Publications

Found 47 results
Filters: Author is L. Yang  [Clear All Filters]
2016
B. W. Guo, Yang, L., Zhao, R., Hao, S. Z., Guo, B. W., Yang, L., Zhao, R., and Hao, S. Z., Association between ERCC5 gene polymorphisms and gastric cancer risk, vol. 15, p. -, 2016.
B. W. Guo, Yang, L., Zhao, R., Hao, S. Z., Guo, B. W., Yang, L., Zhao, R., and Hao, S. Z., Association between ERCC5 gene polymorphisms and gastric cancer risk, vol. 15, p. -, 2016.
F. Liu, Yang, L., Tian, Z. Z., Wu, P., Sun, S. L., Liu, F., Yang, L., Tian, Z. Z., Wu, P., and Sun, S. L., Constructing gene network based on biclusters of expression data, vol. 15, p. -, 2016.
F. Liu, Yang, L., Tian, Z. Z., Wu, P., Sun, S. L., Liu, F., Yang, L., Tian, Z. Z., Wu, P., and Sun, S. L., Constructing gene network based on biclusters of expression data, vol. 15, p. -, 2016.
L. Yang, Su, M. Q., Ma, Y. Y., Xin, Y. J., Han, R. B., Zhang, R., Wen, J., Hao, X. K., Yang, L., Su, M. Q., Ma, Y. Y., Xin, Y. J., Han, R. B., Zhang, R., Wen, J., Hao, X. K., Yang, L., Su, M. Q., Ma, Y. Y., Xin, Y. J., Han, R. B., Zhang, R., Wen, J., and Hao, X. K., Epidemiology, species distribution, antifungal susceptibility, and ERG11 mutations of Candida species isolated from pregnant Chinese Han women, vol. 15, p. -, 2016.
L. Yang, Su, M. Q., Ma, Y. Y., Xin, Y. J., Han, R. B., Zhang, R., Wen, J., Hao, X. K., Yang, L., Su, M. Q., Ma, Y. Y., Xin, Y. J., Han, R. B., Zhang, R., Wen, J., Hao, X. K., Yang, L., Su, M. Q., Ma, Y. Y., Xin, Y. J., Han, R. B., Zhang, R., Wen, J., and Hao, X. K., Epidemiology, species distribution, antifungal susceptibility, and ERG11 mutations of Candida species isolated from pregnant Chinese Han women, vol. 15, p. -, 2016.
L. Yang, Su, M. Q., Ma, Y. Y., Xin, Y. J., Han, R. B., Zhang, R., Wen, J., Hao, X. K., Yang, L., Su, M. Q., Ma, Y. Y., Xin, Y. J., Han, R. B., Zhang, R., Wen, J., Hao, X. K., Yang, L., Su, M. Q., Ma, Y. Y., Xin, Y. J., Han, R. B., Zhang, R., Wen, J., and Hao, X. K., Epidemiology, species distribution, antifungal susceptibility, and ERG11 mutations of Candida species isolated from pregnant Chinese Han women, vol. 15, p. -, 2016.
X. C. Chen, Liu, H., Li, H., Cheng, Y., Yang, L., Liu, Y. F., Chen, X. C., Liu, H., Li, H., Cheng, Y., Yang, L., and Liu, Y. F., In vitro expansion and differentiation of rat pancreatic duct-derived stem cells into insulin secreting cells using a dynamicthree-dimensional cell culture system, vol. 15, p. -, 2016.
X. C. Chen, Liu, H., Li, H., Cheng, Y., Yang, L., Liu, Y. F., Chen, X. C., Liu, H., Li, H., Cheng, Y., Yang, L., and Liu, Y. F., In vitro expansion and differentiation of rat pancreatic duct-derived stem cells into insulin secreting cells using a dynamicthree-dimensional cell culture system, vol. 15, p. -, 2016.
L. Yang, Wang, X. W., Zhu, L. P., Wang, H. L., Wang, B., Wu, T., Zhao, Q., JinSiHan, D. L. X. T., Wang, X. Y., Yang, L., Wang, X. W., Zhu, L. P., Wang, H. L., Wang, B., Wu, T., Zhao, Q., JinSiHan, D. L. X. T., and Wang, X. Y., Relationship between genetic polymorphisms of methylenetetrahydrofolate reductase and breast cancer chemotherapy response, vol. 15, p. -, 2016.
L. Yang, Wang, X. W., Zhu, L. P., Wang, H. L., Wang, B., Wu, T., Zhao, Q., JinSiHan, D. L. X. T., Wang, X. Y., Yang, L., Wang, X. W., Zhu, L. P., Wang, H. L., Wang, B., Wu, T., Zhao, Q., JinSiHan, D. L. X. T., and Wang, X. Y., Relationship between genetic polymorphisms of methylenetetrahydrofolate reductase and breast cancer chemotherapy response, vol. 15, p. -, 2016.
2015
L. Yang, Zhou, H. - H., Ye, Y. - F., Fan, X. - W., Wang, Y. - J., and Meng, Y., Association of PS1 1/2, ACE I/D, and LRP C/T polymorphisms with Alzheimer’s disease in the Chinese population: a meta-analysis of case-control studies, vol. 14, pp. 1017-1024, 2015.
L. Yang, Tian, R. G., Chang, P. Y., Yan, M. R., and Su, X. L., Association of SNPs in the PPARγ gene and hypertension in a Mongolian population, vol. 14, pp. 19295-19308, 2015.
L. Yang, Chen, S. J., Yuan, G. Y., Wang, D., and Chen, J. J., Changes and clinical significance of serum vaspin levels in patients with type 2 diabetes, vol. 14, pp. 11356-11361, 2015.
L. Yang, Wang, X. Y., Li, Y. T., Wang, H. L., Wu, T., Wang, B., Zhao, Q., Jinsihan, D., and Zhu, L. P., CYP19 gene polymorphisms and the susceptibility to breast cancer in Xinjiang Uigur women, vol. 14, pp. 8473-8482, 2015.
B. Sun, Li, J., Dong, M., Yang, L., Wu, C., Zhu, L., and Cong, Y. L., Diversity of platelet function and genetic polymorphism in clopidogrel-treated Chinese patients, vol. 14, pp. 1434-1442, 2015.
J. C. Zheng, Qi, S. Q., Yang, L., Ma, Y. Y., Dong, K. R., Zhu, H. T., Yang, S. B., Xu, T., Zheng, S., and Xiao, X. M., Effects of bisphenol A on decreasing the percentage and promoting the growth of stem cell-like cells from SK-N-SH human neuroblastoma cells, vol. 14, pp. 2986-2993, 2015.
J. Wang, Wang, T., Yin, G. - Y., Yang, L., Wang, Z. - G., and Bu, X. - B., Glutathione S-transferase polymorphisms influence chemotherapy response and treatment outcome in breast cancer, vol. 14, pp. 11126-11132, 2015.
Y. W. Lv, Yang, L., Zhang, M., Jiang, L. H., Niu, J. H., Hou, J., and Cui, X. H., Increased human epididymis protein 4 in benign gynecological diseases complicated with chronic renal insufficiency patients, vol. 14, pp. 2156-2161, 2015.
X. M. Xie, Ke, R., Zhang, Y. H., Wang, G. Z., Zhu, Y. T., Hussian, T., Yang, L., and Li, M. X., Interleukin-6 gene -174G>C polymorphism and chronic obstructive pulmonary disease risk: a meta-analysis, vol. 14, pp. 8516-8525, 2015.
Y. Wang, Zhou, D., Wang, S., and Yang, L., Large-scale detection and application of expressed sequence tag single nucleotide polymorphisms in Nicotiana, vol. 14, pp. 7793-7800, 2015.
G. L. Shi, Yang, L., Sun, Y., Yin, Y. J., and Song, C. X., MCP-1 gene polymorphisms in North Chinese patients with pulmonary tuberculosis, vol. 14, pp. 4035-4040, 2015.
Y. Zhou, Teng, S. - J., Yang, L., Li, S. - B., and Xu, Y., A novel variant of the β-lactamase ADC-61 gene in multi-drug resistant Acinetobacter baumannii, vol. 14, pp. 7092-7100, 2015.
W. Guo, Gu, H. F., Zhang, H. G., Chen, S. B., Wang, J. Q., Geng, S. X., Li, L., Liu, P., Liu, X., Ji, Y. R., Li, S. W., and Yang, L., An outbreak of Candida parapsilosis fungemia among preterm infants, vol. 14, pp. 18259-18267, 2015.
L. Yang, Wang, J., Li, F. - G., Han, M., Chang, X. - J., and Wang, Z. - T., Relationship between genetic polymorphisms in MCP-1, CCR-2, and non-small-cell lung cancer in the Han nationality of Northern China, vol. 14, pp. 3745-3752, 2015.
L. Yang, Wu, D., and Fan, Z. - M., Retrospective analysis of pathologic nipple discharge, vol. 14, pp. 1443-1449, 2015.
H. Du, Yang, L., Xu, X. - Y., Hai, L., Han, Y. - Q., and Shi, Y. - X., Telomere-associated factor expression in replicative senescence of human embryonic lung fibroblasts, vol. 14, pp. 9269-9276, 2015.
2014
J. Q. Liang, Yan, M. R., Yang, L., Suyila, Q., Cui, H. W., and Su, X. L., Association of a CYP4A11 polymorphism and hypertension in the Mongolian and Han populations of China, vol. 13, pp. 508-517, 2014.
L. Yang, Chen, S. J., Yuan, G. Y., Zhou, L. B., Wang, D., Wang, X. Z., and Chen, J. J., Association of serum adipose triglyceride lipase levels with obesity and diabetes, vol. 13, pp. 6746-6751, 2014.
L. Yang, Li, F., Yan, M., and Su, X., Association of the CYP1A1 MspI and TNFα-308 polymorphisms with chronic obstructive pulmonary disease in Inner Mongolia, vol. 13, pp. 3209-3217, 2014.
