Publications

Found 27 results
Filters: Author is Y. Wu  [Clear All Filters]
2016
B. Hu, Yu, B., Tang, D., Li, S., Wu, Y., Hu, B., Yu, B., Tang, D., Li, S., and Wu, Y., Daidzein promotes osteoblast proliferation and differentiation in OCT1 cells through stimulating the activation of BMP-2/Smads pathway, vol. 15, p. -, 2016.
B. Hu, Yu, B., Tang, D., Li, S., Wu, Y., Hu, B., Yu, B., Tang, D., Li, S., and Wu, Y., Daidzein promotes osteoblast proliferation and differentiation in OCT1 cells through stimulating the activation of BMP-2/Smads pathway, vol. 15, p. -, 2016.
N. M. A. Rahman, Fu, H., Qiao, H., Jin, S., Bai, H., Zhang, W., Jiang, F. W., Liang, G., Sun, S., Gong, Y., Jiang, F. F., Xiong, Y., Wu, Y., Rahman, N. M. A., Fu, H., Qiao, H., Jin, S., Bai, H., Zhang, W., Jiang, F. W., Liang, G., Sun, S., Gong, Y., Jiang, F. F., Xiong, Y., and Wu, Y., Molecular cloning and expression analysis of Fem1b from oriental river prawn Macrobrachium nipponense, vol. 15, p. -, 2016.
N. M. A. Rahman, Fu, H., Qiao, H., Jin, S., Bai, H., Zhang, W., Jiang, F. W., Liang, G., Sun, S., Gong, Y., Jiang, F. F., Xiong, Y., Wu, Y., Rahman, N. M. A., Fu, H., Qiao, H., Jin, S., Bai, H., Zhang, W., Jiang, F. W., Liang, G., Sun, S., Gong, Y., Jiang, F. F., Xiong, Y., and Wu, Y., Molecular cloning and expression analysis of Fem1b from oriental river prawn Macrobrachium nipponense, vol. 15, p. -, 2016.
N. M. A. Rahman, Fu, H. T., Sun, S. M., Qiao, H., Jin, S., Bai, H. K., Zhang, W. Y., Liang, G. X., Gong, Y. S., Xiong, Y. W., Wu, Y., Rahman, N. M. A., Fu, H. T., Sun, S. M., Qiao, H., Jin, S., Bai, H. K., Zhang, W. Y., Liang, G. X., Gong, Y. S., Xiong, Y. W., and Wu, Y., Molecular cloning and expression pattern of oriental river prawn (Macrobrachium nipponense) nitric oxide synthase, vol. 15, p. -, 2016.
N. M. A. Rahman, Fu, H. T., Sun, S. M., Qiao, H., Jin, S., Bai, H. K., Zhang, W. Y., Liang, G. X., Gong, Y. S., Xiong, Y. W., Wu, Y., Rahman, N. M. A., Fu, H. T., Sun, S. M., Qiao, H., Jin, S., Bai, H. K., Zhang, W. Y., Liang, G. X., Gong, Y. S., Xiong, Y. W., and Wu, Y., Molecular cloning and expression pattern of oriental river prawn (Macrobrachium nipponense) nitric oxide synthase, vol. 15, p. -, 2016.
Y. H. Liu, Huang, D., Li, Z. J., Li, X. H., Wang, X., Yang, H. P., Tian, S. P., Mao, Y., Liu, M. F., Wang, Y. F., Wu, Y., Han, X. F., Liu, Y. H., Huang, D., Li, Z. J., Li, X. H., Wang, X., Yang, H. P., Tian, S. P., Mao, Y., Liu, M. F., Wang, Y. F., Wu, Y., Han, X. F., Liu, Y. H., Huang, D., Li, Z. J., Li, X. H., Wang, X., Yang, H. P., Tian, S. P., Mao, Y., Liu, M. F., Wang, Y. F., Wu, Y., and Han, X. F., Toll-like receptor-4-dependence of the lipopolysaccharide-mediated inhibition of osteoblast differentiation, vol. 15, p. -, 2016.
Y. H. Liu, Huang, D., Li, Z. J., Li, X. H., Wang, X., Yang, H. P., Tian, S. P., Mao, Y., Liu, M. F., Wang, Y. F., Wu, Y., Han, X. F., Liu, Y. H., Huang, D., Li, Z. J., Li, X. H., Wang, X., Yang, H. P., Tian, S. P., Mao, Y., Liu, M. F., Wang, Y. F., Wu, Y., Han, X. F., Liu, Y. H., Huang, D., Li, Z. J., Li, X. H., Wang, X., Yang, H. P., Tian, S. P., Mao, Y., Liu, M. F., Wang, Y. F., Wu, Y., and Han, X. F., Toll-like receptor-4-dependence of the lipopolysaccharide-mediated inhibition of osteoblast differentiation, vol. 15, p. -, 2016.
Y. H. Liu, Huang, D., Li, Z. J., Li, X. H., Wang, X., Yang, H. P., Tian, S. P., Mao, Y., Liu, M. F., Wang, Y. F., Wu, Y., Han, X. F., Liu, Y. H., Huang, D., Li, Z. J., Li, X. H., Wang, X., Yang, H. P., Tian, S. P., Mao, Y., Liu, M. F., Wang, Y. F., Wu, Y., Han, X. F., Liu, Y. H., Huang, D., Li, Z. J., Li, X. H., Wang, X., Yang, H. P., Tian, S. P., Mao, Y., Liu, M. F., Wang, Y. F., Wu, Y., and Han, X. F., Toll-like receptor-4-dependence of the lipopolysaccharide-mediated inhibition of osteoblast differentiation, vol. 15, p. -, 2016.
2012
Y. Wu, Zou, H. D., Cheng, H., Zhao, C. Y., Sun, L. F., Su, S. Z., Li, S. P., and Yuan, Y. P., Cloning and characterization of a β-amyrin synthase gene from the medicinal tree Aralia elata (Araliaceae), vol. 11, pp. 2301-2314, 2012.
