986.tb02772.x Group KDPaT (1976). Selenium and water-soil causality of Keshan Disease. J. Hygiene Res. 3: 259-263. Hamanishi T, Furuta H, Kato H, Doi A, et al. (2004). Functional variants in the glutathione peroxidase-1 (GPx-1) gene are associated with increased intima-media thickness of carotid arteries and risk of macrovascular diseases in Japanese type 2 diabetic patients. Diabetes 53: 2455-2460. http://dx.doi.org/10.2337/diabetes.53.9.2455 PMid:15331559 He HFL and Yuan Q (2001). Cloning and sequence analysis of human glutathione peroxidase 1. Chin. Pharm. J. 36: 343-345. Hu YJ and Diamond AM (2003). Role of glutathione peroxidase 1 in breast cancer: loss of heterozygosity and allelic differences in the response to selenium. Cancer Res. 63: 3347-3351. PMid:12810669 Kote-Jarai Z, Durocher F, Edwards SM, Hamoudi R, et al. (2002). Association between the GCG polymorphism of the selenium dependent GPX1 gene and the risk of young onset prostate cancer. Prostate Cancer Prostatic Dis. 5: 189- 192. http://dx.doi.org/10.1038/sj.pcan.4500569 PMid:12496980 Lei C, Niu X, Wei J, Zhu J, et al. (2009). Interaction of glutathione peroxidase-1 and selenium in endemic dilated cardiomyopathy. Clin. Chim. Acta 399: 102-108. http://dx.doi.org/10.1016/j.cca.2008.09.025 PMid:18940188 Lei XG, Cheng WH and McClung JP (2007). Metabolic regulation and function of glutathione peroxidase-1. Annu. Rev. Nutr. 27: 41-61. http://dx.doi.org/10.1146/annurev.nutr.27.061406.093716 PMid:17465855 Matsuzawa D, Hashimoto K, Shimizu E, Fujisaki M, et al. (2005). Functional polymorphism of the glutathione peroxidase 1 gene is associated with personality traits in healthy subjects. Neuropsychobiology 52: 68-70. http://dx.doi.org/10.1159/000086607 PMid:15990458 Rotruck JT, Pope AL and Garther H (1973). Selenium: biochemical role as a component of glutathione peroxidase. Science 179: 588-590. http://dx.doi.org/10.1126/science.179.4073.588 PMid:4686466 Venardos KM, Perkins A, Headrick J and Kaye DM (2007). Myocardial ischemia-reperfusion injury, antioxidant enzyme systems, and selenium: a review. Curr. Med. Chem. 14: 1539-1549. http://dx.doi.org/10.2174/092986707780831078 PMid:17584062 WHO (1973). Trace elements in human nutrition. Report of a WHO expert committee. World Health Organ Tech. Rep. Ser. 532: 1-65. PMid:4202138 Yang J, Wang T, Wu C and Liu C (2010). Selenium level surveillance for the year 2007 of Keshan disease in endemic areas and analysis on surveillance results between 2003 and 2007. Biol. Trace Elem. Res. 138: 53-59. http://dx.doi.org/10.1007/s12011-010-8609-1 PMid:20180046 Yu W (1999). Review of Chinese research on Keshan Disease. Chin. J. Epidemiol. 20: 11-14. Zhu LZ, Xia YM and Yang GQ (1982). Blood glutathione peroxidase activities of populations in Keshan Disease affected and non-affected areas. Acta Nutr. Sin. 4: 229-233.