Publications

Found 88 results
Filters: Author is L. Wang  [Clear All Filters]
2014
W. H. Wu, Wang, L., Zhang, S., Liang, Y. Q., Zheng, X. L., Yi, K. X., and He, C. P., Assessment of sensitivity and virulence fitness costs of the AvrPik alleles from Magnaporthe oryzae to isoprothiolane, vol. 13, pp. 9701-9709, 2014.
J. J. Zhao, Feng, D. H., Cheng, L., Lu, T., and Wang, L., Association analysis between the OPG g.27667T>A genetic variant and bone mineral density in Chinese postmenopausal women, vol. 13, pp. 7332-7338, 2014.
L. Wang, Wang, Z. - T., Zhang, H. - X., Liu, J., Lu, S. - Y., Fan, R., Zhou, J., Xia, L., Sun, Y. - W., Zhong, J., and Yuan, Y. - Z., Association between STAT3 gene polymorphisms and ulcerative colitis susceptibility: a case-control study in the Chinese Han population, vol. 13, pp. 2343-2348, 2014.
Z. H. Chen, Wang, L., and Luo, L. P., Association of DNA repair gene polymorphisms with response to chemotherapy and prognosis of gastric cancer, vol. 13, pp. 7484-7491, 2014.
L. - L. Guan, Wu, W., Hu, B., Li, D., Chen, J. - W., Hou, K., and Wang, L., Devolopmental and growth temperature regulation of omega-3 fatty acid desaturase genes in safflower (Carthamus tinctorius L.), vol. 13, pp. 6623-6637, 2014.
H. Y. Chen, Wang, L., Liu, J. F., Wang, W. Z., and Yu, C. J., Effect of the beta secretase-1 inhibitor on the amyloid C-terminal fragment of amyloid precursor protein processing in a hyperphosphorylated tau rat model, vol. 13, pp. 6213-6227, 2014.
H. Zhang, Wei, B., Shang, Y. X., Jiao, X. Y., Wang, L., He, M. B., Han, X. H., and Wang, G. Z., Effects of Mycoplasma pneumoniae infection on airway neurokinin-1 receptor expression in BALB/c mice, vol. 13, pp. 8320-8328, 2014.
L. Wang, Wang, C., Ge, T. T., Wang, J. J., Liu, T. K., Hou, X. L., and Li, Y., Expression analysis of self-incompatibility-associated genes in non-heading Chinese cabbage, vol. 13, pp. 5025-5035, 2014.
L. Wang, Chen, Y. C., Zhang, D. J., Li, H. T., Liu, D., and Yang, X. Q., Functional characterization of genetic variants in the porcine TLR3 gene, vol. 13, pp. 1348-1357, 2014.
M. Lu, Wang, L., Zhang, J., Sun, S., Li, Y., Du, W., Wu, J., Zhao, J., Yang, Q., and Chen, X., Molecular cytogenetic identification of a novel 1AL.1RS translocation line with powdery mildew resistance, vol. 13, pp. 10678-10689, 2014.
L. Wang, Wang, Z. T., Hu, J. J., Fan, R., Zhou, J., and Zhong, J., Polymorphisms of the vitamin D receptor gene and the risk of inflammatory bowel disease: a meta-analysis, vol. 13, pp. 2598-2610, 2014.
Z. G. E, Zhang, Y. P., Zhou, J. H., and Wang, L., Roles of the bZIP gene family in rice, vol. 13. pp. 3025-3036, 2014.
L. Wang, Xiao, Q., Wang, C. H., Li, X., Luo, S. Q., and Tang, C. W., Vasoactive intestinal polypeptide suppresses proliferation of human cord blood-derived hematopoietic progenitor cells by increasing TNF-α and TGF-β production in the liver, vol. 13, pp. 9032-9043, 2014.
2013
Y. B. Wu, Zang, W. D., Yao, W. Z., Luo, Y., Hu, B., Wang, L., and Liang, Y. L., Analysis of FOS, BTG2, and NR4A in the function of renal medullary hypertension, vol. 12, pp. 3735-3741, 2013.
C. Q. Yuan, Li, Y. F., Wang, L., Zhao, K. Q., Hu, R. Y., Sun, P., Sun, Y. H., Li, Y., Gu, W. X., and Zhou, Z. Y., Evidence for inbreeding depression in the tree Robinia pseudoacacia L. (Fabaceae), vol. 12, pp. 6249-6256, 2013.
Y. H. Li, Zhao, X. H., Li, M., Yang, C. Q., Wang, L., and Lin, J. T., Fast preparation of a polyclonal antibody against chicken protocadherin 1, vol. 12, pp. 2156-2166, 2013.
H. Wang, Zhao, Y., Ma, J., Zhang, G., Mu, Y., Qi, G., Fang, Z., Wang, L., Fan, Q., and Ma, Z., The genetic variant rs401681C/T is associated with the risk of non-small cell lung cancer in a Chinese mainland population, vol. 12. pp. 67-73, 2013.