Abe I and Prestwich GD (1995). Identification of the active site of vertebrate oxidosqualene cyclase. Lipids 30: 231-234. http://dx.doi.org/10.1007/BF02537826 PMid:7791531   Abe I, Rohmer M and Prestwich GD (1993). Enzymatic cyclization of squalene and oxidosqualene to sterols and triterpenes. Chem. Rev. 93: 2189-2206. http://dx.doi.org/10.1021/cr00022a009   Basyuni M, Oku H, Tsujimoto E, Kinjo K, et al. (2007). Triterpene synthases from the Okinawan mangrove tribe, Rhizophoraceae. FEBS J. 274: 5028-5042. http://dx.doi.org/10.1111/j.1742-4658.2007.06025.x PMid:17803686   Cammareri M, Consiglio MF, Pecchia P, Corea G, et al. (2008). Molecular characterization of β-amyrin synthase from Aster sedifolius L. and triterpenoid saponin analysis. Plant Sci. 175: 255-261. http://dx.doi.org/10.1016/j.plantsci.2008.04.004   Chung CK and Jung ME (2003). Ethanol fraction of Aralia elata Seemann enhances antioxidant activity and lowers serum lipids in rats when administered with benzo(a)pyrene. Biol. Pharm. Bull. 26: 1502-1504. http://dx.doi.org/10.1248/bpb.26.1502 PMid:14519964   Haralampidis K, Bryan G, Qi X, Papadopoulou K, et al. (2001). A new class of oxidosqualene cyclases directs synthesis of antimicrobial phytoprotectants in monocots. Proc. Natl. Acad. Sci. U. S. A. 98: 13431-13436. http://dx.doi.org/10.1073/pnas.231324698 PMid:11606766 PMCid:60888   Hayashi H, Huang P, Kirakosyan A, Inoue K, et al. (2001). Cloning and characterization of a cDNA encoding beta-amyrin synthase involved in glycyrrhizin and soyasaponin biosyntheses in licorice. Biol. Pharm. Bull. 24: 912-916. http://dx.doi.org/10.1248/bpb.24.912 PMid:11510484   Hostettmann K and Marston A (1995). Saponins. Cambridge University Press, Cambridge. http://dx.doi.org/10.1017/CBO9780511565113   Iturbe-Ormaetxe I, Haralampidis K, Papadopoulou K and Osbourn AE (2003). Molecular cloning and characterization of triterpene synthases from Medicago truncatula and Lotus japonicus. Plant Mol. Biol. 51: 731-743. http://dx.doi.org/10.1023/A:1022519709298 PMid:12683345   Kajikawa M, Yamato KT, Fukuzawa H, Sakai Y, et al. (2005). Cloning and characterization of a cDNA encoding beta-amyrin synthase from petroleum plant Euphorbia tirucalli L. Phytochemistry 66: 1759-1766. http://dx.doi.org/10.1016/j.phytochem.2005.05.021 PMid:16005035   Kim JS, Shim SH, Chae S, Han SJ, et al. (2005). Saponins and other constituents from the leaves of Aralia elata. Chem. Pharm. Bull. 53: 696-700. http://dx.doi.org/10.1248/cpb.53.696   Kim OK, Lee EB and Kang SS (1993). Antihyperglycemic constituent of Aralia elata root bark. (II). Isolation and action of the constituents. Saengyak Hakhoechi 24: 219-222.   Kushiro T, Shibuya M and Ebizuka Y (1998a). Beta-amyrin synthase-cloning of oxidosqualene cyclase that catalyzes the formation of the most popular triterpene among higher plants. Eur. J. Biochem. 256: 238-244. http://dx.doi.org/10.1046/j.1432-1327.1998.2560238.x PMid:9746369   Kushiro T, Shibuya M and Ebizuka Y (1998b). Towards Natural Medicine Research in the 21st Century. In: Excerpta Medica International Congress Series (Ageta H, Aimi N, Ebizuka Y and Honda G, eds.). Elsevier Science, Amsterdam, 421-428.   Kushiro T, Shibuya M, Masuda K and Ebizuka Y (2000). Mutational studies on triterpene synthases: engineering lupeol synthase into β-amyrin synthase. J. Am. Chem. Soc. 122: 6816-6824. http://dx.doi.org/10.1021/ja0010709   Lee JH, Ha YW, Jeong CS, Kim YS, et al. (2009). Isolation and tandem mass fragmentations of an anti-inflammatory compound from Aralia elata. Arch. Pharm. Res. 32: 831-840. http://dx.doi.org/10.1007/s12272-009-1603-5 PMid:19557359   Li L, Song SJ, Li LZ, Liang ZX, et al. (2006). Chemical constituents of the buds of Aralia elata (Miq.) Seem. (III). J. Shenyang Pharm. Univ. 23: 495-498.   Li L, Song SJ, Liang ZX and Xu SX (2007). A new triterpenoidal saponin from the buds of Aralia elata (Miq.). Seem. Asian. J. Tradit. Med. 2: 1-4.   Liu Y, Cai Y, Zhao Z, Wang J, et al. (2009). Cloning and Functional Analysis of a β-amyrin synthase gene associated with oleanolic acid biosynthesis in Gentiana straminea MAXIM. Biol. Pharm. Bull. 32: 818-824. http://dx.doi.org/10.1248/bpb.32.818 PMid:19420748   Livak KJ and Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408.   Lodeiro S, Xiong Q, Wilson WK, Kolesnikova MD, et al. (2007). An oxidosqualene cyclase makes numerous products by diverse mechanisms: a challenge to prevailing concepts of triterpene biosynthesis. J. Am. Chem. Soc. 129: 11213-11222. http://dx.doi.org/10.1021/ja073133u PMid:17705488   Meesapyodsuk D, Balsevich J, Reed DW and Covello PS (2007). Saponin biosynthesis in Saponaria vaccaria. cDNAs encoding β-amyrin synthase and a triterpene carboxylic acid glucosyltransferase. Plant Physiol. 143: 959-969. http://dx.doi.org/10.1104/pp.106.088484 PMid:17172290 PMCid:1803722   Morita M, Shibuya M, Kushiro T, Masuda K, et al. (2000). Molecular cloning and functional expression of triterpene synthases from pea (Pisum sativum) new alpha-amyrin-producing enzyme is a multifunctional triterpene synthase. Eur. J. Biochem. 267: 3453-3460. http://dx.doi.org/10.1046/j.1432-1327.2000.01357.x PMid:10848960   New Medical College of Jiangsu (1977). Dictionary of Chinese Materia Medica. Shanghai Scientific and Technological Publishing, Shanghai.   Nhiem NX, Lim HY, Kiem PV, Minh CV, et al. (2011). Oleanane-type triterpene saponins from the bark of Aralia elata and their NF-kappaB inhibition and PPAR activation signal pathway. Bioorg. Med. Chem. Lett. 21: 6143-6147. http://dx.doi.org/10.1016/j.bmcl.2011.08.024 PMid:21889336   Page RD (1996). TreeView: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12: 357-358. PMid:8902363   Phillips DR, Rasbery JM, Bartel B and Matsuda SP (2006). Biosynthetic diversity in plant triterpene cyclization. Curr. Opin. Plant Biol. 9: 305-314. http://dx.doi.org/10.1016/j.pbi.2006.03.004 PMid:16581287   Poralla K, Hewelt A, Prestwich GD, Abe I, et al. (1994). A specific amino acid repeat in squalene and oxidosqualene cyclases. Trends Biochem. Sci. 19: 157-158. http://dx.doi.org/10.1016/0968-0004(94)90276-3   Saito S, Ebashi J, Sumita S, Furumoto T, et al. (1993). Comparison of cytoprotective effects of saponins isolated from leaves of Aralia elata Seem. (Araliaceae) with synthesized bisdesmosides of oleanoic acid and hederagenin on carbon tetrachloride-induced hepatic injury. Chem. Pharm. Bull. 41: 1395-1401. http://dx.doi.org/10.1248/cpb.41.1395   Sawai S, Shindo T, Sato S, Kaneko T, et al. (2006). Functional and structural analysis of genes encoding oxidosqualene cyclases of Lotus japonicus. Plant Sci. 170: 247-257. http://dx.doi.org/10.1016/j.plantsci.2005.08.027   Scholz M, Lipinski M, Leupold M, Luftmann H, et al. (2009). Methyl jasmonate induced accumulation of kalopanaxsaponin I in Nigella sativa. Phytochemistry 70: 517-522. http://dx.doi.org/10.1016/j.phytochem.2009.01.018 PMid:19282005   Shibuya M, Katsube Y, Otsuka M, Zhang H, et al. (2009). Identification of a product specific β-amyrin synthase from Arabidopsis thaliana. Plant Physiol. Biochem. 47: 26-30. http://dx.doi.org/10.1016/j.plaphy.2008.09.007 PMid:18977664   Song SJ, Nakamura N, Ma CM, Hattori M, et al. (2001). Five saponins from the root bark of Aralia elata. Phytochemistry 56: 491-497. http://dx.doi.org/10.1016/S0031-9422(00)00379-4   Thompson JD, Higgins DG and Gibson TJ (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. http://dx.doi.org/10.1093/nar/22.22.4673 PMid:7984417 PMCid:308517   Yendo AC, de Costa F, Gosmann G and Fett-Neto AG (2010). Production of plant bioactive triterpenoid saponins: elicitation strategies and target genes to improve yields. Mol. Biotechnol. 46: 94-104. http://dx.doi.org/10.1007/s12033-010-9257-6 PMid:20204713   Yoshikawa M, Yoshizumi S, Ueno T, Matsuda H, et al. (1995). Medicinal foodstuffs. I. Hypoglycemic constituents from a garnish foodstuff "taranome", the young shoot of Aralia elata SEEM.: elatosides G, H, I, J, and K. Chem. Pharm. Bull. 43: 1878-1882. http://dx.doi.org/10.1248/cpb.43.1878   Yoshikawa M, Murakami T, Harada E, Murakami N, et al. (1996a). Bioactive saponins and glycosides. VI. Elatosides A and B, potent inhibitors of ethanol absorption, from the bark of Aralia elata SEEM. (Araliaceae): the structure-requirement in oleanolic acid glucuronide-saponins for the inhibitory activity. Chem. Pharm. Bull. 44: 1915-1922. http://dx.doi.org/10.1248/cpb.44.1915   Yoshikawa M, Murakami T, Harada E, Murakami N, et al. (1996b). Bioactive saponins and glycosides. VII. On the hypoglycemic principles from the root cortex of Aralia elata Seem.: structure related hypoglycemic activity of oleanolic acid oligoglycoside. Chem. Pharm. Bull. 44: 1923-1927. http://dx.doi.org/10.1248/cpb.44.1923   Zhang H, Shibuya M, Yokota S and Ebizuka Y (2003). Oxidosqualene cyclases from cell suspension cultures of Betula platyphylla var. japonica: molecular evolution of oxidosqualene cyclases in higher plants. Biol. Pharm. Bull. 26: 642-650. http://dx.doi.org/10.1248/bpb.26.642 PMid:12736505   Zhang M, Liu G, Tang S, Song S, et al. (2006). Effect of five triterpenoid compounds from the buds of Aralia elata on stimulus-induced superoxide generation, tyrosyl phosphorylation and translocation of cytosolic compounds to the cell membrane in human neutrophils. Planta Med. 72: 1216-1222. http://dx.doi.org/10.1055/s-2006-951679 PMid:17021995
X. H. Shan, Li, Y. D., Liu, X. M., Wu, Y., Zhang, M. Z., Guo, W. L., Liu, B., and Yuan, Y. P., Comparative analyses of genetic/epigenetic diversities and structures in a wild barley species (Hordeum brevisubulatum) using MSAP, SSAP and AFLP, vol. 11, pp. 2749-2759, 2012.