J. J. Xu, Zou, L. Y., Yang, L., He, X. L., and Sun, M., Common polymorphisms in the HIF-1αgene confer susceptibility to digestive cancer: a meta-analysis, vol. 13, pp. 6228-6238, 2014.
Y. Li, Feng, S. - T., Yao, Y., Yang, L., Xing, Y., Wang, Y., and You, J. - H., Correlation between IRGM genetic polymorphisms and Crohn’s disease risk: a meta-analysis of case-control studies, vol. 13, pp. 10741-10753, 2014.
Y. Yang, Li, Z., Tao, H. F., Qi, X. Y., Wang, W. L., Yang, L., Wang, H., and Xu, P., An elevated plasma level of visfatin increases the risk of myocardial infarction, vol. 13, pp. 8586-8595, 2014.
J. - T. Wen, Zhou, Y., Yang, L., and Xu, Y., Multidrug-resistant genes of aminoglycoside-modifying enzymes and 16S rRNA methylases in Acinetobacter baumannii strains, vol. 13, pp. 3842-3849, 2014.
H. M. Liu, Rao, N., Yang, D., Yang, L., Li, Y., and Ou, F., A novel method for identifying SNP disease association based on maximal information coefficient, vol. 13, pp. 10863-10877, 2014.
2012
L. P. Wang, Zhao, L. R., Cui, H. W., Yan, M. R., Yang, L., and Su, X. L., Association between PPARγ2 Pro12Ala polymorphism and myocardial infarction and obesity in Han Chinese in Hohhot, China, vol. 11, pp. 2929-2938, 2012.
Akiyama TE, Sakai S, Lambert G, Nicol CJ, et al. (2002). Conditional disruption of the peroxisome proliferator-activated receptor gamma gene in mice results in lowered expression of ABCA1, ABCG1, and apoE in macrophages and reduced cholesterol efflux. Mol. Cell Biol. 22: 2607-2619. http://dx.doi.org/10.1128/MCB.22.8.2607-2619.2002 PMid:11909955 PMCid:133709   Altshuler D, Hirschhorn JN, Klannemark M, Lindgren CM, et al. (2000). The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat. Genet. 26: 76-80. http://dx.doi.org/10.1038/79216 PMid:10973253   Beamer BA, Yen CJ, Andersen RE, Muller D, et al. (1998). Association of the Pro12Ala variant in the peroxisome proliferator-activated receptor-gamma2 gene with obesity in two Caucasian populations. Diabetes 47: 1806-1808. http://dx.doi.org/10.2337/diabetes.47.11.1806 PMid:9792554   Black MH, Fingerlin TE, Allayee H, Zhang W, et al. (2008). Evidence of interaction between PPARG2 and HNF4A contributing to variation in insulin sensitivity in Mexican Americans. Diabetes 57: 1048-1056. http://dx.doi.org/10.2337/db07-0848 PMid:18162503   Bouhlel MA, Derudas B, Rigamonti E, Dievart R, et al. (2007). PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab. 6: 137-143. http://dx.doi.org/10.1016/j.cmet.2007.06.010 PMid:17681149   Danawati CW, Nagata M, Moriyama H, Hara K, et al. (2005). A possible association of Pro12Ala polymorphism in peroxisome proliferator-activated receptor gamma2 gene with obesity in native Javanese in Indonesia. Diabetes Metab. Res. Rev. 21: 465-469. http://dx.doi.org/10.1002/dmrr.543 PMid:15739197   Deeb SS, Fajas L, Nemoto M, Pihlajamaki J, et al. (1998). A Pro12Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat. Genet. 20: 284-287. http://dx.doi.org/10.1038/3099 PMid:9806549   Ghoussaini M, Meyre D, Lobbens S, Charpentier G, et al. (2005). Implication of the Pro12Ala polymorphism of the PPAR-gamma 2 gene in type 2 diabetes and obesity in the French population. BMC Med. Genet. 6: 11. http://dx.doi.org/10.1186/1471-2350-6-11 PMid:15784141 PMCid:1084346   Holvoet P (2008). Relations between metabolic syndrome, oxidative stress and inflammation and cardiovascular disease. Verh. K. Acad. Geneeskd. Belg. 70: 193-219. PMid:18669160   Hsueh WA and Bruemmer D (2004). Peroxisome proliferator-activated receptor gamma: implications for cardiovascular disease. Hypertension 43: 297-305. http://dx.doi.org/10.1161/01.HYP.0000113626.76571.5b PMid:14732733   Hu Q, Zhang XJ, Liu CX, Wang XP, et al. (2010). PPARgamma1-induced caveolin-1 enhances cholesterol efflux and attenuates atherosclerosis in apolipoprotein E-deficient mice. J. Vasc. Res. 47: 69-79. http://dx.doi.org/10.1159/000235927 PMid:19729954   Issemann I and Green S (1990). Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347: 645-650. http://dx.doi.org/10.1038/347645a0 PMid:2129546   Iwai M, Kanno H, Senba I, Nakaoka H, et al. (2011). Irbesartan increased PPARgamma activity in vivo in white adipose tissue of atherosclerotic mice and improved adipose tissue dysfunction. Biochem. Biophys. Res. Commun. 406: 123-126. http://dx.doi.org/10.1016/j.bbrc.2011.02.007 PMid:21296052   Ji Y, Liu J, Wang Z, Liu N, et al. (2009). PPARgamma agonist, rosiglitazone, regulates angiotensin II-induced vascular inflammation through the TLR4-dependent signaling pathway. Lab. Invest. 89: 887-902. http://dx.doi.org/10.1038/labinvest.2009.45 PMid:19451898   Kagawa Y, Yanagisawa Y, Hasegawa K, Suzuki H, et al. (2002). Single nucleotide polymorphisms of thrifty genes for energy metabolism: evolutionary origins and prospects for intervention to prevent obesity-related diseases. Biochem. Biophys. Res. Commun. 295: 207-222. http://dx.doi.org/10.1016/S0006-291X(02)00680-0   Kim KS, Choi SM, Shin SU, Yang HS, et al. (2004). Effects of peroxisome proliferator-activated receptor-gamma 2 Pro12Ala polymorphism on body fat distribution in female Korean subjects. Metabolism 53: 1538-1543. http://dx.doi.org/10.1016/j.metabol.2004.06.019 PMid:15562396   Kolehmainen M, Uusitupa MI, Alhava E, Laakso M, et al. (2003). Effect of the Pro12Ala polymorphism in the peroxisome proliferator-activated receptor (PPAR) gamma2 gene on the expression of PPARgamma target genes in adipose tissue of massively obese subjects. J. Clin. Endocrinol. Metab. 88: 1717-1722. http://dx.doi.org/10.1210/jc.2002-020603 PMid:12679463   Liu L, Liu L, Ding Y, Huang Z, et al. (2001). Ethnic and environmental differences in various markers of dietary intake and blood pressure among Chinese Han and three other minority peoples of China: results from the WHO Cardiovascular Diseases and Alimentary Comparison (CARDIAC) Study. Hypertens. Res. 24: 315-322. http://dx.doi.org/10.1291/hypres.24.315 PMid:11409657   Masud S and Ye S (2003). Effect of the peroxisome proliferator activated receptor-gamma gene Pro12Ala variant on body mass index: a meta-analysis. J. Med. Genet. 40: 773-780. http://dx.doi.org/10.1136/jmg.40.10.773 PMid:14569127 PMCid:1735275   McDermott MM (2007). The international pandemic of chronic cardiovascular disease. JAMA 297: 1253-1255. http://dx.doi.org/10.1001/jama.297.11.1253 PMid:17374819   Meirhaeghe A, Fajas L, Helbecque N, Cottel D, et al. (2000). Impact of the peroxisome proliferator activated receptor gamma2 Pro12Ala polymorphism on adiposity, lipids and non-insulin-dependent diabetes mellitus. Int. J. Obes. Relat. Metab. Disord. 24: 195-199. http://dx.doi.org/10.1038/sj.ijo.0801112 PMid:10702770   Miyazaki Y, Mahankali A, Matsuda M, Glass L, et al. (2001). Improved glycemic control and enhanced insulin sensitivity in type 2 diabetic subjects treated with pioglitazone. Diabetes Care 24: 710-719. http://dx.doi.org/10.2337/diacare.24.4.710 PMid:11315836   Moran CS, Cullen B, Campbell JH and Golledge J (2009). Interaction between angiotensin II, osteoprotegerin, and peroxisome proliferator-activated receptor-gamma in abdominal aortic aneurysm. J. Vasc. Res. 46: 209-217. http://dx.doi.org/10.1159/000163019 PMid:18931513   Mori H, Ikegami H, Kawaguchi Y, Seino S, et al. (2001). The Pro12 →Ala substitution in PPAR-gamma is associated with resistance to development of diabetes in the general population: possible involvement in impairment of insulin secretion in individuals with type 2 diabetes. Diabetes 50: 891-894. http://dx.doi.org/10.2337/diabetes.50.4.891 PMid:11289058   Mori Y, Kim-Motoyama H, Katakura T, Yasuda K, et al. (1998). Effect of the Pro12Ala variant of the human peroxisome proliferator-activated receptor gamma 2 gene on adiposity, fat distribution, and insulin sensitivity in Japanese men. Biochem. Biophys. Res. Commun. 