Bae EY, Lee SY, Kang BK, Lee EJ, et al. (2012). Replication of results of genome-wide association studies on lung cancer susceptibility loci in a Korean population. Respirology 17: 699-706. http://dx.doi.org/10.1111/j.1440-1843.2012.02165.x PMid:22404340   Ginsberg MS (2005). Epidemiology of lung cancer. Semin. Roentgenol. 40: 83-89. http://dx.doi.org/10.1053/j.ro.2005.01.007 PMid:15898406   Girard N, Lou E, Azzoli CG, Reddy R, et al. (2010). Analysis of genetic variants in never-smokers with lung cancer facilitated by an Internet-based blood collection protocol: a preliminary report. Clin. Cancer Res. 16: 755-763. http://dx.doi.org/10.1158/1078-0432.CCR-09-2437 PMid:20068085 PMCid:2808124   Haiman CA, Chen GK, Vachon CM, Canzian F, et al. (2011). A common variant at the TERT-CLPTM1L locus is associated with estrogen receptor-negative breast cancer. Nat. Genet. 43: 1210-1214. http://dx.doi.org/10.1038/ng.985 PMid:22037553 PMCid:3279120   Hardin M, Zielinski J, Wan ES, Hersh CP, et al. (2012). CHRNA3/5, IREB2, and ADCY2 are associated with Severe COPD in Poland. Am. J. Respir. Cell Mol. Biol. [Epub ahead of print]. http://dx.doi.org/10.1165/rcmb.2012-0011OC PMid:22461431   Haugen A, Ryberg D, Mollerup S, Zienolddiny S, et al. (2000). Gene-environment interactions in human lung cancer. Toxicol. Lett. 112-113: 233-237. http://dx.doi.org/10.1016/S0378-4274(99)00275-1   Hung RJ, McKay JD, Gaborieau V, Boffetta P, et al. (2008). A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature 452: 633-637. http://dx.doi.org/10.1038/nature06885 PMid:18385738   Kiyohara C, Yoshimasu K, Takayama K and Nakanishi Y (2007). Lung cancer susceptibility: are we on our way to identifying a high-risk group? Future Oncol. 3: 617-627. http://dx.doi.org/10.2217/14796694.3.6.617 PMid:18041914   Kollarova H, Janout V and Cizek L (2002). Epidemiology of lung cancer. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub. 146: 103-114. http://dx.doi.org/10.5507/bp.2002.022 PMid:12572908   Lam WK (2005). Lung cancer in Asian women-the environment and genes. Respirology 10: 408-417. http://dx.doi.org/10.1111/j.1440-1843.2005.00723.x PMid:16135162   Law MH, Montgomery GW, Brown KM, Martin NG, et al. (2012). Meta-analysis combining new and existing data sets confirms that the TERT-CLPTM1L locus influences melanoma risk. J. Invest. Dermatol. 132: 485-487. http://dx.doi.org/10.1038/jid.2011.322 PMid:21993562 PMCid:3258346   Liu Z, Li G, Wei S, Niu J, et al. (2010). Genetic variations in TERT-CLPTM1L genes and risk of squamous cell carcinoma of the head and neck. Carcinogenesis 31: 1977-1981. http://dx.doi.org/10.1093/carcin/bgq179 PMid:20802237 PMCid:2966556   McKay JD, Hung RJ, Gaborieau V, Boffetta P, et al. (2008). Lung cancer susceptibility locus at 5p15.33. Nat. Genet. 40: 1404-1406. http://dx.doi.org/10.1038/ng.254 PMid:18978790 PMCid:2748187   Rafnar T, Sulem P, Stacey SN, Geller F, et al. (2009). Sequence variants at the TERT-CLPTM1L locus associate with many cancer types. Nat. Genet. 41: 221-227. http://dx.doi.org/10.1038/ng.296 PMid:19151717   Sanchez-Cespedes M (2009). Lung cancer biology: a genetic and genomic perspective. Clin. Transl. Oncol. 11: 263-269. http://dx.doi.org/10.1007/s12094-009-0353-7 PMid:19451058   Sugimura H, Tao H, Suzuki M, Mori H, et al. (2011). Genetic susceptibility to lung cancer. Front Biosci. 3: 1463-1477. http://dx.doi.org/10.2741/237   Thill PG, Goswami P, Berchem G and Domon B (2011). Lung cancer statistics in Luxembourg from 1981 to 2008. Bull. Soc. Sci. Med. Grand Duche Luxemb. 43-55. PMid:22272445   Vossen RH, Aten E, Roos A and den Dunnen JT (2009). High-resolution melting analysis (HRMA): more than just sequence variant screening. Hum. Mutat. 30: 860-866. http://dx.doi.org/10.1002/humu.21019 PMid:19418555   Weinrich SL, Pruzan R, Ma L, Ouellette M, et al. (1997). Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nat. Genet. 17: 498-502. http://dx.doi.org/10.1038/ng1297-498 PMid:9398860   Wu C, Hu Z, Yu D, Huang L, et al. (2009). Genetic variants on chromosome 15q25 associated with lung cancer risk in Chinese populations. Cancer Res. 69: 5065-5072. http://dx.doi.org/10.1158/0008-5472.CAN-09-0081 PMid:19491260
W. Peng, Chen, Z. - Y., Wang, L., Wang, Z., and Li, J., MicroRNA-199a-3p is downregulated in gastric carcinomas and modulates cell proliferation, vol. 12, pp. 3038-3047, 2013.
J. J. Wang, Kuang, Y., Zhang, L. L., Shen, C. L., Wang, L., Lu, S. Y., Lu, X. B., Fei, J., Gu, M. M., and Wang, Z. G., Phenotypic correction and stable expression of factor VIII in hemophilia A mice by embryonic stem cell therapy, vol. 12, pp. 1511-1521, 2013.
Y. Huang, Wang, L., Bennett, B., Williams, R. W., Wang, Y. J., Gu, W. K., and Jiao, Y., Potential role of Atp5g3 in epigenetic regulation of alcohol preference or obesity from a mouse genomic perspective, vol. 12, pp. 3662-3674, 2013.
J. Li, Wang, L., Li, H., Zhang, R., Li, X., and Guo, M., Relationship of common expression quantitative trait loci genes to the immune system, vol. 12, pp. 6546-6553, 2013.
J. Ma, Wang, M. G., Mao, A. H., Zeng, J. Y., Liu, Y. Q., Wang, X. Q., Ma, J., Tian, Y. J., Ma, N., Yang, N., Wang, L., and Liao, S. Q., Target replacement strategy for selection of DNA aptamers against the Fc region of mouse IgG, vol. 12, pp. 1399-1410, 2013.