Ashikawa I (2001). Surveying CpG methylation at 5'-CCGG in the genomes of rice cultivars. Plant Mol. Biol. 45: 31-39. http://dx.doi.org/10.1023/A:1006457321781 PMid:11247604   Cervera MT, Ruiz-Garcia L and Martinez-Zapater JM (2002). Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers. Mol. Genet. Genomics 268: 543-552. http://dx.doi.org/10.1007/s00438-002-0772-4 PMid:12471452   Choi CS and Sano H (2007). Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Mol. Genet. Genomics 277: 589-600. http://dx.doi.org/10.1007/s00438-007-0209-1 PMid:17273870   Excoffier L, Smouse PE and Quattro JM (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479-491. PMid:1644282 PMCid:1205020   Herrera CM and Bazaga P (2010). Epigenetic differentiation and relationship to adaptive genetic divergence in discrete populations of the violet Viola cazorlensis. New Phytol. 187: 867-876. http://dx.doi.org/10.1111/j.1469-8137.2010.03298.x PMid:20497347   Kalisz S and Purugganan MD (2004). Epialleles via DNA methylation: consequences for plant evolution. Trends Ecol. Evol. 19: 309-314. http://dx.doi.org/10.1016/j.tree.2004.03.034 PMid:16701276   Keyte AL, Percifield R, Liu B and Wendel JF (2006). Infraspecific DNA methylation polymorphism in cotton (Gossypium hirsutum L.). J. Hered. 97: 444-450. http://dx.doi.org/10.1093/jhered/esl023 PMid:16987937   Li YD, Chu ZZ, Liu XG, Jing HC, et al. (2010). A cost-effective high-resolution melting approach using the EvaGreen dye for DNA polymorphism detection and genotyping in plants. J. Integr. Plant Biol. 52: 1036-1042. http://dx.doi.org/10.1111/j.1744-7909.2010.01001.x PMid:21106003   Lira-Medeiros CF, Parisod C, Fernandes RA, Mata CS, et al. (2010). Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS One 5: e10326. http://dx.doi.org/10.1371/journal.pone.0010326 PMid:20436669 PMCid:2859934   Lukens LN and Zhan S (2007). The plant genome's methylation status and response to stress: implications for plant improvement. Curr. Opin. Plant Biol. 10: 317-322. http://dx.doi.org/10.1016/j.pbi.2007.04.012 PMid:17468039   Mantel N (1967). The detection of disease clustering and a generalized regression approach. Cancer Res. 27: 209-220. PMid:6018555   Miller MP (1997). Tools for Population Genetic Analyses (TFPGA) v. 1.3: A Windows Program for the Analysis of Allozyme and Molecular Genetic Data. Department of Biological Sciences, Northern Arizona University, Phoenix.   Nei M (1973). Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. U. S. A. 70: 3321-3323. http://dx.doi.org/10.1073/pnas.70.12.3321 PMid:4519626 PMCid:427228   Papa R and Gepts P (2003). Asymmetry of gene flow and differential geographical structure of molecular diversity in wild and domesticated common bean (Phaseolus vulgaris L.) from Mesoamerica. Theor. Appl. Genet. 106: 239-250. PMid:12582849   Rapp RA and Wendel JF (2005). Epigenetics and plant evolution. New Phytol. 168: 81-91. http://dx.doi.org/10.1111/j.1469-8137.2005.01491.x PMid:16159323   Richards EJ (2011). Natural epigenetic variation in plant species: a view from the field. Curr. Opin. Plant Biol. 14: 204-209. http://dx.doi.org/10.1016/j.pbi.2011.03.009 PMid:21478048   Salmon A, Ainouche ML and Wendel JF (2005). Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Mol. Ecol. 14: 1163-1175. http://dx.doi.org/10.1111/j.1365-294X.2005.02488.x PMid:15773943   Schneider S, Schneider S and Excoffier L (2000). Arlequin Version 2000, A Software for Population Genetics Data Analysis. University of Geneva, Geneva.   Shen S, Wang Z, Shan X, Wang H, et al. (2006). Alterations in DNA methylation and genome structure in two rice mutant lines induced by high pressure. Sci. China C. Life Sci. 49: 97-104. http://dx.doi.org/10.1007/s11427-006-0097-3 PMid:16704112   Tan MP (2010). Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism. Plant Physiol. Biochem. 48: 21-26. http://dx.doi.org/10.1016/j.plaphy.2009.10.005 PMid:19889550   Tang S and Knapp SJ (2003). Microsatellites uncover extraordinary diversity in native American land races and wild populations of cultivated sunflower. Theor. Appl. Genet. 106: 990-1003. PMid:12671746   Vaughn MW, Tanurdzic M, Lippman Z, Jiang H, et al. (2007). Epigenetic natural variation in Arabidopsis thaliana. PLoS Biol. 5: e174. http://dx.doi.org/10.1371/journal.pbio.0050174 PMid:17579518 PMCid:1892575   Vos P, Hogers R, Bleeker M, Reijans M, et al. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23: 4407-4414. http://dx.doi.org/10.1093/nar/23.21.4407 PMid:7501463 PMCid:307397   Waugh R, McLean K, Flavell AJ, Pearce SR, et al. (1997). Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol. Gen. Genet. 253: 687-694. http://dx.doi.org/10.1007/s004380050372 PMid:9079879   Wright SI, Bi IV, Schroeder SG, Yamasaki M, et al. (2005). The effects of artificial selection on the maize genome. Science 308: 1310-1314. http://dx.doi.org/10.1126/science.1107891 PMid:15919994   Yeh FC, Yang RC, Boyle TBJ and Ye ZH (1997). POPGENE, the User-Friendly Shareware for Population Genetic Analysis. Version 1.21. Molecular Biology and Biotechnology Centre, University of Alberta, Edmonton.   Yi C, Zhang S, Liu X and Bui HT (2010). Does epigenetic polymorphism contribute to phenotypic variances in Jatropha curcas L.? BMC Plant Biol. 10: 259. http://dx.doi.org/10.1186/1471-2229-10-259 PMid:21092236 PMCid:3017842
M. J. Wang, Zou, H. D., Lin, Z. S., Wu, Y., Chen, X., and Yuan, Y. P., Expressed sequence tag-PCR markers for identification of alien barley chromosome 2H in wheat, vol. 11, pp. 3452-3463, 2012.