251: 195-198. http://dx.doi.org/10.1006/bbrc.1998.9421 PMid:9790929   Pan XF, Song XB, Wang LL, Li LX, et al. (2009). Association of the Pro12Ala polymorphism in peroxisome proliferators activated receptor-gamma gene with rheumatoid arthritis in Sichuan Province of China. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 26: 87-90. PMid:19199260   Ren Y, Sun C, Sun Y, Tan H, et al. (2009). PPAR gamma protects cardiomyocytes against oxidative stress and apoptosis via Bcl-2 upregulation. Vascul. Pharmacol. 51: 169-174. http://dx.doi.org/10.1016/j.vph.2009.06.004 PMid:19540934   Ridker PM, Cook NR, Cheng S, Erlich HA, et al. (2003). Alanine for proline substitution in the peroxisome proliferator-activated receptor gamma-2 (PPARG2) gene and the risk of incident myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 23: 859-863. http://dx.doi.org/10.1161/01.ATV.0000068680.19521.34 PMid:12663371   Rose GA and Blackburn H (1982). Cardiovascular Survey Methods. World Health Organization. WHO Monograph Series, Geneva.   Schaffler A, Barth N, Schmitz G, Zietz B, et al. (2001). Frequency and significance of Pro12Ala and Pro115Gln polymorphism in gene for peroxisome proliferation-activated receptor-gamma regarding metabolic parameters in a Caucasian cohort. Endocrine. 14: 369-373. http://dx.doi.org/10.1385/ENDO:14:3:369   Stefanski A, Majkowska L, Ciechanowicz A, Frankow M, et al. (2006). Lack of association between the Pro12Ala polymorphism in PPAR-gamma2 gene and body weight changes, insulin resistance and chronic diabetic complications in obese patients with type 2 diabetes. Arch. Med. Res. 37: 736-743. http://dx.doi.org/10.1016/j.arcmed.2006.01.009 PMid:16824933   Tamori Y, Masugi J, Nishino N and Kasuga M (2002). Role of peroxisome proliferator-activated receptor-gamma in maintenance of the characteristics of mature 3T3-L1 adipocytes. Diabetes 51: 2045-2055. http://dx.doi.org/10.2337/diabetes.51.7.2045 PMid:12086932   Tavares V, Hirata RD, Rodrigues AC, Monte O, et al. (2005). Association between Pro12Ala polymorphism of the PPAR-gamma2 gene and insulin sensitivity in Brazilian patients with type-2 diabetes mellitus. Diabetes Obes. Metab. 7: 605-611. http://dx.doi.org/10.1111/j.1463-1326.2004.00453.x PMid:16050954   Wang G, Wei J, Guan Y, Jin N, et al. (2005). Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone reduces clinical inflammatory responses in type 2 diabetes with coronary artery disease after coronary angioplasty. Metabolism 54: 590-597. http://dx.doi.org/10.1016/j.metabol.2004.11.017 PMid:15877288   Wei Q, Jacobs DR, Jr., Schreiner PJ, Siscovick DS, et al. (2006). Patterns of association between PPARgamma genetic variation and indices of adiposity and insulin action in African-Americans and whites: the CARDIA Study. J. Mol. Med. 84: 955-965. http://dx.doi.org/10.1007/s00109-006-0088-7 PMid:16955276   Yamamoto Y, Hirose H, Miyashita K, Nishikai K, et al. (2002). PPAR(gamma)2 gene Pro12Ala polymorphism may influence serum level of an adipocyte-derived protein, adiponectin, in the Japanese population. Metabolism 51: 1407- 1409. http://dx.doi.org/10.1053/meta.2002.35586 PMid:12404189   Yen CJ, Beamer BA, Negri C, Silver K, et al. (1997). Molecular scanning of the human peroxisome proliferator activated receptor gamma (hPPAR gamma) gene in diabetic Caucasians: identification of a Pro12Ala PPAR gamma 2 missense mutation. Biochem. Biophys. Res. Commun. 241: 270-274. http://dx.doi.org/10.1006/bbrc.1997.7798 PMid:9425261   Zafarmand MH, van der Schouw YT, Grobbee DE, de Leeuw PW, et al. (2008). Peroxisome proliferator-activated receptor gamma-2 P12A polymorphism and risk of acute myocardial infarction, coronary heart disease and ischemic stroke: a case-cohort study and meta-analyses. Vasc. Health Risk Manag. 4: 427-436. PMid:18561518 PMCid:2496990
Y. Wang, Tang, Y., Zhang, M., Cai, F., Qin, J., Wang, Q., Liu, C., Wang, G., Xu, L., Yang, L., Li, J., Wang, Z., and Li, X., Molecular cloning and functional characterization of a glutathione S-transferase involved in both anthocyanin and proanthocyanidin accumulation in Camelina sativa (Brassicaceae), vol. 11, pp. 4711-4719, 2012.
Baxter IR, Young JC, Armstrong G, Foster N, et al. (2005). A plasma membrane H+-ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 102: 2649-2654. http://dx.doi.org/10.1073/pnas.0406377102 PMid:15695592 PMCid:548969   Clough SJ and Bent AF (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735-743. http://dx.doi.org/10.1046/j.1365-313x.1998.00343.x PMid:10069079   Davis PB, Menalled FD, Peterson RKD and Maxwell BD (2011). Refinement of weed risk assessments for biofuels using Camelina sativa as a model species. J. Appl. Ecol. 48: 989-997. http://dx.doi.org/10.1111/j.1365-2664.2011.01991.x   Debeaujon I, Peeters AJ, Leon-Kloosterziel KM and Koornneef M (2001). The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. Plant Cell 13: 853-871. PMid:11283341 PMCid:135529   Fröhlich A and Rice B (2005). Evaluation of Camelina sativa oil as a feedstock for biodiesel production. Ind. Crops Prod. 21: 25-31. http://dx.doi.org/10.1016/j.indcrop.2003.12.004   Gao MJ, Lydiate DJ, Li X, Lui H, et al. (2009). Repression of seed maturation genes by a trihelix transcriptional repressor in Arabidopsis seedlings. Plant Cell 21: 54-71. http://dx.doi.org/10.1105/tpc.108.061309 PMid:19155348 PMCid:2648069   Ghamkhar K, Croser J, Aryamanesh N, Campbell M, et al. (2010). Camelina (Camelina sativa (L.) Crantz) as an alternative oilseed: molecular and ecogeographic analyses. Genome 53: 558-567. http://dx.doi.org/10.1139/G10-034 PMid:20616877   Imbrea F, Jurcoane S, Hălmăjan HV, Duda M, et al. (2011). Camelina sativa: a new source of vegetal oils. Rom. Biotech. Lett. 16: 6263-6270.   Lepiniec L, Debeaujon I, Routaboul JM, Baudry A, et al. (2006). Genetics and biochemistry of seed flavonoids. Annu. Rev. Plant Biol. 57: 405-430. http://dx.doi.org/10.1146/annurev.arplant.57.032905.105252 PMid:16669768   Li X, Gao P, Cui D, Wu L, et al. (2011). The Arabidopsis tt19-4 mutant differentially accumulates proanthocyanidin and anthocyanin through a 3' amino acid substitution in glutathione S-transferase. Plant Cell Environ. 34: 374-388. http://dx.doi.org/10.1111/j.1365-3040.2010.02249.x PMid:21054438   Marles MA, Ray H and Gruber MY (2003). New perspectives on proanthocyanidin biochemistry and molecular regulation. Phytochemistry 64: 367-383. http://dx.doi.org/10.1016/S0031-9422(03)00377-7   Onyilagha J, Bala A, Hallett R, Gruber M, et al. (2003). Leaf flavonoids of the cruciferous species, Camelina sativa, Crambe spp., Thlaspi arvense and several other genera of the family Brassicaceae. Biochem. Syst. Ecol. 31: 1309-1322. http://dx.doi.org/10.1016/S0305-1978(03)00074-7   Saghai-Maroof MA, Soliman KM, Jorgensen RA and Allard RW (1984). Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. U. S. A. 81: 8014-8018. http://dx.doi.org/10.1073/pnas.81.24.8014 PMid:6096873 PMCid:392284   Southern EM (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98: 503-517. http://dx.doi.org/10.1016/S0022-2836(75)80083-0   Tian L, Pang Y and Dixon RA (2008). Biosynthesis and genetic engineering of proanthocyanidins and (iso)flavonoids. Phytochem. Rev. 7: 445-465. http://dx.doi.org/10.1007/s11101-007-9076-y   Xie DY, Sharma SB, Paiva NL, Ferreira D, et al. (2003). Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299: 396-399. http://dx.doi.org/10.1126/science.1078540 PMid:12532018
F. H. Bai, Wang, N. J., Wang, J., Yang, L., Zhang, F. M., Yin, F., Liang, J., Wu, K. C., and Fan, D. M., Screening and identification of peritoneal metastasis-related genes of gastric adenocarcinoma using a cDNA microarray, vol. 11, pp. 1682-1689, 2012.