Chu TC, Twu KY, Ellington AD and Levy M (2006). Aptamer mediated siRNA delivery. Nucleic Acids Res. 34: e73. http://dx.doi.org/10.1093/nar/gkl388 PMid:16740739 PMCid:1474074   Cox JC and Ellington AD (2001). Automated selection of anti-protein aptamers. Bioorg. Med. Chem. 9: 2525-2531. http://dx.doi.org/10.1016/S0968-0896(01)00028-1   Ellington AD and Szostak JW (1990). In vitro selection of RNA molecules that bind specific ligands. Nature 346: 818-822. http://dx.doi.org/10.1038/346818a0 PMid:1697402   Hall B, Arshad S, Seo K, Bowman C, et al. (2010). In vitro selection of RNA aptamers to a protein target by filter immobilization. Curr. Protoc. Nucleic Acid Chem. Chapter 9: Unit-27.   Keefe AD and Cload ST (2008). SELEX with modified nucleotides. Curr. Opin. Chem. Biol. 12: 448-456. http://dx.doi.org/10.1016/j.cbpa.2008.06.028 PMid:18644461   Mairal T, Ozalp VC, Lozano SP, Mir M, et al. (2008). Aptamers: molecular tools for analytical applications. Anal. Bioanal. Chem. 390: 989-1007. http://dx.doi.org/10.1007/s00216-007-1346-4 PMid:17581746   Mendonsa SD and Bowser MT (2004). In vitro selection of high-affinity DNA ligands for human IgE using capillary electrophoresis. Anal. Chem. 76: 5387-5392. http://dx.doi.org/10.1021/ac049857v PMid:15362896   Miyakawa S, Oguro A, Ohtsu T, Imataka H, et al. (2006). RNA aptamers to mammalian initiation factor 4G inhibit cap-dependent translation by blocking the formation of initiation factor complexes. RNA 12: 1825-1834. http://dx.doi.org/10.1261/rna.2169406 PMid:16940549 PMCid:1581983   Nitsche A, Kurth A, Dunkhorst A, Panke O, et al. (2007). One-step selection of Vaccinia virus-binding DNA aptamers by MonoLEX. BMC Biotechnol. 7: 48. http://dx.doi.org/10.1186/1472-6750-7-48 PMid:17697378 PMCid:1994675   Sakai N, Masuda H, Akitomi J, Yagi H, et al. (2008). RNA aptamers specifically interact with the Fc region of mouse immunoglobulin G. Nucleic Acids Symp. Ser. 487-488. http://dx.doi.org/10.1093/nass/nrn247 PMid:18776466   Shamah SM, Healy JM and Cload ST (2008). Complex target SELEX. Acc. Chem. Res. 41: 130-138. http://dx.doi.org/10.1021/ar700142z PMid:18193823   Stoltenburg R, Reinemann C and Strehlitz B (2005). FluMag-SELEX as an advantageous method for DNA aptamer selection. Anal. Bioanal. Chem. 383: 83-91. http://dx.doi.org/10.1007/s00216-005-3388-9 PMid:16052344   Tuerk C and Gold L (1990). Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249: 505-510. http://dx.doi.org/10.1126/science.2200121 PMid:2200121   Yoshida Y, Sakai N, Masuda H, Furuichi M, et al. (2008). Rabbit antibody detection with RNA aptamers. Anal. Biochem. 375: 217-222. http://dx.doi.org/10.1016/j.ab.2008.01.005 PMid:18252191   Yoshida Y, Horii K, Sakai N, Masuda H, et al. (2009). Antibody-specific aptamer-based PCR analysis for sensitive protein detection. Anal. Bioanal. Chem. 395: 1089-1096. http://dx.doi.org/10.1007/s00216-009-3041-0 PMid:19705107
2012
C. Q. Yuan, Li, Y. F., Sun, P., Sun, Y. H., Zhang, G. J., Yang, M. S., Zhang, Y. Y., Li, Y., and Wang, L., Assessment of genetic diversity and variation of Robinia pseudoacacia seeds induced by short-term spaceflight based on two molecular marker systems and morphological traits, vol. 11, pp. 4268-4277, 2012.
Chen DP, Li L, Shen SH and Yang Q (2009). Optimization of SRAP-PCR system and M1 mutation molecular identification of M1 in Jatropha curcas L. Acta Agric. Nucl. Sin. 23: 209-213.   Gao WY, Fu RZ, Fan L, Zhao SP, et al. (2000). The effects of spaceflight on soluble protein, isoperoxidase, and genomic DNA in Ural Licorice (Glycyrrhiza uralensis Fisch). J. Plant Biol. 43: 94-98. http://dx.doi.org/10.1007/BF03030501   Gao W, Li K, Yan S, Gao X, et al. (2009). Effects of space flight on DNA mutation and secondary metabolites of licorice (Glycyrrhiza uralensis Fisch.). Sci. China C Life Sci. 52: 977-981. http://dx.doi.org/10.1007/s11427-009-0120-6 PMid:19911135   He JJ, Liu FZ, Chen YH, Yang WC, et al. (2010). Effect of space flight mutation on Eggplant and analysis of genetic diversity by SSR molecular marker. J. Nucl. Agric. Sci. 24: 460-465.   Li G and Quiros CF (2001). Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor. Appl. Genet. 103: 455-461. http://dx.doi.org/10.1007/s001220100570   Li Y, Liu M, Cheng Z and Sun Y (2007). Space environment induced mutations prefer to occur at polymorphic sites of rice genomes. Adv. Space Res. 40: 523-527. http://dx.doi.org/10.1016/j.asr.2007.04.100   Lian C and Hogetsu T (2002). Development of microsatellite markers in black locust (Robinia pseudoacacia) using a dual-suppression-PCR technique. Mol. Ecol. Notes 2: 211-213.   