Andersen JR and Lübberstedt T (2003). Functional markers in plants. Trends Plant Sci. 8: 554-560. http://dx.doi.org/10.1016/j.tplants.2003.09.010 PMid:14607101   Blake TK, Kadyrzhanova KW, Shpherd KW and Islam AKMR (1996). STS- PCR markers appropriate for wheat-barley introgression. Theor. Appl. Genet. 93: 826-832. http://dx.doi.org/10.1007/BF00224082   Conley EJ, Nduati V, Gonzalez-Hernandez JL, Mesfin A, et al. (2004). A 2600-locus chromosome bin map of wheat homoeologous group 2 reveals interstitial gene-rich islands and colinearity with rice. Genetics 168: 625-637. http://dx.doi.org/10.1534/genetics.104.034801 PMid:15514040 PMCid:1448822   Doyle JJ and Doyle JL (1990). Isolation of plant DNA from fresh tissue. Focus 12: 13-15.   Draper J, Mur LA, Jenkins G, Ghosh-Biswas GC, et al. (2001). Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiol. 127: 1539-1555. http://dx.doi.org/10.1104/pp.010196 PMid:11743099 PMCid:133562   Endo TR and Gill BS (1996). The deletion stocks of common wheat. J. Hered. 87: 295-307. http://dx.doi.org/10.1093/oxfordjournals.jhered.a023003   Feuillet C and Keller B (2002). Comparative genomics in the grass family: molecular characterization of grass genome structure and evolution. Ann. Bot. 89: 3-10. http://dx.doi.org/10.1093/aob/mcf008   Foote TN, Griffiths S, Allouis S and Moore G (2004). Construction and analysis of a BAC library in the grass Brachypodium sylvaticum: its use as a tool to bridge the gap between rice and wheat in elucidating gene content. Funct. Integr. Genomics 4: 26-33. http://dx.doi.org/10.1007/s10142-003-0101-y PMid:14727148   Gupta PK and Rustgi S (2004). Molecular markers from the transcribed/expressed region of the genome in higher plants. Funct. Integr. Genomics 4: 139-162. http://dx.doi.org/10.1007/s10142-004-0107-0 PMid:15095058   Hagras AA, Kishii M, Sato K and Tanaka H (2005). Extended application of barley EST markers for the analysis of alien chromosomes added to wheat genetic background. Breed. Sci. 55: 335-341. http://dx.doi.org/10.1270/jsbbs.55.335   Hejgaard J, Bjørn SE and Nielsen G (1984). Localization to chromosomes of structural genes for the major protease inhibitors of barley grains. Theor. Appl. Genet. 68: 127-130. http://dx.doi.org/10.1007/BF00252327   Henry RJ, Battershell VG, Brennan PS and Oono K (1992). Control of wheat a-amylase using inhibitors from cereals. J. Sci. Food Agr. 58: 281-284. http://dx.doi.org/10.1002/jsfa.2740580218   Islam AKMR, Shepherd KW and Sparrow DHB (1981). Isolation and characterization of euplasmic wheat-barley chromosome addition lines. Heredity 46: 161-174. http://dx.doi.org/10.1038/hdy.1981.24   Leah R and Mundy J (1989). The bifunctional a-amylase/subtilisin inhibitor of barley: nucleotide sequence and patterns of seed-specific expression. Plant Mol. Biol. 12: 673-682. http://dx.doi.org/10.1007/BF00044158   Nasuda S, Kikkawa Y, Ashida T, Islam AK, et al. (2005). Chromosomal assignment and deletion mapping of barley EST markers. Genes Genet. Syst. 80: 357-366. http://dx.doi.org/10.1266/ggs.80.357 PMid:16394587   Opanowicz M, Vain P, Draper J, Parker D, et al. (2008). Brachypodium distachyon: making hay with a wild grass. Trends Plant Sci. 13: 172-177. http://dx.doi.org/10.1016/j.tplants.2008.01.007 PMid:18343709   Qi LL, Echalier B, Chao S, Lazo GR, et al. (2004). A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168: 701-712. http://dx.doi.org/10.1534/genetics.104.034868 PMid:15514046 PMCid:1448828   Sato K, Nankaku N, Motoi Y and Takeda K (2004). A Large Scale Mapping of ESTs on Barley Genome. Proceedings of the 9th International Barley Genetics Symposium, Brno, 79-85.   Sato K, Nankaku N and Takeda K (2009). A high-density transcript linkage map of barley derived from a single population. Heredity 103: 110-117. http://dx.doi.org/10.1038/hdy.2009.57 PMid:19455180   Wang MJ, Zhang Y, Lin ZS, Ye XG, et al. (2010). Development of EST-PCR markers for Thinopyrum intermedium chromosome 2Ai#2 and their application in characterization of novel wheat-grass recombinants. Theor. Appl. Genet. 121: 1369-1380. http://dx.doi.org/10.1007/s00122-010-1394-6 PMid:20585749   Yuan YP, Chen X, Xiao SH and Islam AKRM (2003). Identification of wheat-barley 2H alien substitution lines. Acta Bot. Sin. 45: 1096-1102.
Y. Wu, Wang, B., Li, Y. H., Xu, X. G., Luo, Y. J., Chen, J. Z. S., Wei, H. C., Gao, X. H., and Chen, H. D., Meta-analysis demonstrates association between Arg72Pro polymorphism in the P53 gene and susceptibility to keloids in the Chinese population, vol. 11, pp. 1701-1711, 2012.
Al-Attar A, Mess S, Thomassen JM, Kauffman CL, et al. (2006). Keloid pathogenesis and treatment. Plast. Reconstr. Surg. 117: 286-300. http://dx.doi.org/10.1097/01.prs.0000195073.73580.46 PMid:16404281   Atiyeh BS, Costagliola M and Hayek SN (2005). Keloid or hypertrophic scar: the controversy: review of the literature. Ann. Plast. Surg. 54: 676-680. http://dx.doi.org/10.1097/01.sap.0000164538.72375.93 PMid:15900161   Bayat A, McGrouther DA and Ferguson MW (2003). Skin scarring. BMJ 326: 88-92. http://dx.doi.org/10.1136/bmj.326.7380.88 PMid:12521975 PMCid:1125033   Butler PD, Longaker MT and Yang GP (2008). Current progress in keloid research and treatment. J. Am. Coll. Surg. 206: 731-741. http://dx.doi.org/10.1016/j.jamcollsurg.2007.12.001 PMid:18387480   De Felice B, Ciarmiello LF, Mondola P, Damiano S, et al. (2007). Differential p63 and p53 expression in human keloid fibroblasts and hypertrophic scar fibroblasts. DNA Cell Biol. 26: 541-547. http://dx.doi.org/10.1089/dna.2007.0591 PMid:17688405   Higgins JP and Thompson SG (2002). Quantifying heterogeneity in a meta-analysis. Stat. Med. 21: 1539-1558. http://dx.doi.org/10.1002/sim.1186 PMid:12111919   Jin J, Gao JH and Lu F (2007). Clinical experiment of susceptible people to keloid. Zhongguo Lin Chuang Jie Pao Xue Za Zhi 25: 320-322.   Ladin DA, Hou Z, Patel D, McPhail M, et al. (1998). p53 and apoptosis alterations in keloids and keloid fibroblasts. Wound Repair Regen. 6: 28-37. http://dx.doi.org/10.1046/j.1524-475X.1998.60106.x PMid:9776848   Liu Y (2007). Preliminary Linkage Analysis of Keloid Susceptibility Loci and Polymorphisms of Correlation Genes in Chinese Han Population. Master's thesis, China Medical University, Shenyang.   Liu YB (2008). The Study of Impaired Apoptosis Function of Fas and P53 Protein in the Fibroblasts Derived from Keloid. PhD thesis, Southern Medical University, Guangzhou.   Liu YB, Gao JH, Duan HJ and Liu XJ (2003). Investigation of p53 gene mutations in keloids using PCR-SSCP. Zhonghua Zheng Xing Wai Ke Za Zhi 19: 258-260. PMid:14628411   Liu W, Jiang YH, Li YL, Lin ZH, et al. (2004). Experimental study on p53 gene mutation in keloid fibroblasts. Zhonghua Shao Shang Za Zhi 20: 85-87. PMid:15312469   Marneros AG and Krieg T (2004). Keloids-clinical diagnosis, pathogenesis, and treatment options. J. Dtsch. Dermatol. Ges. 2: 905-913. http://dx.doi.org/10.1046/j.1439-0353.2004.04077.x PMid:16281608   Matlashewski GJ, Tuck S, Pim D, Lamb P, et al. (1987). Primary structure polymorphism at amino acid residue 72 of human p53. Mol. Cell Biol. 7: 961-963. PMid:3547088 PMCid:365159   McGregor JM, Harwood CA, Brooks L, Fisher SA, et al. (2002). Relationship between p53 codon 72 polymorphism and susceptibility to sunburn and skin cancer. J. Invest. Dermatol. 