Arboleda MJ, Lyons JF and Kabbinavar FF (2003). Overexpression of AKT2/protein kinase Bh leads to up-regulation of h1 integrins, increased invasion, and metastasis of human breast and ovarian cancer cells. Cancer Res. 63: 196-206. PMid:12517798   Bai F, Liang J, Wang J, Shi Y, et al. (2007). Inhibitory effects of a specific phage-displayed peptide on high peritoneal metastasis of gastric cancer. J. Mol. Med. 85: 169-180. http://dx.doi.org/10.1007/s00109-006-0115-8 PMid:17043801   Brito M, Malta-Vacas J, Carmona B, Aires C, et al. (2005). Polyglycine expansions in eRF3/GSPT1 are associated with gastric cancer susceptibility. Carcinogenesis 26: 2046-2049. http://dx.doi.org/10.1093/carcin/bgi168 PMid:15987717   Cho YG, Nam SW, Kim TY, Kim YS, et al. (2003). Overexpression of S100A4 is closely related to the aggressiveness of gastric cancer. APMIS 111: 539-545. http://dx.doi.org/10.1034/j.1600-0463.2003.1110502.x PMid:12887505   Choi MG, Sung CO, Noh JH, Kim KM, et al. (2010). Mucinous gastric cancer presents with more advanced tumor stage and weaker beta-catenin expression than nonmucinous cancer. Ann. Surg. Oncol. 17: 3053-3058. http://dx.doi.org/10.1245/s10434-010-1184-z PMid:20645013   Davidson B, Zhang Z, Kleinberg L, Li M, et al. (2006). Gene expression signatures differentiate ovarian/peritoneal serous carcinoma from diffuse malignant peritoneal mesothelioma. Clin. Cancer Res. 12: 5944-5950. http://dx.doi.org/10.1158/1078-0432.CCR-06-1059 PMid:17062665   Hippo Y, Yashiro M, Ishii M, Taniguchi H, et al. (2001). Differential gene expression profiles of scirrhous gastric cancer cells with high metastatic potential to peritoneum or lymph nodes. Cancer Res. 61: 889-895. PMid:11221876   Huerta S, Harris DM, Jazirehi A, Bonavida B, et al. (2003). Gene expression profile of metastatic colon cancer cells resistant to cisplatin-induced apoptosis. Int. J. Oncol. 22: 663-670. PMid:12579322   Jemal A, Murray T, Ward E, Samuels A, et al. (2005). Cancer statistics, 2005. CA Cancer J. Clin. 55: 10-30. http://dx.doi.org/10.3322/canjclin.55.1.10 PMid:15661684   Kang YH, Lee HS and Kim WH (2002). Promoter methylation and silencing of PTEN in gastric carcinoma. Lab. Invest. 82: 285-291. http://dx.doi.org/10.1038/labinvest.3780422 PMid:11896207   Lazăr D, Raica M, Sporea I, Tăban S, et al. (2006). Tumor angiogenesis in gastric cancer. Rom. J. Morphol. Embryol. 47: 5-13. PMid:16838051   Lee SS, Jeong HE, Liu KH, Ryu JY, et al. (2005). Identification and functional characterization of novel CYP2J2 variants: G312R variant causes loss of enzyme catalytic activity. Pharmacogenet. Genomics 15: 105-113. http://dx.doi.org/10.1097/01213011-200502000-00006 PMid:15861034   Li DW, Wu Q, Peng ZH, Yang ZR, et al. (2007). Expression and significance of Notch1 and PTEN in gastric cancer. Ai Zheng 26: 1183-1187. PMid:17991315   Li J, Wu Y, Qian X and Sha B (2006). Crystal structure of yeast Sis1 peptide-binding fragment and Hsp70 Ssa1 C-terminal complex. Biochem. J. 398: 353-360. http://dx.doi.org/10.1042/BJ20060618 PMid:16737444 PMCid:1559466   Mori K, Aoyagi K, Ueda T, Danjoh I, et al. (2004). Highly specific marker genes for detecting minimal gastric cancer cells in cytology negative peritoneal washings. Biochem. Biophys. Res. Commun. 313: 931-937. http://dx.doi.org/10.1016/j.bbrc.2003.12.025 PMid:14706632   Motoori M, Takemasa I, Doki Y, Saito S, et al. (2006). Prediction of peritoneal metastasis in advanced gastric cancer by gene expression profiling of the primary site. Eur. J. Cancer 42: 1897-1903. http://dx.doi.org/10.1016/j.ejca.2006.04.007 PMid:16831544   Ong CK, Ng CY, Leong C, Ng CP, et al. (2004). Genomic structure of human OKL38 gene and its differential expression in kidney carcinogenesis. J. Biol. Chem. 279: 743-754. http://dx.doi.org/10.1074/jbc.M308668200 PMid:14570898   Retterspitz MF, Monig SP, Schreckenberg S, Schneider PM, et al. (2010). Expression of {beta}-catenin, MUC1 and c-met in diffuse-type gastric carcinomas: correlations with tumour progression and prognosis. Anticancer Res. 30: 4635-4641. PMid:21115917   Schena M, Shalon D, Davis RW and Brown PO (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467-470. http://dx.doi.org/10.1126/science.270.5235.467 PMid:7569999   Schieren G, Rumberger B, Klein M, Kreutz C, et al. (2006). Gene profiling of polycystic kidneys. Nephrol. Dial. Transplant 21: 1816-1824. http://dx.doi.org/10.1093/ndt/gfl071 PMid:16520345   Shapira M, Ben-Izhak O, Bishara B, Futerman B, et al. (2004). Alterations in the expression of the cell cycle regulatory protein cyclin kinase subunit 1 in colorectal carcinoma. Cancer 100: 1615-1621. http://dx.doi.org/10.1002/cncr.20172 PMid:15073847   Wang J, Wu K, Bai F, Zhai H, et al. (2006). Celecoxib could reverse the hypoxia-induced Angiopoietin-2 upregulation in gastric cancer. Cancer Lett. 242: 20-27. http://dx.doi.org/10.1016/j.canlet.2005.10.030 PMid:16338068   Wang YY, Ye ZY, Zhao ZS, Tao HQ, et al. (2010). High-level expression of S100A4 correlates with lymph node metastasis and poor prognosis in patients with gastric cancer. Ann. Surg. Oncol. 17: 89-97. http://dx.doi.org/10.1245/s10434-009-0722-z PMid:19820999   Yanagihara K, Takigahira M, Tanaka H, Komatsu T, et al. (2005). Development and biological analysis of peritoneal metastasis mouse models for human scirrhous stomach cancer. Cancer Sci. 96: 323-332. http://dx.doi.org/10.1111/j.1349-7006.2005.00054.x PMid:15958054   Yonemura Y, Endou Y, Kimura K, Fushida S, et al. (2000). Inverse expression of S100A4 and E-cadherin is associated with metastatic potential in gastric cancer. Clin. Cancer Res. 6: 4234-4242. PMid:11106237   Yonemura Y, Endo Y, Obata T and Sasaki T (2007). Recent advances in the treatment of peritoneal dissemination of gastrointestinal cancers by nucleoside antimetabolites. Cancer Sci. 98: 11-18. http://dx.doi.org/10.1111/j.1349-7006.2006.00350.x PMid:17052255   Yoon CS, Hyung WJ, Lee JH, Chae YS, et al. (2008). Expression of S100A4, E-cadherin, alpha- and beta-catenin in gastric adenocarcinoma. Hepatogastroenterology 55: 1916-1920. PMid:19102422   Yoshikawa T, Yanoma S, Tsuburaya A, Kobayashi O, et al. (2006). Expression of MMP-7 and MT1-MMP in peritoneal dissemination of gastric cancer. Hepatogastroenterology 53: 964-967. PMid:17153464
2011
T. Hasi, Hao, L., Yang, L., and Su, X. L., Acetaldehyde dehydrogenase 2 SNP rs671 and susceptibility to essential hypertension in Mongolians: a case control study, vol. 10, pp. 537-543, 2011.
Amamoto K, Okamura T, Tamaki S, Kita Y, et al. (2002). Epidemiologic study of the association of low-Km mitochondrial acetaldehyde dehydrogenase genotypes with blood pressure level and the prevalence of hypertension in a general population. Hypertens. Res. 25: 857-864. http://dx.doi.org/10.1291/hypres.25.857 PMid:12484509   Beilin LJ (1995). Alcohol, hypertension and cardiovascular disease. J. Hypertens. 13: 939-942. http://dx.doi.org/10.1097/00004872-199509000-00001 PMid:8586827   Chen WJ, Loh EW, Hsu YP and Cheng AT (1997). Alcohol dehydrogenase and aldehyde dehydrogenase genotypes and alcoholism among Taiwanese aborigines. Biol. Psychiatry 41: 703-709. http://dx.doi.org/10.1016/S0006-3223(96)00072-8   Chen CC, Lu RB, Chen YC, Wang MF, et al. (1999). Interaction between the functional polymorphisms of the alcohol-metabolism genes in protection against alcoholism. Am. J. Hum. Genet. 65: 795-807. http://dx.doi.org/10.1086/302540 PMid:10441588 PMCid:1377988   Chen L, Davey SG, Harbord RM and Lewis SJ (2008). Alcohol intake and blood pressure: a systematic review implementing a Mendelian randomization approach. PLoS. Med. 5: e52. http://dx.doi.org/10.1371/journal.pmed.0050052 PMid:18318597 PMCid:2265305   Ferguson RA and Goldberg DM (1997). Genetic markers of alcohol abuse. Clin. Chim. Acta 257: 199-250. http://dx.doi.org/10.1016/S0009-8981(96)06444-3   Hui P, Nakayama T, Morita A, Sato N, et al. (2007). Common single nucleotide polymorphisms in Japanese patients with essential hypertension: aldehyde dehydrogenase 2 gene as a risk factor independent of alcohol consumption. Hypertens. Res. 30: 585-592. http://dx.doi.org/10.1291/hypres.30.585 PMid:17785925   Itoh T, Matsumoto M, Nakamura M, Okada A, et al. (1997). Effects of daily alcohol intake on the blood pressure differ depending on an individual's sensitivity to alcohol: oriental flushing as a sign to stop drinking for health reasons. J. Hypertens. 15: 1211-1217. http://dx.doi.org/10.1097/00004872-199715110-00004 PMid:9383169   Minami J, Todoroki M, Ishimitsu T, Yamamoto H, et al. (2002). Effects of alcohol intake on ambulatory blood pressure, heart rate, and heart rate variability in Japanese men with different ALDH2 genotypes. J. Hum. Hypertens. 16: 345-351. http://dx.doi.org/10.1038/sj.jhh.1001381 PMid:12082496   Morimoto K and Takeshita T (1996). Low Km aldehyde dehydrogenase (ALDH2) polymorphism, alcohol-drinking behavior, and chromosome alterations in peripheral lymphocytes. Environ. Health Perspect. 104 (Suppl 3): 563-567. PMid:8781384 PMCid:1469639   Nishiyori A, Shibata A, Ogimoto I, Uchimura N, et al. (2005). Alcohol drinking frequency is more directly associated with alcohol use disorder than alcohol metabolizing enzymes among male Japanese. Psychiatry Clin. Neurosci. 59: 38-44. http://dx.doi.org/10.1111/j.1440-1819.2005.01329.x PMid:15679538   Saito K, Yokoyama T, Yoshiike N, Date C, et al. (2003). Do the ethanol metabolizing enzymes modify the relationship between alcohol consumption and blood pressure? J. Hypertens. 21: 1097-1105. http://dx.doi.org/10.1097/00004872-200306000-00009 PMid:12777946   Takagi S, Baba S, Iwai N, Fukuda M, et al. (2001). The aldehyde dehydrogenase 2 gene is a risk factor for hypertension in Japanese but does not alter the sensitivity to pressor effects of alcohol: the Suita study. Hypertens. Res. 24: 365-370. http://dx.doi.org/10.1291/hypres.24.365 PMid:11510748   Tsuchihashi-Makaya M, Serizawa M, Yanai K, Katsuya T, et al. (2009). Gene-environmental interaction regarding alcohol-metabolizing enzymes in the Japanese general population. Hypertens. Res. 32: 207-213. http://dx.doi.org/10.1038/hr.2009.3 PMid:19262484   Wang D (2005). Report on Nutrition and Health Survey of Chinese, 2002 Comprehensive Report. People's Medical Publishing House, Beijing,   Yamamoto K, Ueno Y, Mizoi Y and Tatsuno Y (1993). Genetic polymorphism of alcohol and aldehyde dehydrogenase and the effects on alcohol metabolism. Arukoru Kenkyu to Yakubutsu Izon 28: 13-25. PMid:8512495
X. L. Su, Dong, H. R., Yan, M. R., Cui, H. W., Yang, L., and Han, F. Q., Association between peroxisome proliferator-activated receptor gamma coactivator-1 alpha polymorphism and hypertension in Mongolians in Inner Mongolia, vol. 10, pp. 3930-3936, 2011.