Lian C, Oishi R, Miyashita N and Hogetsu T (2004). High somatic instability of a microsatellite locus in a clonal tree, Robinia pseudoacacia. Theor. Appl. Genet. 108: 836-841. http://dx.doi.org/10.1007/s00122-003-1500-0 PMid:14625672   Liu L, Van Zanten L, Shu QY and Maluszynski M (2004). Officially released mutant varieties in China. Mutat. Breed. Rev. 14: 1-64.   Liu M, Li JG, Wang YL, Zhang Z, et al. (1999). Preliminary study on peroxidase isoenzyme detection and RAPD molecular verification for sweet pepper 87-2 carried by a recoverable satellite. Acta Agric. Nucl. Sin. 13: 291-294.   Lu JY, Zhang WL, Xue H, Pan Y, et al. (2010). Changes in AFLP and SSR DNA polymorphisms induced by short-term space flight of rice seeds. Biol. Plant. 54: 112-116. http://dx.doi.org/10.1007/s10535-010-0016-0   Mashinsky AL and Nechitailo GS (2001). Results and prospects of studying the gravitationally sensitive systems of plants under conditions of space flight. Cosmic Res. 39: 317-327. http://dx.doi.org/10.1023/A:1017993528116   McCouch SR, Teytelman L, Xu Y, Lobos KB, et al. (2002). Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res. 9: 199-207. http://dx.doi.org/10.1093/dnares/9.6.199 PMid:12597276   Mishima K, Hirao T, Urano S, Watanabe A, et al. (2009). Isolation and characterization of microsatellite markers from Robinia pseudoacacia L. Mol. Ecol. Resour. 9: 850-852. http://dx.doi.org/10.1111/j.1755-0998.2008.02306.x PMid:21564766   Nechitailo GS, Lu JY, Xue H, Pan Y, et al. (2005). Influence of long term exposure to space flight on tomato seeds. Adv. Space Res. 36: 1329-1333. http://dx.doi.org/10.1016/j.asr.2005.06.043   Nei M (1973). Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. U. S. A. 70: 3321-3323. http://dx.doi.org/10.1073/pnas.70.12.3321 PMid:4519626 PMCid:427228   Normile D and Yimin D (2002). Space science. Science emerges from shadows of China's space program. Science 296: 1788-1791. http://dx.doi.org/10.1126/science.296.5574.1788 PMid:12052934   Powell W, Machray GC and Provan J (1996). Polymorphism revealed by simple sequence repeats. Trends Plant Sci. 1: 215-222.   Stringer JW and Carpenter SB (1986). Energy yield of black locust biomass fuel. Forest Sci. 32: 1049-1057.   Sun BJ, Li ZX, Luo SB, Li ZL, et al. (2010). Induced effects of space flight on Eggplant (Solanum melongena L.) and AFLP analysis on mutants. Plant Physiol. Comm. 46: 1205-1210.   Sun F, Yang MS, Zhang J and Gu JT (2009). ISSR analysis of genetic diversity of Robinia pseudoacacia populations. J. Plant Genet. Res. 10: 91-96.   Surles SE, Hamrick JL and Bongarten BC (1989). Allozyme variation in black locust (Robinia pseudoacacia). Can. J. Forest Res. 19: 471-479. http://dx.doi.org/10.1139/x89-073   The People's Republic of China Ministry of Agriculture (2002). New Plant Varieties for Distinctness, Uniformity and Stability Testing Guidelines of China. China Agriculture Press, Beijing.   Wang WT, Chan CG, Ni DP and Wang ZF (2009). Space flight effects analysis of SP2 Salvia miltiorrhiza Bge using SRAP marker. Acta Agric. Nucl. Sin. 23: 758-761.   Wu Y, Yang DY, Tu PF, Tian YZ, et al. (2011). Genetic differentiation induced by spaceflight treatment of Cistanche deserticola and identification of inter-simple sequence repeat markers associated with its medicinal constituent contents. Adv. Space Res. 47: 591-599. http://dx.doi.org/10.1016/j.asr.2010.10.010   Xiao WM, Yang QY, Chen ZQ, Wang H, et al. (2009). Blast-resistance inheritance of space-induced rice lines and their genomic polymorphism by microsatellite markers. Agr. Sci. China 8: 387-393. http://dx.doi.org/10.1016/S1671-2927(08)60223-0   Xie LB, Guo YH, Meng FJ and Liu LX (2010). Molecular detection of genome DNA variation induced by space environment in Sweet Pepper (Capsicum annuum L.). Acta Agric. Nucl. Sin. 24: 254-258.   Yi JC, Zhuang CX, Yao J, Wang H, et al. (2002). DNA polymorphic analysis of rice mutation induced by space flight with molecular markers. Acta Biophys. Sin. 18: 478-483.   Yuan CQ, Li YF, Yang NN, Dai L, et al. (2011). Optimization of SRAP-PCR system and selection of primers for Robinia pseudoacacia L. Mol. Plant Breed. 9: 1182-1188.   Zhou GY, Hong YB, Lin KY, Li SX, et al. (2007). Study on breeding of space mutants in peanut and analysis of genetic diversity based on SSR marker. Chin. J. Oil. Crop Sci. 29: 238-241.
Z. N. Meng, Yang, S., Fan, B., Wang, L., and Lin, H. R., Genetic variation and balancing selection at MHC class II exon 2 in cultured stocks and wild populations of orange-spotted grouper (Epinephelus coioides), vol. 11, pp. 3869-3881, 2012.