119: 84-90. http://dx.doi.org/10.1046/j.1523-1747.2002.01655.x PMid:12164929   Menezes HL, Juca MJ, Gomes EG, Nunes BL, et al. (2010). Analysis of the immunohistochemical expressions of p53, bcl-2 and Ki-67 in colorectal adenocarcinoma and their correlations with the prognostic factors. Arq. Gastroenterol. 47: 141-147. http://dx.doi.org/10.1590/S0004-28032010000200005 PMid:20721457   Peters JL, Sutton AJ, Jones DR, Abrams KR, et al. (2006). Comparison of two methods to detect publication bias in meta-analysis. JAMA 295: 676-680. http://dx.doi.org/10.1001/jama.295.6.676 PMid:16467236   Pezeshki A, Sari-Aslani F, Ghaderi A and Doroudchi M (2006). p53 codon 72 polymorphism in basal cell carcinoma of the skin. Pathol. Oncol. Res. 12: 29-33. http://dx.doi.org/10.1007/BF02893428 PMid:16554913   Saed GM, Ladin D, Olson J, Han X, et al. (1998). Analysis of p53 gene mutations in keloids using polymerase chain reaction-based single-strand conformational polymorphism and DNA sequencing. Arch. Dermatol. 134: 963-967. http://dx.doi.org/10.1001/archderm.134.8.963 PMid:9722726   Sakamuro D, Sabbatini P, White E and Prendergast GC (1997). The polyproline region of p53 is required to activate apoptosis but not growth arrest. Oncogene 15: 887-898. http://dx.doi.org/10.1038/sj.onc.1201263 PMid:9285684   Sayah DN, Soo C, Shaw WW, Watson J, et al. (1999). Downregulation of apoptosis-related genes in keloid tissues. J. Surg. Res. 87: 209-216. http://dx.doi.org/10.1006/jsre.1999.5761 PMid:10600351   Sjalander A, Birgander R, Kivela A and Beckman G (1995). p53 polymorphisms and haplotypes in different ethnic groups. Hum. Hered. 45: 144-149. http://dx.doi.org/10.1159/000154275 PMid:7615299   Tanaka A, Hatoko M, Tada H, Iioka H, et al. (2004). Expression of p53 family in scars. J. Dermatol. Sci. 34: 17-24. http://dx.doi.org/10.1016/j.jdermsci.2003.09.005 PMid:14757278   Teofoli P, Barduagni S, Ribuffo M, Campanella A, et al. (1999). Expression of Bcl-2, p53, c-jun and c-fos protooncogenes in keloids and hypertrophic scars. J. Dermatol. Sci. 22: 31-37. http://dx.doi.org/10.1016/S0923-1811(99)00040-7   Thomas M, Kalita A, Labrecque S, Pim D, et al. (1999). Two polymorphic variants of wild-type p53 differ biochemically and biologically. Mol. Cell Biol. 19: 1092-1100. PMid:9891044 PMCid:116039   Vandenbroucke JP, von Elm E, Altman DG, Gotzsche PC, et al. (2007). Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. Epidemiology 18: 805-835. http://dx.doi.org/10.1097/EDE.0b013e3181577511 PMid:18049195   Walker KK and Levine AJ (1996). Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc. Natl. Acad. Sci. U. S. A. 93: 15335-15340. http://dx.doi.org/10.1073/pnas.93.26.15335 PMid:8986812 PMCid:26405   Wang CM, Hiko H and Nakazawa N (2005). Investigation of p53 polymorphism for genetic predisposition of keloid and hypertrophic scar. Zhonghua Zheng Xing Wai Ke Za Zhi 21: 32-35. PMid:15844595   Yan L, Lu XY, Wang CM, Cao R, et al. (2007). Association between p53 gene codon 72 polymorphism and keloid in Chinese population. Zhonghua Zheng Xing Wai Ke Za Zhi 23: 428-430. PMid:18161363   Zhuo Y, Gao JH, Luo SQ, Zeng WS, et al. (2005). p53 gene codon 72 polymorphism and susceptibility to keloid. Zhonghua Zheng Xing Wai Ke Za Zhi 21: 201-203. PMid:16128105   Zhuo Y, Gao JH and Zeng XY (2008). The application of P53 gene detection kit for susceptibility of keloid. Zhongguo Mei Rong Yi Xue 5: 694-696.   Zintzaras E and Ioannidis JP (2005). Heterogeneity testing in meta-analysis of genome searches. Genet. Epidemiol. 28: 123-137. http://dx.doi.org/10.1002/gepi.20048 PMid:15593093
2011
D. Wu, Wu, Y., Liu, J. L., Wang, B., and Zhang, X. D., Association between HLA-Cw*0602 polymorphism and psoriasis risk: a meta-analysis, vol. 10, pp. 3109-3120, 2011.
Asumalahti K, Laitinen T, Itkonen-Vatjus R, Lokki ML, et al. (2000). A candidate gene for psoriasis near HLA-C, HCR (Pg8), is highly polymorphic with a disease-associated susceptibility allele. Hum. Mol. Genet. 9: 1533-1542. http://dx.doi.org/10.1093/hmg/9.10.1533 PMid:10888604 Attia J, Thakkinstian A and D’Este C (2003). Meta-analyses of molecular association studies: methodologic lessons for genetic epidemiology. J. Clin. Epidemiol. 56: 297-303. http://dx.doi.org/10.1016/S0895-4356(03)00011-8 Brandrup F, Holm N, Grunnet N, Henningsen K, et al. (1982). Psoriasis in monozygotic twins: variations in expression in individuals with identical genetic constitution. Acta Derm. Venereol. 62: 229-236. PMid:6179364 Brazzelli V, Quaglini M, Martinetti M, Nolli G, et al. (2000). A peculiar sequence motif in the alpha-1-domain of the HLA-C molecule in psoriasis. Dermatology 200: 99-103. http://dx.doi.org/10.1159/000018338 PMid:10773694 Chandran V and Raychaudhuri SP (2010). Geoepidemiology and environmental factors of psoriasis and psoriatic arthritis. J. Autoimmun. 34: J314-J321. http://dx.doi.org/10.1016/j.jaut.2009.12.001 PMid:20034760 Chang YT, Shiao YM, Chin PJ, Liu YL, et al. (2004). Genetic polymorphisms of the HCR gene and a genomic segment in close proximity to HLA-C are associated with patients with psoriasis in Taiwan. Br. J. Dermatol. 150: 1104-1111. http://dx.doi.org/10.1111/j.1365-2133.2004.05972.x PMid:15214895 Chang YT, Liu HN, Shiao YM, Lin MW, et al. (2005). A study of PSORS1C1 gene polymorphisms in Chinese patients with psoriasis. Br. J. Dermatol. 153: 90-96. http://dx.doi.org/10.1111/j.1365-2133.2005.06570.x PMid:16029332 Chang YT, Chou CT, Shiao YM, Lin MW, et al. (2006). Psoriasis vulgaris in Chinese individuals is associated with PSORS1C3 and CDSN genes. Br. J. Dermatol. 155: 663-669. http://dx.doi.org/10.1111/j.1365-2133.2006.07420.x PMid:16965413 Duffin KC, Chandran V, Gladman DD, Krueger GG, et al. (2008). Genetics of psoriasis and psoriatic arthritis: update and future direction. J. Rheumatol. 35: 1449-1453. PMid:18609743    PMCid:2724000 Fan X, Yang S, Sun LD, Liang YH, et al. (2007). Comparison of clinical features of HLA-Cw*0602-positive and -negative psoriasis patients in a Han Chinese population. Acta Derm. Venereol. 87: 335-340. http://dx.doi.org/10.2340/00015555-0253 PMid:17598037 Farber EM, Nall ML and Watson W (1974). Natural history of psoriasis in 61 twin pairs. Arch Dermatol. 109: 207-211. http://dx.doi.org/10.1001/archderm.1974.01630020023005 PMid:4814926 Fojtíková M, Stolfa J, Novota P, Cejkova P, et al. (2009). HLA-Cw*06 class I region rather than MICA is associated with psoriatic arthritis in Czech population. Rheumatol. Int. 29: 1293-1299. http://dx.doi.org/10.1007/s00296-009-0847-1 PMid:19184033 Gonzalez S, Martinez-Borra J, Torre-Alonso JC, Gonzalez-Roces S, et al. (1999). The MICA-A9 triplet repeat polymorphism in the transmembrane region confers additional susceptibility to the development of psoriatic arthritis and is independent of the association of Cw*0602 in psoriasis. Arthritis Rheum. 