Andersen G, Wegner L, Jensen DP, Glumer C, et al. (2005). PGC-1alpha Gly482Ser polymorphism associates with hypertension among Danish whites. Hypertension 45: 565-570. http://dx.doi.org/10.1161/01.HYP.0000158946.53289.24 PMid:15738346   Bhat A, Koul A, Rai E, Sharma S, et al. (2007). PGC-1alpha Thr394Thr and Gly482Ser variants are significantly associated with T2DM in two North Indian populations: a replicate case-control study. Hum. Genet. 121: 609-614. http://dx.doi.org/10.1007/s00439-007-0352-0 PMid:17390150   Chen S, Yan W, Huang J, Yang W, et al. (2004). Peroxisome proliferator-activated receptor-gamma coactivator-1alpha polymorphism is not associated with essential hypertension and type 2 diabetes mellitus in Chinese population. Hypertens. Res. 27: 813-820. http://dx.doi.org/10.1291/hypres.27.813 PMid:15824463   Ek J, Andersen G, Urhammer SA, Gaede PH, et al. (2001). Mutation analysis of peroxisome proliferator-activated receptor-gamma coactivator-1 (PGC-1) and relationships of identified amino acid polymorphisms to Type II diabetes mellitus. Diabetologia 44: 2220-2226. http://dx.doi.org/10.1007/s001250100032 PMid:11793024   Estall JL, Kahn M, Cooper MP, Fisher FM, et al. (2009). Sensitivity of lipid metabolism and insulin signaling to genetic alterations in hepatic peroxisome proliferator-activated receptor-gamma coactivator-1alpha expression. Diabetes 58: 1499-1508. http://dx.doi.org/10.2337/db08-1571 PMid:19366863 PMCid:2699879   Esterbauer H, Oberkofler H, Krempler F and Patsch W (1999). Human peroxisome proliferator activated receptor gamma coactivator 1 (PPARGC1) gene: cDNA sequence, genomic organization, chromosomal localization, and tissue expression. Genomics 62: 98-102. http://dx.doi.org/10.1006/geno.1999.5977 PMid:10585775   Franks PW, Barroso I, Luan J, Ekelund U, et al. (2003). PGC-1alpha genotype modifies the association of volitional energy expenditure with [OV0312]O2 max. Med. Sci. Sports Exerc. 35: 1998-2004. http://dx.doi.org/10.1249/01.MSS.0000099109.73351.81 PMid:14652494   Gao L, Wang L, Yun H, Su L, et al. (2010). Association of the PPARgamma2 gene Pro12Ala variant with primary hypertension and metabolic lipid disorders in Han Chinese of Inner Mongolia. Genet. Mol. Res. 9: 1312-1320. http://dx.doi.org/10.4238/vol9-3gmr833 PMid:20623456   Hara K, Tobe K, Okada T, Kadowaki H, et al. (2002). A genetic variation in the PGC-1 gene could confer insulin resistance and susceptibility to Type II diabetes. Diabetologia 45: 740-743. http://dx.doi.org/10.1007/s00125-002-0803-z PMid:12107756   Jang WG, Kim EJ, Park KG, Park YB, et al. (2007). Glucocorticoid receptor mediated repression of human insulin gene expression is regulated by PGC-1alpha. Biochem. Biophys. Res. Commun. 352: 716-721. http://dx.doi.org/10.1016/j.bbrc.2006.11.074 PMid:17150186   Kong X, Wang R, Xue Y, Liu X, et al. (2010). Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis. PloS One 5: e11707. http://dx.doi.org/10.1371/journal.pone.0011707 PMid:20661474 PMCid:2908542   Lacquemant C, Chikri M, Boutin P, Samson C, et al. (2002). No association between the G482S polymorphism of the proliferator-activated receptor-gamma coactivator-1 (PGC-1) gene and Type II diabetes in French Caucasians. Diabetologia 45: 602-603. http://dx.doi.org/10.1007/s00125-002-0783-z PMid:12032643   Ling C, Del Guerra S, Lupi R, Ronn T, et al. (2008). Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia 51: 615-622. http://dx.doi.org/10.1007/s00125-007-0916-5 PMid:18270681 PMCid:2270364   Michael LF, Wu Z, Cheatham RB, Puigserver P, et al. (2001). Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc. Natl. Acad. Sci. U. S. A. 98: 3820-3825. http://dx.doi.org/10.1073/pnas.061035098 PMid:11274399 PMCid:31136   Muller YL, Bogardus C, Pedersen O and Baier L (2003). A Gly482Ser missense mutation in the peroxisome proliferator-activated receptor gamma coactivator-1 is associated with altered lipid oxidation and early insulin secretion in Pima Indians. Diabetes 52: 895-898. http://dx.doi.org/10.2337/diabetes.52.3.895 PMid:12606537   Nelson TL, Fingerlin TE, Moss L, Barmada MM, et al. (2007). The peroxisome proliferator-activated receptor gamma coactivator-1 alpha gene (PGC-1alpha) is not associated with type 2 diabetes mellitus or body mass index among Hispanic and non Hispanic Whites from Colorado. Exp. Clin. Endocrinol. Diabetes 115: 268-275. http://dx.doi.org/10.1055/s-2007-960495 PMid:17479445   Oberkofler H, Holzl B, Esterbauer H, Xie M, et al. (2003). Peroxisome proliferator-activated receptor-gamma coactivator-1 gene locus: associations with hypertension in middle-aged men. Hypertension 41: 368-372. http://dx.doi.org/10.1161/01.HYP.0000050962.48249.B7 PMid:12574109   Okauchi Y, Iwahashi H, Okita K, Yuan M, et al. (2008). PGC-1alpha Gly482Ser polymorphism is associated with the plasma adiponectin level in type 2 diabetic men. Endocr. J. 55: 991-997. http://dx.doi.org/10.1507/endocrj.K08E-070 PMid:18614852   Puigserver P and Spiegelman BM (2003). Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr. Rev. 24: 78-90. http://dx.doi.org/10.1210/er.2002-0012 PMid:12588810   Puigserver P, Wu Z, Park CW, Graves R, et al. (1998). A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92: 829-839. http://dx.doi.org/10.1016/S0092-8674(00)81410-5   Stumvoll M, Fritsche A, t'Hart LM, Machann J, et al. (2004). The Gly482Ser variant in the peroxisome proliferator-activated receptor gamma coactivator-1 is not associated with diabetes-related traits in non-diabetic German and Dutch populations. Exp. Clin. Endocrinol. Diabetes 112: 253-257. http://dx.doi.org/10.1055/s-2004-817972 PMid:15146371   Tcherepanova I, Puigserver P, Norris JD, Spiegelman BM, et al. (2000). Modulation of estrogen receptor-alpha transcriptional activity by the coactivator PGC-1. J. Biol. Chem. 275: 16302-16308. http://dx.doi.org/10.1074/jbc.M001364200 PMid:10748020   Vega RB, Huss JM and Kelly DP (2000). The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol. Cell Biol. 20: 1868-1876. http://dx.doi.org/10.1128/MCB.20.5.1868-1876.2000 PMid:10669761 PMCid:85369   Vimaleswaran KS, Radha V, Ghosh S, Majumder PP, et al. (2005). Peroxisome proliferator-activated receptor-gamma co-activator-1alpha (PGC-1alpha) gene polymorphisms and their relationship to Type 2 diabetes in Asian Indians. Diabet. Med. 22: 1516-1521. http://dx.doi.org/10.1111/j.1464-5491.2005.01709.x PMid:16241916   Wu Z, Puigserver P, Andersson U, Zhang C, et al. (1999). Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98: 115-124. http://dx.doi.org/10.1016/S0092-8674(00)80611-X   Xie G, Guo D, Li Y, Liang S, et al. (2007). The impact of severity of hypertension on association of PGC-1alpha gene with blood pressure and risk of hypertension. BMC Cardiovasc. Disord. 7: 33. http://dx.doi.org/10.1186/1471-2261-7-33 PMid:17971240 PMCid:2194730   Yoon JC, Puigserver P, Chen G, Donovan J, et al. (2001). Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413: 131-138. http://dx.doi.org/10.1038/35093050 PMid:11557972   Yu L and Yang SJ (2010). AMP-activated protein kinase mediates activity-dependent regulation of peroxisome proliferator-activated receptor gamma coactivator-1alpha and nuclear respiratory factor 1 expression in rat visual cortical neurons. Neuroscience 169: 23-38. http://dx.doi.org/10.1016/j.neuroscience.2010.04.063 PMid:20438809
G. L. Shi, Hu, X. L., Yang, L., Rong, C. L., Guo, Y. L., and Song, C. X., Association of HLA-DRB alleles and pulmonary tuberculosis in North Chinese patients, vol. 10, pp. 1331-1336, 2011.