Alcaide M, Edwards SV, Negro JJ, Serrano D, et al. (2008). Extensive polymorphism and geographical variation at a positively selected MHC class II B gene of the lesser kestrel (Falco naumanni). Mol. Ecol. 17: 2652-2665. http://dx.doi.org/10.1111/j.1365-294X.2008.03791.x PMid:18489548   Anisimova M, Nielsen R and Yang Z (2003). Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites. Genetics 164: 1229-1236. PMid:12871927 PMCid:1462615   Anmarkrud JA, Johnsen A, Bachmann L and Lifjeld JT (2010). Ancestral polymorphism in exon 2 of bluethroat (Luscinia svecica) MHC class II B genes. J. Evol. Biol. 23: 1206-1217. http://dx.doi.org/10.1111/j.1420-9101.2010.01999.x PMid:20456568   Axtner J and Sommer S (2007). Gene duplication, allelic diversity, selection processes and adaptive value of MHC class II DRB genes of the bank vole, Clethrionomys glareolus. Immunogenetics 59: 417-426. http://dx.doi.org/10.1007/s00251-007-0205-y PMid:17351770   Beaumont MA and Balding DJ (2004). Identifying adaptive genetic divergence among populations from genome scans. Mol. Ecol. 13: 969-980. http://dx.doi.org/10.1111/j.1365-294X.2004.02125.x PMid:15012769   Bernatchez L and Landry C (2003). MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J. Evol. Biol. 16: 363-377. http://dx.doi.org/10.1046/j.1420-9101.2003.00531.x PMid:14635837   Brown JL and Eklund A (1994). Kin recognition and the major histocompatibility complex: an integrative review. Am. Nat. 143: 435-461. http://dx.doi.org/10.1086/285612   Brown JH, Jardetzky TS, Gorga JC, Stern LJ, et al. (1993). Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364: 33-39. http://dx.doi.org/10.1038/364033a0 PMid:8316295   Clarke B and Kirby DR (1966). Maintenance of histocompatibility polymorphisms. Nature 211: 999-1000. http://dx.doi.org/10.1038/211999a0 PMid:6007869   Davies CJ, Andersson L, Mikko S, Ellis SA, et al. (1997). Nomenclature for factors of the BoLA system, 1996: report of the ISAG BoLA Nomenclature Committee. Anim. Genet. 28: 159-168. http://dx.doi.org/10.1111/j.1365-2052.1997.00106.x   Dengjel J, Schoor O, Fischer R, Reich M, et al. (2005). Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc. Natl. Acad. Sci. U. S. A. 102: 7922-7927. http://dx.doi.org/10.1073/pnas.0501190102 PMid:15894616 PMCid:1142372   Ekblom R, Saether SA, Jacobsson P, Fiske P, et al. (2007). Spatial pattern of MHC class II variation in the great snipe (Gallinago media). Mol. Ecol. 16: 1439-1451. http://dx.doi.org/10.1111/j.1365-294X.2007.03281.x PMid:17391268   Excoffier L, Laval G and Schneider S (2005). Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol. Bioinform. Online 1: 47-50. PMCid:2658868   Goudet J (2002). Fstat, A Program to Estimate and Test Gene Diversities and Fixation Indices (Version 2.9.3.2). Available at [http://www2.unil.ch/popgen/softwares/fstat.htm]. Accessed February 8, 2012.   Grimholt U, Larsen S, Nordmo R, Midtlyng P, et al. (2003). MHC polymorphism and disease resistance in Atlantic salmon (Salmo salar); facing pathogens with single expressed major histocompatibility class I and class II loci. Immunogenetics 55: 210-219. http://dx.doi.org/10.1007/s00251-003-0567-8 PMid:12811427   Hall TA (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symp. Ser. 41: 95-98.   Hauswaldt JS, Stuckas H, Pfautsch S and Tiedemann R (2007). Molecular characterization of MHC class II in a nonmodel anuran species, the fire-bellied toad Bombina bombina. Immunogenetics 59: 479-491. http://dx.doi.org/10.1007/s00251-007-0210-1 PMid:17406862   Hedrick PW (1999). Perspective: highly variable loci and their interpretation in evolution and conservation. Evolution 53: 313-318. http://dx.doi.org/10.2307/2640768   Hill AV (1999). The immunogenetics of resistance to malaria. Proc. Assoc. Am. Physicians 111: 272-277. http://dx.doi.org/10.1046/j.1525-1381.1999.99234.x PMid:10417733   Hill AV, Allsopp CE, Kwiatkowski D, Anstey NM, et al. (1991). Common west African HLA antigens are associated with protection from severe malaria. Nature 352: 595-600. http://dx.doi.org/10.1038/352595a0 PMid:1865923   Hughes AL and Nei M (1988). Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335: 167-170. http://dx.doi.org/10.1038/335167a0 PMid:3412472   Hughes AL and Yeager M (1998). Natural selection at major histocompatibility complex loci of vertebrates. Annu. Rev. Genet. 32: 415-435. http://dx.doi.org/10.1146/annurev.genet.32.1.415 PMid:9928486   Hung PH, Thuy TTN, Supawadee P and Uthairat N (2009). Microsatellites revealed no genetic differentiation between hatchery and contemporary wild populations of striped catfish, Pangasianodon hypophthalmus (Sauvage 1878) in Vietnam. Aquaculture 291: 154-160. http://dx.doi.org/10.1016/j.aquaculture.2009.03.017   Jones EY, Fugger L, Strominger JL and Siebold C (2006). MHC class II proteins and disease: a structural perspective. Nat. Rev. Immunol. 6: 271-282. http://dx.doi.org/10.1038/nri1805 PMid:16557259   Jordan WC and Bruford MW (1998). New perspectives on mate choice and the MHC. Heredity 81: 239-245. http://dx.doi.org/10.1038/sj.hdy.6884280 PMid:9800367   Karaiskou N, Moran P, Georgitsakis G, Abatzopoulos TJ, et al. (2010). High allelic variation of MHC class II alpha antigen and the role of selection in wild and cultured Sparus aurata populations. Hydrobiologia 638: 11-20. http://dx.doi.org/10.1007/s10750-009-0001-9   Klein J (1986). Natural History of the Major Histocompatibility Complex. Wiley, New York.   