42: 1010-1016. http://dx.doi.org/10.1002/1529-0131(199905)42:5<1010::AID-ANR21>3.0.CO;2-H Griffiths CE and Barker JN (2007). Pathogenesis and clinical features of psoriasis. Lancet 370: 263-271. http://dx.doi.org/10.1016/S0140-6736(07)61128-3 Gudjonsson JE, Karason A, Antonsdottir A, Runarsdottir EH, et al. (2003). Psoriasis patients who are homozygous for the HLA-Cw*0602 allele have a 2.5-fold increased risk of developing psoriasis compared with Cw6 heterozygotes. Br. J. Dermatol. 148: 233-235. http://dx.doi.org/10.1046/j.1365-2133.2003.05115.x PMid:12588373 Gudjonsson JE, Johnston A, Sigmundsdottir H and Valdimarsson H (2004). Immunopathogenic mechanisms in psoriasis. Clin. Exp. Immunol. 135: 1-8. http://dx.doi.org/10.1111/j.1365-2249.2004.02310.x PMid:14678257    PMCid:1808928 Higgins JP and Thompson SG (2002). Quantifying heterogeneity in a meta-analysis. Stat. Med. 21: 1539-1558. http://dx.doi.org/10.1002/sim.1186 PMid:12111919 Holm SJ, Sanchez F, Carlen LM, Mallbris L, et al. (2005a). HLA-Cw*0602 associates more strongly to psoriasis in the Swedish population than variants of the novel 6p21.3 gene PSORS1C3. Acta Derm. Venereol. 85: 2-8. http://dx.doi.org/10.1080/00015550410023527 Holm SJ, Sakuraba K, Mallbris L, Wolk K, et al. (2005b). Distinct HLA-C/KIR genotype profile associates with guttate psoriasis. J. Invest. Dermatol. 125: 721-730. http://dx.doi.org/10.1111/j.0022-202X.2005.23879.x PMid:16185272 Jobim M, Jobim LF, Salim PH, Cestari TF, et al. (2008). A study of the killer cell immunoglobulin-like receptor gene KIR2DS1 in a Caucasoid Brazilian population with Psoriasis vulgaris. Tissue Antigens 72: 392-396. http://dx.doi.org/10.1111/j.1399-0039.2008.01096.x PMid:18643961 Liu Y, Helms C, Liao W, Zaba LC, et al. (2008). A genome-wide association study of psoriasis and psoriatic arthritis identifies new disease loci. PLoS Genet. 4: e1000041. http://dx.doi.org/10.1371/journal.pgen.1000041 PMid:18369459    PMCid:2274885 Lowes MA, Bowcock AM and Krueger JG (2007). Pathogenesis and therapy of psoriasis. Nature 445: 866-873. http://dx.doi.org/10.1038/nature05663 PMid:17314973 Luft FC (2005). Light shed on the common skin scourge, psoriasis. J. Mol. Med. 83: 933-934. http://dx.doi.org/10.1007/s00109-005-0724-7 PMid:16323032 Luszczek W, Kubicka W, Cislo M, Nockowski P, et al. (2003). Strong association of HLA-Cw6 allele with juvenile psoriasis in Polish patients. Immunol. Lett. 85: 59-64. http://dx.doi.org/10.1016/S0165-2478(02)00212-2 Mallbris L, Wolk K, Sanchez F and Stahle M (2009). HLA-Cw*0602 associates with a twofold higher prevalence of positive streptococcal throat swab at the onset of psoriasis: a case control study. BMC Dermatol. 9: 5. http://dx.doi.org/10.1186/1471-5945-9-5 PMid:19480679    PMCid:2696405 Martínez-Borra J, Gonzalez S, Santos-Juanes J, Sanchez del RJ, et al. (2003). Psoriasis vulgaris and psoriatic arthritis share a 100 kb susceptibility region telomeric to HLA-C. Rheumatology 42: 1089-1092. http://dx.doi.org/10.1093/rheumatology/keg304 PMid:12730526 Martínez-Borra J, Brautbar C, Gonzalez S, Enk CD, et al. (2005). The region of 150 kb telometic to HLA-C is associated with psoriasis in the Jewish population. J. Invest. Dermatol. 125: 928-932. PMid:16297191 Nair RP, Stuart PE, Nistor I, Hiremagalore R, et al. (2006). Sequence and haplotype analysis supports HLA-C as the psoriasis susceptibility 1 gene. Am. J. Hum. Genet. 78: 827-851. http://dx.doi.org/10.1086/503821 PMid:16642438 Naldi L and Mercuri SR (2010). Epidemiology of comorbidities in psoriasis. Dermatol. Ther. 23: 114-118. http://dx.doi.org/10.1111/j.1529-8019.2010.01304.x PMid:20415817 Nestle FO, Kaplan DH and Barker J (2009). Psoriasis. N. Engl. J. Med. 361: 496-509. http://dx.doi.org/10.1056/NEJMra0804595 PMid:19641206 Peters JL, Sutton AJ, Jones DR, Abrams KR, et al. (2006). Comparison of two methods to detect publication bias in meta-analysis. JAMA 295: 676-680. http://dx.doi.org/10.1001/jama.295.6.676 PMid:16467236 Płoski R, Luszczek W, Kuśnierczyk P, Nockowski P, et al. (2006). A role for KIR gene variants other than KIR2DS1 in conferring susceptibility to psoriasis. Hum. Immunol. 67: 521-526. http://dx.doi.org/10.1016/j.humimm.2006.04.001 PMid:16829306 Rani R, Narayan R, Fernandez-Vina MA and Stastny P (1998). Role of HLA-B and C alleles in development of psoriasis in patients from North India. Tissue Antigens 51: 618-622. http://dx.doi.org/10.1111/j.1399-0039.1998.tb03004.x PMid:9694354 Raychaudhuri SP and Gross J (2000a). A comparative study of pediatric onset psoriasis with adult onset psoriasis. Pediatr. Dermatol. 17: 174-178. http://dx.doi.org/10.1046/j.1525-1470.2000.01746.x PMid:10886746 Raychaudhuri SP and Gross J (2000b). Psoriasis risk factors: role of lifestyle practices. Cutis 66: 348-352. PMid:11107520 Raychaudhuri SP and Farber EM (2001). The prevalence of psoriasis in the world. J. Eur. Acad. Dermatol. Venereol. 15: 16-17. http://dx.doi.org/10.1046/j.1468-3083.2001.00192.x PMid:11451313 Reveille JD and Williams FM (2006). Infection and musculoskeletal conditions: Rheumatologic complications of HIV infection. Best Pract. Res. Clin. Rheumatol. 20: 1159-1179. http://dx.doi.org/10.1016/j.berh.2006.08.015 Sánchez F, Holm SJ, Mallbris L, O’Brien KP, et al. (2004). STG does not associate with psoriasis in the Swedish population. Exp. Dermatol. 13: 413-418. http://dx.doi.org/10.1111/j.0906-6705.2004.00170.x PMid:15217361 Schon MP and Boehncke WH (2005). Psoriasis. N. Engl. J. Med. 352: 1899-1912. http://dx.doi.org/10.1056/NEJMra041320 PMid:15872205 Szczerkowska-Dobosz A (2005). Human leukocyte antigens as psoriasis inheritance and susceptibility markers. Arch. Immunol. Ther. Exp. 53: 428-433. Valdimarsson H (2007). The genetic basis of psoriasis. Clin. Dermatol. 25: 563-567. http://dx.doi.org/10.1016/j.clindermatol.2007.08.010 PMid:18021893 Vandenbroucke JP, von Elm E, Altman DG, Gotzsche PC, et al. (2007). Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. Epidemiology 18: 805-835. http://dx.doi.org/10.1097/EDE.0b013e3181577511 PMid:18049195 Watson W, Cann HM, Farber EM and Nall ML (1972). The genetics of psoriasis. Arch. Dermatol. 105: 197-207. http://dx.doi.org/10.1001/archderm.1972.01620050011002 PMid:5060862 Zhang XJ, Zhang AP, Yang S, Gao M, et al. (2003). Association of HLA class I alleles with Psoriasis vulgaris in southeastern Chinese Hans. J. Dermatol. Sci. 33: 1-6. http://dx.doi.org/10.1016/S0923-1811(03)00157-9 Zintzaras E and Ioannidis JP (2005). Heterogeneity testing in meta-analysis of genome searches. Genet. Epidemiol. 28: 123-137. http://dx.doi.org/10.1002/gepi.20048 PMid:15593093
Y. Wu, Wang, B., Liu, J. L., Gao, X. H., Chen, H. D., and Li, Y. H., Association of -619C/T polymorphism in CDSN gene and psoriasis risk: a meta-analysis, vol. 10, pp. 3632-3640, 2011.