Ainsworth PJ, Surh LC and Coulter-Mackie MB (1991). Diagnostic single strand conformational polymorphism, (SSCP): a simplified non-radioisotopic method as applied to a Tay-Sachs B1 variant. Nucleic Acids Res. 19: 405-406. doi:10.1093/nar/19.2.405 PMid:2014179    PMCid:333615 Bellamy R and Hill AV (1998). Genetic susceptibility to mycobacteria and other infectious pathogens in humans. Curr. Opin. Immunol. 10: 483-487. doi:10.1016/S0952-7915(98)80125-8 Bidwell JL, Bidwell EA, Savage DA, Middleton D, et al. (1988). A DNA-RFLP typing system that positively identifies serologically well-defined and ill-defined HLA-DR and DQ alleles, including DRw10. Transplantation 45: 640-646. doi:10.1097/00007890-198803000-00027 PMid:2894727 Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, et al. (1987). The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 329: 512-518. doi:10.1038/329512a0 PMid:2443855 Comstock GW (1978). Tuberculosis in twins: a re-analysis of the Prophit survey. Am. Rev. Respir. Dis. 117: 621-624. PMid:565607 Dalva K and Beksac M (2007). HLA typing with sequence-specific oligonucleotide primed PCR (PCR-SSO) and use of the Luminex technology. Methods Mol. Med. 134: 61-69. doi:10.1007/978-1-59745-223-6_5 Davis RW, Thomas M, Cameron J, St John TP, et al. (1980). Rapid DNA isolations for enzymatic and hybridization analysis. Methods Enzymol. 65: 404-411. doi:10.1016/S0076-6879(80)65051-4 Dubaniewicz A, Lewko B, Moszkowska G, Zamorska B, et al. (2000). Molecular subtypes of the HLA-DR antigens in pulmonary tuberculosis. Int. J. Infect. Dis. 4: 129-133. doi:10.1016/S1201-9712(00)90073-0 Harfouch-Hammoud EI and Daher NA (2008). Susceptibility to and severity of tuberculosis is genetically controlled by human leukocyte antigens. Saudi Med. J. 29: 1625-1629. PMid:18998014 Hoppe B and Salama A (2007). Sequencing-based typing of HLA. Methods Mol. Med. 134: 71-80. doi:10.1007/978-1-59745-223-6_6 Kallman FJ and Reisner D (1943). Twin studies on the significance of genetic factors in tuberculosis. Am. Rev. Tuberc. 47: 549-574. Kaufmann SH (2002). Protection against tuberculosis: cytokines, T cells, and macrophages. Ann. Rheum. Dis. 61 (Suppl 2): ii54-ii58. PMid:12379623    PMCid:1766701 Kim HS, Park MH, Song EY, Park H, et al. (2005). Association of HLA-DR and HLA-DQ genes with susceptibility to pulmonary tuberculosis in Koreans: preliminary evidence of associations with drug resistance, disease severity, and disease recurrence. Hum. Immunol. 66: 1074-1081. doi:10.1016/j.humimm.2005.08.242 PMid:16386650 Klein J and Sato A (2000). The HLA system. First of two parts. N. Engl. J. Med 343: 702-709. PMid:10974135 Lombard Z, Dalton DL, Venter PA, Williams RC, et al. (2006). Association of HLA-DR, -DQ and vitamin D receptor alleles and haplotypes with tuberculosis in the Venda of South Africa. Hum. Immunol. 67: 643-654. doi:10.1016/j.humimm.2006.04.008 PMid:16916662 Louis-Plence P, Kerlan-Candon S, Morel J, Combe B, et al. (2000). The down-regulation of HLA-DM gene expression in rheumatoid arthritis is not related to their promoter polymorphism. J. Immunol. 165: 4861-4869. PMid:11046010 Mahmoudzadeh-Niknam H, Khalili G and Fadavi P (2003). Allelic distribution of human leukocyte antigen in Iranian patients with pulmonary tuberculosis. Hum. Immunol. 64: 124-129. doi:10.1016/S0198-8859(02)00703-6 Miller SA, Dykes DD and Polesky HF (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 16: 1215. doi:10.1093/nar/16.3.1215 PMid:3344216    PMCid:334765 Olerup O and Zetterquist H (1992). HLA-DR typing by PCR amplification with sequence-specific primers (PCR-SSP) in 2 hours: an alternative to serological DR typing in clinical practice including donor-recipient matching in cadaveric transplantation. Tissue Antigens 39: 225-235. doi:10.1111/j.1399-0039.1992.tb01940.x PMid:1357775 Ravikumar M, Dheenadhayalan V, Rajaram K, Lakshmi SS, et al. (1999). Associations of HLA-DRB1, DQB1 and DPB1 alleles with pulmonary tuberculosis in south India. Tuber. Lung Dis. 79: 309-317. doi:10.1054/tuld.1999.0213 PMid:10707259 Singal DP and Qiu X (1996). Polymorphism in both X and Y box motifs controls level of expression of HLA-DRB1 genes. Immunogenetics 43: 50-56. PMid:8537121 Sriram U, Selvaraj P, Kurian SM, Reetha AM, et al. (2001). HLA-DR2 subtypes & immune responses in pulmonary tuberculosis. Indian J. Med. Res. 113: 117-124. PMid:11558319 Teran-Escandon D, Teran-Ortiz L, Camarena-Olvera A, Gonzalez-Avila G, et al. (1999). Human leukocyte antigen-associated susceptibility to pulmonary tuberculosis: molecular analysis of class II alleles by DNA amplification and oligonucleotide hybridization in Mexican patients. Chest 115: 428-433. doi:10.1378/chest.115.2.428 PMid:10027443 Ulrichs T and Kaufmann SH (2004). Cell-Mediated Immune Response. 2nd edn. In: Tuberculosis (Rom WN and Garay SM, eds.). Lippincott Williams & Wilkins, Philadelphia. Young NT and Darke C (1993). Allelic typing of the HLA-DR4 group by polymerase chain reaction-single-strand conformation polymorphism analysis. Hum. Immunol. 37: 69-74. doi:10.1016/0198-8859(93)90144-P Yuliwulandari R, Sachrowardi Q, Nakajima H, Kashiwase K, et al. (2010). Association of HLA-A, -B, and -DRB1 with pulmonary tuberculosis in western Javanese Indonesia. Hum. Immunol. 71: 697-701. doi:10.1016/j.humimm.2010.04.005 PMid:20438789
R. H. Wu, Wang, P., Yang, L., Li, Y., Liu, Y., and Liu, M., A potential indicator of denervated muscle atrophy: the ratio of myostatin to follistatin in peripheral blood, vol. 10, pp. 3914-3923, 2011.