Nei M and Gojobori T (1986). Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 3: 418-426. PMid:3444411   Piertney SB and Oliver MK (2006). The evolutionary ecology of the major histocompatibility complex. Heredity 96: 7-21. PMid:16094301   Rokas A, Atkinson RJ, Webster L, Csoka G, et al. (2003). Out of Anatolia: longitudinal gradients in genetic diversity support an eastern origin for a circum-Mediterranean oak gallwasp Andricus quercustozae. Mol. Ecol. 12: 2153- 2174. http://dx.doi.org/10.1046/j.1365-294X.2003.01894.x PMid:12859636   Rozas J, Sanchez-Del Barrio JC, Messeguer X and Rozas R (2003). DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2496-2497. http://dx.doi.org/10.1093/bioinformatics/btg359 PMid:14668244   Schad J, Dechmann DK, Voigt CC and Sommer S (2011). MHC class II DRB diversity, selection pattern and population structure in a neotropical bat species, Noctilio albiventris. Heredity 107: 115-126. http://dx.doi.org/10.1038/hdy.2010.173 PMid:21245894 PMCid:3178406   Strand T, Westerdahl H, Hoglund J, Alatalo V, et al. (2007). The Mhc class II of the Black grouse (Tetrao tetrix) consists of low numbers of B and Y genes with variable diversity and expression. Immunogenetics 59: 725-734. http://dx.doi.org/10.1007/s00251-007-0234-6 PMid:17653538   Summers K, Roney KE, da Silva J, Capraro G, et al. (2009). Divergent patterns of selection on the DAB and DXB MHC class II loci in Xiphophorus fishes. Genetica 135: 379-390. http://dx.doi.org/10.1007/s10709-008-9284-4 PMid:18600302   Tamura K, Peterson D, Peterson N, Stecher G, et al. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739. http://dx.doi.org/10.1093/molbev/msr121 PMid:21546353 PMCid:3203626   Tong JC, Bramson J, Kanduc D, Chow S, et al. (2006). Modeling the bound conformation of Pemphigus vulgaris-associated peptides to MHC Class II DR and DQ alleles. Immunome Res. 2: 1. http://dx.doi.org/10.1186/1745-7580-2-1 PMid:16426456 PMCid:1395305   Wang L, Meng Z, Liu X, Zhang Y, et al. (2011). genetic diversity and differentiation of the orange-spotted grouper (Epinephelus coioides) between and within cultured stocks and wild populations inferred from microsatellite DNA Analysis. Int. J. Mol. Sci. 12: 4378-4394. http://dx.doi.org/10.3390/ijms12074378 PMid:21845084 PMCid:3155357   Westerdahl H, Wittzell H, von Schantz T and Bensch S (2004). MHC class I typing in a songbird with numerous loci and high polymorphism using motif-specific PCR and DGGE. Heredity 92: 534-542. http://dx.doi.org/10.1038/sj.hdy.6800450 PMid:15162116   Xu TJ, Sun YN and Chen SL (2010). Allelic variation, balancing selection and positive selected sites detected from MHC class Ia gene of olive flounder. Genetica 138: 1251-1259. http://dx.doi.org/10.1007/s10709-010-9524-2 PMid:21110065   Yang Z (1997). PAML: a program package for phylogenetic analysis by maximum likelihood. Comput. Appl. Biosci. 13: 555-556. PMid:9367129   Yang Z, Wong WS and Nielsen R (2005). Bayes empirical bayes inference of amino acid sites under positive selection. Mol. Biol. Evol. 22: 1107-1118. http://dx.doi.org/10.1093/molbev/msi097 PMid:15689528
L. H. Cao, Wang, L., Ji, C. Y., Wang, L. B., Ma, H. W., and Luo, Y., Novel and recurrent COL2A1 mutations in Chinese patients with spondyloepiphyseal dysplasia, vol. 11, pp. 4130-4137, 2012.
Bar-Yosef U, Ohana E, Hershkovitz E, Perlmuter S, et al. (2004). X-linked spondyloepiphyseal dysplasia tarda: a novel SEDL mutation in a Jewish Ashkenazi family and clinical intervention considerations. Am. J. Med. Genet. A 125A: 45-48. http://dx.doi.org/10.1002/ajmg.a.20435 PMid:14755465   Borochowitz ZU, Scheffer D, Adir V, Dagoneau N, et al. (2004). Spondylo-epi-metaphyseal dysplasia (SEMD) matrilin 3 type: homozygote matrilin 3 mutation in a novel form of SEMD. J. Med. Genet. 41: 366-372. http://dx.doi.org/10.1136/jmg.2003.013342 PMid:15121775 PMCid:1735768   Byers PH, Wallis GA and Willing MC (1991). Osteogenesis imperfecta: translation of mutation to phenotype. J. Med. Genet. 28: 433-442. http://dx.doi.org/10.1136/jmg.28.7.433 PMid:1895312 PMCid:1016951   Faiyaz ul Haque M, King LM, Krakow D, Cantor RM, et al. (1998). Mutations in orthologous genes in human spondyloepimetaphyseal dysplasia and the brachymorphic mouse. Nat. Genet. 20: 157-162.   Fiedler J, Bergmann C and Brenner RE (2003). X-linked spondyloepiphyseal dysplasia tarda: molecular cause of a heritable disorder associated with early degenerative joint disease. Acta Orthop. Scand. 74: 737-741. http://dx.doi.org/10.1080/00016470310018298 PMid:14763708   Freisinger P, Ala-Kokko L, LeGuellec D, Franc S, et al. (1994). Mutation in the COL2A1 gene in a patient with hypochondrogenesis. Expression of mutated COL2A1 gene is accompanied by expression of genes for type I procollagen in chondrocytes. J. Biol. Chem. 269: 13663-13669. PMid:8175802   Gleghorn L, Ramesar R, Beighton P and Wallis G (2005). A mutation in the variable repeat region of the aggrecan gene (AGC1) causes a form of spondyloepiphyseal dysplasia associated with severe, premature osteoarthritis. Am. J. Hum. Genet. 