Ahnini RT, Camp NJ, Cork MJ, Mee JB, et al. (1999). Novel genetic association between the corneodesmosin (MHC S) gene and susceptibility to psoriasis. Hum. Mol. Genet. 8: 1135-1140. http://dx.doi.org/10.1093/hmg/8.6.1135   Ameen M, Allen MH, Fisher SA, Lewis CM, et al. (2005). Corneodesmosin (CDSN) gene association with psoriasis vulgaris in Caucasian but not in Japanese populations. Clin. Exp. Dermatol. 30: 414-418. http://dx.doi.org/10.1111/j.1365-2230.2005.01789.x PMid:15953084   Asumalahti K, Laitinen T, Itkonen-Vatjus R, Lokki ML, et al. (2000). A candidate gene for psoriasis near HLA-C, HCR (Pg8), is highly polymorphic with a disease-associated susceptibility allele. Hum. Mol. Genet. 9: 1533-1542. http://dx.doi.org/10.1093/hmg/9.10.1533 PMid:10888604   Attia J, Thakkinstian A and D'Este C (2003). Meta-analyses of molecular association studies: methodologic lessons for genetic epidemiology. J. Clin. Epidemiol. 56: 297-303. http://dx.doi.org/10.1016/S0895-4356(03)00011-8   Genetics and Molecular Research 10 (4): 3632-3640 (2011) Butt C, Rahman P, Siannis F, Farewell VT, et al. (2005). Corneodesmosin polymorphisms in psoriatic arthritis. Rheumatology 44: 684-685.   Capon F, Munro M, Barker J and Trembath R (2002). Searching for the major histocompatibility complex psoriasis susceptibility gene. J. Invest. Dermatol. 118: 745-751. http://dx.doi.org/10.1046/j.1523-1747.2002.01749.x PMid:11982750   Capon F, Toal IK, Evans JC, Allen MH, et al. (2003). Haplotype analysis of distantly related populations implicates corneodesmosin in psoriasis susceptibility. J. Med. Genet. 40: 447-452. http://dx.doi.org/10.1136/jmg.40.6.447 PMid:12807967 PMCid:1735499   Caubet C, Jonca N, Brattsand M, Guerrin M, et al. (2004). Degradation of corneodesmosome proteins by two serine proteases of the kallikrein family, SCTE/KLK5/hK5 and SCCE/KLK7/hK7. J. Invest. Dermatol. 122: 1235-1244. http://dx.doi.org/10.1111/j.0022-202X.2004.22512.x PMid:15140227   Chang YT, Tsai SF, Lin MW, Liu HN, et al. (2003). SPR1 gene near HLA-C is unlikely to be a psoriasis susceptibility gene. Exp. Dermatol. 12: 307-314. http://dx.doi.org/10.1034/j.1600-0625.2003.00039.x PMid:12823445   Chang YT, Chou CT, Shiao YM, Lin MW, et al. (2006). Psoriasis vulgaris in Chinese individuals is associated with PSORS1C3 and CDSN genes. Br. J. Dermatol. 155: 663-669. http://dx.doi.org/10.1111/j.1365-2133.2006.07420.x PMid:16965413   Griffiths CE and Barker JN (2007). Pathogenesis and clinical features of psoriasis. Lancet 370: 263-271. http://dx.doi.org/10.1016/S0140-6736(07)61128-3   Guerrin M, Simon M, Montezin M, Haftek M, et al. (1998). Expression cloning of human corneodesmosin proves its identity with the product of the S gene and allows improved characterization of its processing during keratinocyte differentiation. J. Biol. Chem. 273: 22640-22647. http://dx.doi.org/10.1074/jbc.273.35.22640 PMid:9712893   Higgins JP and Thompson SG (2002). Quantifying heterogeneity in a meta-analysis. Stat. Med. 21: 1539-1558. http://dx.doi.org/10.1002/sim.1186 PMid:12111919   Hui J, Oka A, Tamiya G, Tomizawa M, et al. (2002). Corneodesmosin DNA polymorphisms in MHC haplotypes and Japanese patients with psoriasis. Tissue Antigens 60: 77-83. http://dx.doi.org/10.1034/j.1399-0039.2002.600110.x PMid:12366786   Krueger JG, Krane JF, Carter DM and Gottlieb AB (1990). Role of growth factors, cytokines, and their receptors in the pathogenesis of psoriasis. J. Invest. Dermatol. 94: 135S-140S. http://dx.doi.org/10.1111/1523-1747.ep12876121 PMid:2161887   Liu Y, Krueger JG and Bowcock AM (2007). Psoriasis: genetic associations and immune system changes. Genes Immun. 8: 1-12. http://dx.doi.org/10.1038/sj.gene.6364351 PMid:17093502   O'Brien KP, Holm SJ, Nilsson S, Carlen L, et al. (2001). The HCR gene on 6p21 is unlikely to be a psoriasis susceptibility gene. J. Invest. Dermatol. 116: 750-754. http://dx.doi.org/10.1046/j.0022-202x.2001.01323.x PMid:11348465   Orrù S, Giuressi E, Casula M, Loizedda A, et al. (2002). Psoriasis is associated with a SNP haplotype of the corneodesmosin gene (CDSN). Tissue Antigens 60: 292-298. http://dx.doi.org/10.1034/j.1399-0039.2002.600403.x PMid:12472658   Peters JL, Sutton AJ, Jones DR, Abrams KR, et al. (2006). Comparison of two methods to detect publication bias in metaanalysis. JAMA 295: 676-680. http://dx.doi.org/10.1001/jama.295.6.676 PMid:16467236   Romphruk AV, Oka A, Romphruk A, Tomizawa M, et al. (2003). Corneodesmosin gene: no evidence for PSORS 1 gene in North-eastern Thai psoriasis patients. Tissue Antigens 62: 217-224. http://dx.doi.org/10.1034/j.1399-0039.2003.00056.x PMid:12956875   Schmitt-Egenolf M, Windemuth C, Hennies HC, Albis-Camps M, et al. (2001). Comparative association analysis reveals that corneodesmosin is more closely associated with psoriasis than HLA-Cw*0602-B*5701 in German families. Tissue Antigens 57: 440-446. http://dx.doi.org/10.1034/j.1399-0039.2001.057005440.x PMid:11556968   Terui T, Ozawa M and Tagami H (2000). Role of neutrophils in induction of acute inflammation in T-cell-mediated immune dermatosis, psoriasis: a neutrophil-associated inflammation-boosting loop. Exp. Dermatol. 9: 1-10. http://dx.doi.org/10.1034/j.1600-0625.2000.009001001.x PMid:10688368   Vandenbroucke JP, von EE, Altman DG, Gotzsche PC, et al. (2007). Strengthening the reporting of observational studies in epidemiology (STROBE): explanation and elaboration. Epidemiology 18: 805-835. http://dx.doi.org/10.1097/EDE.0b013e3181577511 PMid:18049195   Zenz R, Eferl R, Kenner L, Florin L, et al. (2005). Psoriasis-like skin disease and arthritis caused by inducible epidermal deletion of Jun proteins. Nature 437: 369-375. http://dx.doi.org/10.1038/nature03963 PMid:16163348   Zintzaras E and Loannidis JP (2005). Heterogeneity testing in meta-analysis of genome searches. Genet. Epidemiol. 28: 123-137. http://dx.doi.org/10.1002/gepi.20048 PMid:15593093
M. S. Li, Liu, J. L., Wu, Y., Wang, P., and Teng, H., Meta-analysis demonstrates no association between p53 codon 72 polymorphism and prostate cancer risk, vol. 10, pp. 2924-2933, 2011.