Amthor H, Nicholas G, McKinnell I, Kemp CF, et al. (2004). Follistatin complexes Myostatin and antagonises Myostatin-mediated inhibition of myogenesis. Dev. Biol. 270: 19-30. http://dx.doi.org/10.1016/j.ydbio.2004.01.046 PMid:15136138   Diel P, Schiffer T, Geisler S, Hertrampf T, et al. (2010). Analysis of the effects of androgens and training on myostatin propeptide and follistatin concentrations in blood and skeletal muscle using highly sensitive immuno PCR. Mol. Cell Endocrinol. 330: 1-9. http://dx.doi.org/10.1016/j.mce.2010.08.015 PMid:20801187   Dinh P, Hazel A, Palispis W, Suryadevara S, et al. (2009). Functional assessment after sciatic nerve injury in a rat model. Microsurgery 29: 644-649. http://dx.doi.org/10.1002/micr.20685 PMid:19653327   Gilson H, Schakman O, Kalista S, Lause P, et al. (2009). Follistatin induces muscle hypertrophy through satellite cell proliferation and inhibition of both myostatin and activin. Am. J. Physiol. Endocrinol. Metab. 297: E157-E164. http://dx.doi.org/10.1152/ajpendo.00193.2009 PMid:19435857   Hill JJ, Davies MV, Pearson AA, Wang JH, et al. (2002). The myostatin propeptide and the follistatin-related gene are inhibitory binding proteins of myostatin in normal serum. J. Biol. Chem. 277: 40735-40741. http://dx.doi.org/10.1074/jbc.M206379200 PMid:12194980   Lakshman KM, Bhasin S, Corcoran C, Collins-Racie LA, et al. (2009). Measurement of myostatin concentrations in human serum: Circulating concentrations in young and older men and effects of testosterone administration. Mol. Cell Endocrinol. 302: 26-32. http://dx.doi.org/10.1016/j.mce.2008.12.019 PMid:19356623   Lee SJ (2010). Extracellular regulation of myostatin: A molecular rheostat for muscle mass. Immunol. Endocr. Metab. Agents Med. Chem. 10: 183-194. http://dx.doi.org/10.2174/187152210793663748 PMid:21423813 PMCid:3060380   Lee SJ and McPherron AC (2001). Regulation of myostatin activity and muscle growth. Proc. Natl. Acad. Sci. U. S. A. 98: 9306-9311. http://dx.doi.org/10.1073/pnas.151270098 PMid:11459935 PMCid:55416   Lee SJ, Lee YS, Zimmers TA, Soleimani A, et al. (2010). Regulation of muscle mass by follistatin and activins. Mol. Endocrinol. 24: 1998-2008. http://dx.doi.org/10.1210/me.2010-0127 PMid:20810712 PMCid:2954636   Liu M, Zhang D, Shao C, Liu J, et al. (2007). Expression pattern of myostatin in gastrocnemius muscle of rats after sciatic nerve crush injury. Muscle Nerve 35: 649-656. http://dx.doi.org/10.1002/mus.20749 PMid:17326119   Matzuk MM, Lu N, Vogel H, Sellheyer K, et al. (1995). Multiple defects and perinatal death in mice deficient in follistatin. Nature 374: 360-363. http://dx.doi.org/10.1038/374360a0 PMid:7885475   McPherron AC, Lawler AM and Lee SJ (1997). Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387: 83-90. http://dx.doi.org/10.1038/387083a0 PMid:9139826   Rodino-Klapac LR, Haidet AM, Kota J, Handy C, et al. (2009). Inhibition of myostatin with emphasis on follistatin as a therapy for muscle disease. Muscle Nerve 39: 283-296. http://dx.doi.org/10.1002/mus.21244 PMid:19208403 PMCid:2717722   Thies RS, Chen T, Davies MV, Tomkinson KN, et al. (2001). GDF-8 propeptide binds to GDF-8 and antagonizes biological activity by inhibiting GDF-8 receptor binding. Growth Factors 18: 251-259. http://dx.doi.org/10.3109/08977190109029114 PMid:11519824   Thompson TB, Lerch TF, Cook RW, Woodruff TK, et al. (2005). The structure of the follistatin:activin complex reveals antagonism of both type I and type II receptor binding. Dev. Cell 9: 535-543. http://dx.doi.org/10.1016/j.devcel.2005.09.008 PMid:16198295   Ueno N, Ling N, Ying SY, Esch F, et al. (1987). Isolation and partial characterization of follistatin: a single-chain Mr 35,000 monomeric protein that inhibits the release of follicle-stimulating hormone. Proc. Natl. Acad. Sci. U. S. A. 84: 8282-8286. http://dx.doi.org/10.1073/pnas.84.23.8282 PMid:3120188 PMCid:299526   Wallimann T, Wyss M, Brdiczka D, Nicolay K, et al. (1992). Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis. Biochem. J. 281: 21-40. PMid:1731757 PMCid:1130636   Whittemore LA, Song K, Li X, Aghajanian J, et al. (2003). Inhibition of myostatin in adult mice increases skeletal muscle mass and strength. Biochem. Biophys. Res. Commun. 300: 965-971. http://dx.doi.org/10.1016/S0006-291X(02)02953-4   Wolfman NM, McPherron AC, Pappano WN, Davies MV, et al. (2003). Activation of latent myostatin by the BMP-1/ tolloid family of metalloproteinases. Proc. Natl. Acad. Sci. U. S. A. 100: 15842-15846. http://dx.doi.org/10.1073/pnas.2534946100 PMid:14671324 PMCid:307655   Zhang D, Liu M, Ding F and Gu X (2006). Expression of myostatin RNA transcript and protein in gastrocnemius muscle of rats after sciatic nerve resection. J. Muscle Res. Cell Motil. 27: 37-44. http://dx.doi.org/10.1007/s10974-005-9050-5 PMid:16450055
2010
L. Yang, Wang, L. J., Shi, G. L., Ni, L., Song, C. X., Zhang, Z. X., and Xu, S. F., Analysis of HLA-A, HLA-B and HLA-DRB1 alleles in Chinese patients with lung cancer, vol. 9, pp. 750-755, 2010.
Ainsworth PJ, Surh LC and Coulter-Mackie MB (1991). Diagnostic single strand conformational polymorphism (SSCP): a simplified non-radioisotopic method as applied to a Tay-Sachs B1 variant. Nucleic Acids Res. 19: 405-406. http://dx.doi.org/10.1093/nar/19.2.405 PMid:2014179 PMCid:333615   Bidwell JL, Bidwell EA, Savage DA, Middleton D, et al. (1988). A DNA-RFLP typing system that positively identifies serologically well-defined and ill-defined HLA-DR and DQ alleles, including DRw10. Transplantation 45: 640-646. http://dx.doi.org/10.1097/00007890-198803000-00027 PMid:2894727   Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, et al. (1987). The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 329: 512-518. http://dx.doi.org/10.1038/329512a0 PMid:2443855   Cantú de León D, Perez-Montiel D, Villavicencio V, Garcia CA, et al. (2009). High resolution human leukocyte antigen (HLA) class I and class II allele typing in Mexican mestizo women with sporadic breast cancer: case-control study. BMC Cancer 9: 48. http://dx.doi.org/10.1186/1471-2407-9-48 PMid:19196481 PMCid:2653544   Chen WQ, Zhang SW and Kong LS (2008). Cancer mortality report of 34 registries in China, 2004. Bull. Chin. Cancer 17: 913-916.   Dalva K and Beksac M (2007). HLA typing with sequence-specific oligonucleotide primed PCR (PCR-SSO) and use of the Luminex technology. Methods Mol. Med. 134: 61-69. http://dx.doi.org/10.1007/978-1-59745-223-6_5 PMid:17666743   Davis RW, Thomas M, Cameron J, St John TP, et al. (1980). Rapid DNA isolations for enzymatic and hybridization analysis. Methods Enzymol. 65: 404-411. http://dx.doi.org/10.1016/S0076-6879(80)65051-4   Dorak MT, Oguz FS, Yalman N, Diler AS, et al. (2002). A male-specific increase in the HLA-DRB4 (DR53) frequency in high-risk and relapsed childhood ALL. Leuk. Res. 26: 651-656. http://dx.doi.org/10.1016/S0145-2126(01)00189-8   Ferlay J, Autier P, Boniol M, Heanue M, et al. (2007). Estimates of the cancer incidence and mortality in Europe in 2006. Ann. Oncol. 18: 581-592. http://dx.doi.org/10.1093/annonc/mdl498 PMid:17287242   Gresner P, Gromadzinska J and Wasowicz W (2007). Polymorphism of selected enzymes involved in detoxification and biotransformation in relation to lung cancer. Lung Cancer 57: 1-25. http://dx.doi.org/10.1016/j.lungcan.2007.02.002 PMid:17337085   Haghpanah V, Khalooghi K, Adabi K, Amiri P, et al. (2009). Associations between HLA-C alleles and papillary thyroid carcinoma. Cancer Biomark. 5: 19-22. PMid:19242058   Hoppe B and Salama A (2007). Sequencing-based typing of HLA. Methods Mol. Med. 134: 71-80. http://dx.doi.org/10.1007/978-1-59745-223-6_6 PMid:17666744   Jemal A, Siegel R, Ward E, Hao Y, et al. (2009). Cancer statistics, 2009. CA Cancer J. Clin. 59: 225-249. http://dx.doi.org/10.3322/caac.20006 PMid:19474385   Kiyohara C, Takayama K and Nakanishi Y (2006). Association of genetic polymorphisms in the base excision repair pathway with lung cancer risk: a meta-analysis. Lung Cancer 54: 267-283. http://dx.doi.org/10.1016/j.lungcan.2006.08.009 PMid:16982113   Kübler K, Arndt PF, Wardelmann E, Krebs D, et al. (2006). HLA-class II haplotype associations with ovarian cancer. Int. J. Cancer 119: 2980-2985. http://dx.doi.org/10.1002/ijc.22266 PMid:17016821   Madeleine MM, Johnson LG, Smith AG, Hansen JA, et al. (2008). Comprehensive analysis of HLA-A, HLA-B, HLA-C, HLA-DRB1, and HLA-DQB1 loci and squamous cell cervical cancer risk. Cancer Res. 68: 3532-3539. http://dx.doi.org/10.1158/0008-5472.CAN-07-6471 PMid:18451182 PMCid:2662593   Marsh SG (2003). HLA nomenclature and the IMGT/HLA sequence database. Novartis Found. Symp. 254: 165-173. http://dx.doi.org/10.1002/0470090766.ch11 PMid:14712937   Miller SA, Dykes DD and Polesky HF (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 16: 1215. http://dx.doi.org/10.1093/nar/16.3.1215 PMid:3344216 PMCid:334765   Mundhada S, Luthra R and Cano P (2004). Association of HLA Class I and Class II genes with bcr-abl transcripts in leukemia patients with t(9;22) (q34;q11). BMC Cancer 4: 25. http://dx.doi.org/10.1186/1471-2407-4-25 PMid:15202948 PMCid:441382   Olerup O and Zetterquist H (1992). HLA-DR typing by PCR amplification with sequence-specific primers (PCR-SSP) in 2 hours: an alternative to serological DR typing in clinical practice including donor-recipient matching in cadaveric transplantation. Tissue Antigens 39: 225-235. http://dx.doi.org/10.1111/j.1399-0039.1992.tb01940.x PMid:1357775   Parkin DM, Bray F, Ferlay J and Pisani P (2005). Global cancer statistics, 2002. CA Cancer J. Clin. 55: 74-108. http://dx.doi.org/10.3322/canjclin.55.2.74 PMid:15761078   Quintero E, Pizarro MA, Rodrigo L, Pique JM, et al. (2005). Association of Helicobacter pylori-related distal gastric cancer with the HLA class II gene DQB10602 and cagA strains in a southern European population. Helicobacter 10: 12-21. http://dx.doi.org/10.1111/j.1523-5378.2005.00287.x PMid:15691311   Schiff MA, Apple RJ, Lin P, Nelson JL, et al. (2005). HLA alleles and risk of cervical intraepithelial neoplasia among southwestern American Indian women. Hum. Immunol. 66: 1050-1056. http://dx.doi.org/10.1016/j.humimm.2005.09.002 PMid:16386646   Terasaki PI and McClelland JD (1964). Microdroplet assay of human serum cytotoxins. Nature 204: 998-1000. http://dx.doi.org/10.1038/204998b0 PMid:14248725   Tokumoto H (1998). Analysis of HLA-DRB1-related alleles in Japanese patients with lung cancer - relationship to genetic susceptibility and resistance to lung cancer. J. Cancer Res. Clin. Oncol. 124: 511-516. http://dx.doi.org/10.1007/s004320050207 PMid:9808426   Wu MS, Hsieh RP, Huang SP, Chang YT, et al. (2002). Association of HLA-DQB1*0301 and HLA-DQB1*0602 with different subtypes of gastric cancer in Taiwan. Jpn. J. Cancer Res. 93: 404-410. http://dx.doi.org/10.1111/j.1349-7006.2002.tb01271.x PMid:11985790   Wu Y, Liu B, Lin W, Xu Y, et al. (2007). Human leukocyte antigen class II alleles and risk of cervical cancer in China. Hum. Immunol. 68: 192-200. http://dx.doi.org/10.1016/j.humimm.2006.07.005 PMid:17349874   Yari F, Sobhani M, Sabaghi F, Zaman-Vaziri M, et al. (2008). Frequencies of HLA-DRB1 in Iranian normal population and in patients with acute lymphoblastic leukemia. Arch. Med. Res. 39: 205-208. http://dx.doi.org/10.1016/j.arcmed.2007.09.009 PMid:18164964   Yoshimura C, Nomura S, Yamaoka M, Ohtani T, et al. (2000). Analysis of serum ErbB-2 protein and HLA-DRB1 in Japanese patients with lung cancer. Cancer Lett. 152: 87-95. http://dx.doi.org/10.1016/S0304-3835(99)00437-1   Young NT and Darke C (1993). Allelic typing of the HLA-DR4 group by polymerase chain reaction-single-strand conformation polymorphism analysis. Hum. Immunol. 37: 69-74. http://dx.doi.org/10.1016/0198-8859(93)90144-P   Zhang SW, Chen WQ and Lei ZI (2008). A report of cancer incidence from 37 cancer registries in China, 2004. Bull. Chin. Cancer 17: 909-912.