77: 484-490. http://dx.doi.org/10.1086/444401 PMid:16080123 PMCid:1226213   Jung SC, Mathew S, Li QW, Lee YJ, et al. (2004). Spondyloepiphyseal dysplasia congenita with absent femoral head. J. Pediatr. Orthop. B 13: 63-69. PMid:15076581   Kannu P, Bateman J and Savarirayan R (2012). Clinical phenotypes associated with type II collagen mutations. J. Paediatr. Child Health 48: E38-E43. http://dx.doi.org/10.1111/j.1440-1754.2010.01979.x PMid:21332586   Körkkö J, Cohn DH, Ala-Kokko L, Krakow D, et al. (2000). Widely distributed mutations in the COL2A1 gene produce achondrogenesis type II/hypochondrogenesis. Am. J. Med. Genet. 92: 95-100. http://dx.doi.org/10.1002/(SICI)1096-8628(20000515)92:2<95::AID-AJMG3>3.0.CO;2-9   Liao EY, Peng YQ, Zhou HD, Mackie EJ, et al. (2004). Gene symbol: WISP3. Disease: spondyloepihyseal dysplasia tarda with progressive arthropathy. Hum. Genet. 115: 174. PMid:15300987   Nishimura G, Haga N, Kitoh H, Tanaka Y, et al. (2005). The phenotypic spectrum of COL2A1 mutations. Hum. Mutat. 26: 36-43. http://dx.doi.org/10.1002/humu.20179 PMid:15895462   Nishimura G, Dai J, Lausch E, Unger S, et al. (2010). Spondylo-epiphyseal dysplasia, Maroteaux type (pseudo-Morquio syndrome type 2), and parastremmatic dysplasia are caused by TRPV4 mutations. Am. J. Med. Genet. A 152A: 1443-1449. PMid:20503319   Spranger J, Winterpacht A and Zabel B (1994). The type II collagenopathies: a spectrum of chondrodysplasias. Eur. J. Pediatr. 153: 56-65. PMid:8157027   Thiele H, Sakano M, Kitagawa H, Sugahara K, et al. (2004). Loss of chondroitin 6-O-sulfotransferase-1 function results in severe human chondrodysplasia with progressive spinal involvement. Proc. Natl. Acad. Sci. U. S. A. 101: 10155- 10160. http://dx.doi.org/10.1073/pnas.0400334101 PMid:15215498 PMCid:454181   Tiller GE, Polumbo PA, Weis MA, Bogaert R, et al. (1995). Dominant mutations in the type II collagen gene, COL2A1, produce spondyloepimetaphyseal dysplasia, Strudwick type. Nat. Genet. 11: 87-89. http://dx.doi.org/10.1038/ng0995-87 PMid:7550321   Unger S, Lausch E, Rossi A, Megarbane A, et al. (2010). Phenotypic features of carbohydrate sulfotransferase 3 (CHST3) deficiency in 24 patients: congenital dislocations and vertebral changes as principal diagnostic features. Am. J. Med. Genet. A 152A: 2543-2549. http://dx.doi.org/10.1002/ajmg.a.33641 PMid:20830804   Williams CJ, Rock M, Considine E, McCarron S, et al. (1995). Three new point mutations in type II procollagen (COL2A1) and identification of a fourth family with the COL2A1 Arg519→Cys base substitution using conformation sensitive gel electrophoresis. Hum. Mol. Genet. 4: 309-312. http://dx.doi.org/10.1093/hmg/4.2.309 PMid:7757086   Xia X, Cui Y, Huang Y, Pan L, et al. (2007). A first familial G504S mutation of COL2A1 gene results in distinctive spondyloepiphyseal dysplasia congenita. Clin. Chim. Acta 382: 148-150. http://dx.doi.org/10.1016/j.cca.2007.04.005 PMid:17509551   Zhang Z, He JW, Fu WZ, Zhang CQ, et al. (2011). Identification of three novel mutations in the COL2A1 gene in four unrelated Chinese families with spondyloepiphyseal dysplasia congenita. Biochem. Biophys. Res. Commun. 413: 504-508. http://dx.doi.org/10.1016/j.bbrc.2011.08.090 PMid:21924244
2011
Y. Jiang, Nie, L. W., Huang, Z. F., Jing, W. X., Wang, L., Liu, L., and Dai, X. T., Comparison of complete mitochondrial DNA control regions among five Asian freshwater turtle species and their phylogenetic relationships, vol. 10, pp. 1545-1557, 2011.
Aquadro CF and Greenberg BD (1983). Human mitochondrial DNA variation and evolution: analysis of nucleotide sequences from seven individuals. Genetics 103: 287-312. PMid:6299878    PMCid:1219980 Avise JC, Bowen BW, Lamb T, Meylan AB, et al. (1992). Mitochondrial DNA evolution at a turtle’s pace: evidence for low genetic variability and reduced microevolutionary rate in the Testudines. Mol. Biol. Evol. 9: 457-473. PMid:1584014 Barth D, Bernhard D, Fritzsch G and Fritz U (2004). The freshwater turtle genus Mauremys (Testudines, Geoemydidae) - a textbook example of an east-west disjunction or a taxonomic misconcept? Zoolog. Scripta 33: 213-221. doi:10.1111/j.0300-3256.2004.00150.x Cann RL, Brown WM and Wilson AC (1984). Polymorphic sites and the mechanism of evolution in human mitochondrial DNA. Genetics 106: 479-499. PMid:6323246    PMCid:1224251 Crochet PA and Desmarais E (2000). Slow rate of evolution in the mitochondrial control region of gulls (Aves: Laridae). Mol. Biol. Evol. 17: 1797-1806. PMid:11110895 Desalle R, Freedman T, Prager EM and Wilson AC (1987). Tempo and mode of sequence evolution in mitochondrial DNA of Hawaiian Drosophila. J. Mol. Evol. 26: 157-164. doi:10.1007/BF02111289 PMid:3125333 Doda JN, Wright CT and Clayton DA (1981). Elongation of displacement-loop strands in human and mouse mitochondrial DNA is arrested near specific template sequences. Proc. Natl. Acad. Sci. U. S. A. 78: 6116-6120. doi:10.1073/pnas.78.10.6116 Feldman CR and Parham JF (2004). Molecular systematics of old world stripe-necked turtles (Testudines: Mauremys). Asiat. Herpetol. Res. 10: 28-37. Fong JJ, Parham JF, Shi H and Stuart BL (2007). A genetic survey of heavily exploited, endangered turtles: caveats on the conservation value of trade animals. Anim. Conserv. 