Coughlin SS and Hall IJ (2002). A review of genetic polymorphisms and prostate cancer risk. Ann. Epidemiol. 12: 182- 196. http://dx.doi.org/10.1016/S1047-2797(01)00310-6 Guimaraes DP and Hainaut P (2002). TP53: a key gene in human cancer. Biochimie 84: 83-93. http://dx.doi.org/10.1016/S0300-9084(01)01356-6 Henner WD, Evans AJ, Hough KM, Harris EL, et al. (2001). Association of codon 72 polymorphism of p53 with lower prostate cancer risk. Prostate 49: 263-266. http://dx.doi.org/10.1002/pros.10021 PMid:11746272 Higgins JP and Thompson SG (2002). Quantifying heterogeneity in a meta-analysis. Stat. Med. 21: 1539-1558. http://dx.doi.org/10.1002/sim.1186 PMid:12111919 Hollstein M, Sidransky D, Vogelstein B and Harris CC (1991). p53 mutations in human cancers. Science 253: 49-53. http://dx.doi.org/10.1126/science.1905840 PMid:1905840 Hsing AW and Chokkalingam AP (2006). Prostate cancer epidemiology. Front. Biosci. 11: 1388-1413. http://dx.doi.org/10.2741/1891 PMid:16368524 Huang SP, Wu WJ, Chang WS, Wu MT, et al. (2004). p53 Codon 72 and p21 codon 31 polymorphisms in prostate cancer. Canc. Epidemiol. Biomarkers Prev. 13: 2217-2224. PMid:15598783 Jemal A, Siegel R, Xu J and Ward E (2010). Cancer statistics, 2010. CA Cancer J. Clin. 60: 277-300. http://dx.doi.org/10.3322/caac.20073 PMid:20610543 Katkoori VR, Jia X, Shanmugam C, Wan W, et al. (2009). Prognostic significance of p53 codon 72 polymorphism differs with race in colorectal adenocarcinoma. Clin. Cancer Res. 15: 2406-2416. http://dx.doi.org/10.1158/1078-0432.CCR-08-1719 PMid:19339276 Klug SJ, Ressing M, Koenig J, Abba MC, et al. (2009). TP53 codon 72 polymorphism and cervical cancer: a pooled analysis of individual data from 49 studies. Lancet Oncol. 10: 772-784. http://dx.doi.org/10.1016/S1470-2045(09)70187-1 Leiros GJ, Galliano SR, Sember ME, Kahn T, et al. (2005). Detection of human papillomavirus DNA and p53 codon 72 polymorphism in prostate carcinomas of patients from Argentina. BMC Urol. 5: 15. http://dx.doi.org/10.1186/1471-2490-5-15 PMid:16307686 PMCid:1314892 Lesko SM, Rosenberg L and Shapiro S (1996). Family history and prostate cancer risk. Am. J. Epidemiol. 144: 1041-1047. PMid:8942435 Levine AJ (1997). p53, the cellular gatekeeper for growth and division. Cell 88: 323-331. http://dx.doi.org/10.1016/S0092-8674(00)81871-1 Levine AJ, Momand J and Finlay CA (1991). The p53 tumour suppressor gene. Nature 351: 453-456. http://dx.doi.org/10.1038/351453a0 PMid:2046748 Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, et al. (2000). Environmental and heritable factors in the causation of cancer - analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med. 343: 78-85. http://dx.doi.org/10.1056/NEJM200007133430201 PMid:10891514 Mechanic LE, Bowman ED, Welsh JA, Khan MA, et al. (2007). Common genetic variation in TP53 is associated with lung cancer risk and prognosis in African Americans and somatic mutations in lung tumors. Cancer Epidemiol. Biomarkers Prev. 16: 214-222. http://dx.doi.org/10.1158/1055-9965.EPI-06-0790 Pegoraro RJ, Moodley M, Rom L, Chetty R, et al. (2003). P53 codon 72 polymorphism and BRCA 1 and 2 mutations in ovarian epithelial malignancies in black South Africans. Int. J. Gynecol. Cancer 13: 444-449. http://dx.doi.org/10.1046/j.1525-1438.2003.13333.x PMid:12911720 Peters JL, Sutton AJ, Jones DR, Abrams KR, et al. (2006). Comparison of two methods to detect publication bias in meta-analysis. JAMA 295: 676-680. http://dx.doi.org/10.1001/jama.295.6.676 PMid:16467236 Quinones LA, Irarrazabal CE, Rojas CR, Orellana CE, et al. (2006). Joint effect among p53, CYP1A1, GSTM1 polymorphism combinations and smoking on prostate cancer risk: an exploratory genotype-environment interaction study. Asian J. Androl. 8: 349-355. http://dx.doi.org/10.1111/j.1745-7262.2006.00135.x PMid:16625286 Ricks-Santi L, Mason T, Apprey V, Ahaghotu C, et al. (2010). p53 Pro72Arg polymorphism and prostate cancer in men of African descent. Prostate 70: 1739-1745. PMid:20593380 PMCid:3057117 Shepherd T, Tolbert D, Benedetti J, Macdonald J, et al. (2000). Alterations in exon 4 of the p53 gene in gastric carcinoma. Gastroenterology 118: 1039-1044. http://dx.doi.org/10.1016/S0016-5085(00)70356-8 Suzuki K, Matsui H, Ohtake N, Nakata S, et al. (2003). A p53 codon 72 polymorphism associated with prostate cancer development and progression in Japanese. J. Biomed. Sci. 10: 430-435. http://dx.doi.org/10.1007/BF02256434 PMid:12824702 Tsai MH, Lin CD, Hsieh YY, Chang FC, et al. (2002). Prognostic significance of the proline form of p53 codon 72 polymorphism in nasopharyngeal carcinoma. Laryngoscope 112: 116-119. http://dx.doi.org/10.1097/00005537-200201000-00020 PMid:11802048 Vandenbroucke JP, von Elm E, Altman DG, Gøtzsche PC, et al. (2007). STROBE Initiative. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. Epidemiology 18: 805-835. http://dx.doi.org/10.1097/EDE.0b013e3181577511 PMid:18049195 Viechtbauer W (2007). Confidence intervals for the amount of heterogeneity in meta-analysis. Stat. Med. 26: 37-52. http://dx.doi.org/10.1002/sim.2514 PMid:16463355 Wang YC, Chen CY, Chen SK, Chang YY, et al. (1999). p53 codon 72 polymorphism in Taiwanese lung cancer patients: association with lung cancer susceptibility and prognosis. Clin. Cancer Res. 5: 129-134. PMid:9918210 Wu HC, Chang CH, Chen HY, Tsai FJ, et al. (2004). p53 gene codon 72 polymorphism but not tumor necrosis factor-alpha gene is associated with prostate cancer. Urol. Int. 73: 41-46. http://dx.doi.org/10.1159/000078803 PMid:15263792 Wu WJ, Kakehi Y, Habuchi T, Kinoshita H, et al. (1995). Allelic frequency of p53 gene codon 72 polymorphism in urologic cancers. Jpn. J. Cancer Res. 86: 730-736. http://dx.doi.org/10.1111/j.1349-7006.1995.tb02461.x Zhou Y, Li N, Zhuang W, Liu GJ, et al. (2007). P53 codon 72 polymorphism and gastric cancer: a meta-analysis of the literature. Int. J. Cancer 121: 1481-1486. http://dx.doi.org/10.1002/ijc.22833 PMid:17546594 Zintzaras E and Ioannidis JP (2005). Heterogeneity testing in meta-analysis of genome searches. Genet. Epidemiol. 28: 123-137. http://dx.doi.org/10.1002/gepi.20048 PMid:15593093