L. Yang, Shi, G. L., Song, C. X., and Xu, S. F., Relationship between genetic polymorphism of MCP-1 and non-small-cell lung cancer in the Han nationality of North China, vol. 9, pp. 765-771, 2010.
Arenberg DA, Keane MP, DiGiovine B, Kunkel SL, et al. (2000). Macrophage infiltration in human non-small-cell lung cancer: the role of CC chemokines. Cancer Immunol. Immunother. 49: 63-70. http://dx.doi.org/10.1007/s002620050603 PMid:10823415   Arndt PG, Suzuki N, Avdi NJ, Malcolm KC, et al. (2004). Lipopolysaccharide-induced c-Jun NH2-terminal kinase activation in human neutrophils: role of phosphatidylinositol 3-kinase and Syk-mediated pathways. J. Biol. Chem. 279: 10883-10891. http://dx.doi.org/10.1074/jbc.M309901200 PMid:14699155   Cai Z, Chen Q, Chen J, Lu Y, et al. (2009). Monocyte chemotactic protein 1 promotes lung cancer-induced bone resorptive lesions in vivo. Neoplasia 11: 228-236. PMid:19242604 PMCid:2647725   Carr MW, Roth SJ, Luther E, Rose SS, et al. (1994). Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc. Natl. Acad. Sci. U. S. A. 91: 3652-3656. http://dx.doi.org/10.1073/pnas.91.9.3652 PMid:8170963 PMCid:43639   Charo IF and Ransohoff RM (2006). The many roles of chemokines and chemokine receptors in inflammation. N. Engl. J. Med. 354: 610-621. http://dx.doi.org/10.1056/NEJMra052723 PMid:16467548   Davis RW, Thomas M, Cameron J, St John TP, et al. (1980). Rapid DNA isolations for enzymatic and hybridization analysis. Methods Enzymol. 65: 404-411. http://dx.doi.org/10.1016/S0076-6879(80)65051-4   Distler O, Pap T, Kowal-Bielecka O, Meyringer R, et al. (2001). Overexpression of monocyte chemoattractant protein 1 in systemic sclerosis: role of platelet-derived growth factor and effects on monocyte chemotaxis and collagen synthesis. Arthritis Rheum. 44: 2665-2678. http://dx.doi.org/10.1002/1529-0131(200111)44:11<2665::AID-ART446>3.0.CO;2-S   Franco-Marina F, Villalba CJ and Corcho-Berdugo A (2006). Role of active and passive smoking on lung cancer etiology in Mexico City. Salud Publica Mex. 48 (Suppl 1): S75-S82. http://dx.doi.org/10.1590/S0036-36342006000700009 PMid:17684692   Gu D, Kelly TN, Wu X, Chen J, et al. (2009). Mortality attributable to smoking in China. N. Engl. J. Med. 360: 150-159. http://dx.doi.org/10.1056/NEJMsa0802902 PMid:19129528   Jemal A, Siegel R, Ward E, Hao Y, et al. (2008). Cancer statistics, 2008. CA Cancer J. Clin. 58: 71-96. http://dx.doi.org/10.3322/CA.2007.0010 PMid:18287387   Jiang Y, Beller DI, Frendl G and Graves DT (1992). Monocyte chemoattractant protein-1 regulates adhesion molecule expression and cytokine production in human monocytes. J. Immunol. 148: 2423-2428. PMid:1348518   Jockel KH, Ahrens W, Jahn I, Pohlabeln H, et al. (1998). Occupational risk factors for lung cancer: a case-control study in West Germany. Int. J. Epidemiol. 27: 549-560. http://dx.doi.org/10.1093/ije/27.4.549 PMid:9758106   Lee YW, Eum SY, Chen KC, Hennig B, et al. (2004). Gene expression profile in interleukin-4-stimulated human vascular endothelial cells. Mol. Med. 10: 19-27. http://dx.doi.org/10.2119/2004-00024.Lee PMid:15502879 PMCid:1431351   Mackay CR (1997). Chemokines: what chemokine is that? Curr. Biol. 7: R384-R386. http://dx.doi.org/10.1016/S0960-9822(06)00181-3   Manome Y, Wen PY, Hershowitz A, Tanaka T, et al. (1995). Monocyte chemoattractant protein-1 (MCP-1) gene transduction: an effective tumor vaccine strategy for non-intracranial tumors. Cancer Immunol. Immunother. 41: 227-235. http://dx.doi.org/10.1007/BF01516997 PMid:7489565   Matsushima K, Larsen CG, DuBois GC and Oppenheim JJ (1989). Purification and characterization of a novel monocyte chemotactic and activating factor produced by a human myelomonocytic cell line. J. Exp. Med. 169: 1485-1490. http://dx.doi.org/10.1084/jem.169.4.1485 PMid:2926331   Mestdagt M, Polette M, Buttice G, Noel A, et al. (2006). Transactivation of MCP-1/CCL2 by beta-catenin/TCF-4 in human breast cancer cells. Int. J. Cancer 118: 35-42. http://dx.doi.org/10.1002/ijc.21291 PMid:16003740 PMCid:2965755   Miller SA, Dykes DD and Polesky HF (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 16: 1215. http://dx.doi.org/10.1093/nar/16.3.1215 PMid:3344216 PMCid:334765   Neuberger JS, Mahnken JD, Mayo MS and Field RW (2006). Risk factors for lung cancer in Iowa women: implications for prevention. Cancer Detect. Prev. 30: 158-167. http://dx.doi.org/10.1016/j.cdp.2006.03.001 PMid:16581199 PMCid:1876736   Rollins BJ and Sunday ME (1991). Suppression of tumor formation in vivo by expression of the JE gene in malignant cells. Mol. Cell Biol. 11: 3125-3131. PMid:2038321 PMCid:360158   Rollins BJ, Walz A and Baggiolini M (1991a). Recombinant human MCP-1/JE induces chemotaxis, calcium flux, and the respiratory burst in human monocytes. Blood 78: 1112-1116. PMid:1868242   Rollins BJ, Morton CC, Ledbetter DH, Eddy RL Jr, et al. (1991b). Assignment of the human small inducible cytokine A2 gene, SCYA2 (encoding JE or MCP-1), to 17q11.2-12: evolutionary relatedness of cytokines clustered at the same locus. Genomics 10: 489-492. http://dx.doi.org/10.1016/0888-7543(91)90338-F   Rovin BH, Lu L and Saxena R (1999). A novel polymorphism in the MCP-1 gene regulatory region that influences MCP-1 expression. Biochem. Biophys. Res. Commun. 259: 344-348. http://dx.doi.org/10.1006/bbrc.1999.0796 PMid:10362511   Vázquez-Lavista LG, Lima G, Gabilondo F and Llorente L (2009). Genetic association of monocyte chemoattractant protein 1 (MCP-1)-2518 polymorphism in Mexican patients with transitional cell carcinoma of the bladder. Urology 74: 414-418. http://dx.doi.org/10.1016/j.urology.2009.04.016 PMid:19646633   Visbal AL, Williams BA, Nichols FC III, Marks RS, et al. (2004). Gender differences in non-small-cell lung cancer survival: an analysis of 4,618 patients diagnosed between 1997 and 2002. Ann. Thorac. Surg. 78: 209-215. http://dx.doi.org/10.1016/j.athoracsur.2003.11.021 PMid:15223430   Walter S, Bottazzi B, Govoni D, Colotta F, et al. (1991). Macrophage infiltration and growth of sarcoma clones expressing different amounts of monocyte chemotactic protein/JE. Int. J. Cancer 49: 431-435. http://dx.doi.org/10.1002/ijc.2910490321 PMid:1655661   Yang L, Parkin DM, Li LD, Chen YD, et al. (2004). Estimation and projection of the national profile of cancer mortality in China: 1991-2005. Br. J. Cancer 90: 2157-2166. PMid:15150609 PMCid:2409509