10: 452-460. doi:10.1111/j.1469-1795.2007.00131.x Fumagalli L, Taberlet P, Favre L and Hausser J (1996). Origin and evolution of homologous repeated sequences in the mitochondrial DNA control region of shrews. Mol. Biol. Evol. 13: 31-46. PMid:8583904 Hirayama R, Kaneko N and Okazaki H (2007). Ocadia nipponica, a new species of aquatic turtle (Testudines: Testudinoidea: Geoemydidae) from the Middle Pleistocene of Chiba Prefecture, central Japan. Paleontol. Res. 11: 1-19. doi:10.2517/1342-8144(2007)11[1:ONANSO]2.0.CO;2 Hoelzel AR, Hancock JM and Dover GA (1993). Generation of VNTRs and heteroplasmy by sequence turnover in the mitochondrial control region of two elephant seal species. J. Mol. Evol. 37: 190-197. doi:10.1007/BF02407355 PMid:8411208 Honda M, Yasukawa Y and Ota H (2002). Phylogeny of Eurasian freshwater turtles of the genus Mauremys Gray 1869 (Testudines), with special reference to a close affinity of Mauremys japonica with Chinemys reevesii. J. Zool. Systemat. Evol. Res. 40: 195-200. doi:10.1046/j.1439-0469.2002.00176.x Lamb T, Lydeard C, Walker RB and Gibbons JW (1994). Molecular systematics of map turtles (Graptemys): a comparison of mitochondrial restriction site versus sequence data. Syst. Biol. 43: 543-559. doi:10.1093/sysbio/43.4.543 Li XS, Nie LW, Wang L, Xiong L, et al. (2010). The mitochondrial genome complete sequence and organization of the pig-nosed turtle Carettochelys insculpta (Testudines, Carettochelyidae) and its phylogeny position in Testudines. Amphibia-Reptilia 31: 541-551. doi:10.1163/017353710X530203 Peng QL, Nie LW and Pu YG (2006). Complete mitochondrial genome of Chinese big-headed turtle, Platysternon megacephalum, with a novel gene organization in vertebrate mtDNA. Gene 380: 14-20. doi:10.1016/j.gene.2006.04.001 PMid:16842936 Posada D and Crandall KA (1998). MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817-818. doi:10.1093/bioinformatics/14.9.817 PMid:9918953 Rand DM (1994). Concerted evolution and RAPping in mitochondrial VNTRs and the molecular geography of cricket populations. EXS 69: 227-245. PMid:7994109 Rand DM and Harrison RG (1989). Molecular population genetics of mtDNA size variation in crickets. Genetics 121: 551-569. PMid:2565855    PMCid:1203640 Randi E and Lucchini V (1998). Organization and evolution of the mitochondrial DNA control region in the avian genus Alectoris. J. Mol. Evol. 47: 449-462. doi:10.1007/PL00006402 PMid:9767690 Rhodin AGJ, van Dijk PP and Parham JF (2008). Turtles of the World: Annotated Checklist of Taxonomy and Synonymy. Chelonian Research Foundation, Lunenburg. Ronquist F and Huelsenbeck JP (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574. doi:10.1093/bioinformatics/btg180 PMid:12912839 Ruokonen M and Kvist L (2002). Structure and evolution of the avian mitochondrial control region. Mol. Phylogenet. Evol. 23: 422-432. doi:10.1016/S1055-7903(02)00021-0 Spinks PQ, Bradley SH, Iverson JB and McCord WP (2004). Phylogenetic hypotheses for the turtle family Geoemydidae. Mol. Phylogenet. Evol. 32: 164-182. doi:10.1016/j.ympev.2003.12.015 PMid:15186805 Stuart BL and Parham JF (2007). Recent hybrid origin of three rare Chinese turtles. Conserv. Genet. 8: 169-175. doi:10.1007/s10592-006-9159-0 Su Y (2005). Conserved and heteroplasmy on mitochondrial DNA control region in animal. Sichuan J. Zoo. 24: 669-672. Swofford DL (2002). PAUP*: Phylogenenc Analysis using Parsimony (*and Other Methods), Version 4.0b l0. Sinauer Associates, Sunderland. Tamura K and Nei M (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10: 512-526. PMid:8336541 Tamura K, Dudley J, Nei M and Kumar S (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. doi:10.1093/molbev/msm092 PMid:17488738 Vigilant L, Stoneking M, Harpending H, Hawkes K, et al. (1991). African populations and the evolution of human mitochondrial DNA. Science 253: 1503-1507. doi:10.1126/science.1840702 PMid:1840702 Xia X and Lemey P (2009). Assessing Substitution Saturation with DAMBE. 2nd edn. In: The Phylogenetic Handbook: A Practical Approach to DNA and Protein Phylogeny (Lemey P, Salemi M and Vandamme A-M, eds.). Cambridge University Press, Cambridge, 615-630. Xiao B, Ma F, Sun Y and Li QW (2006). Comparative analysis of complete mitochondrial DNA control region of four species of Strigiformes. Yi. Chuan Xue. Bao. 33: 965-974. PMid:17112967 Yan L, Zhang Y, Wang N and Zhang L (2008). Comparison of mitochondrial control region sequences between Chelydridae and Platysternidae. Zool. Res. 29: 127-133. doi:10.3724/SP.J.1141.2008.00127 Zardoya R and Meyer A (1998). Cloning and characterization of a microsatellite in the mitochondrial control region of the African side-necked turtle, Pelomedusa subrufa. Gene 216: 149-153. doi:10.1016/S0378-1119(98)00332-1 Zhang L, Nie L, Cao C and Zhan Y (2008). The complete mitochondrial genome of the Keeled box turtle Pyxidea mouhotii and phylogenetic analysis of major turtle groups. J. Genet. Genom. 35: 33-40. doi:10.1016/S1673-8527(08)60005-3 Zhang YY, Nie LW, Huang YQ and Pu YG (2009). The mitochondrial DNA control region comparison studies of four hinged turtles and its phylogentic significance of the genus Cuora sensu lato (Testudinata: Geoemydidae). Genes Genom. 31: 349-359. doi:10.1007/BF03191253 Zhao EM and Zhou T (2004). Atlas for Identification of Turtles and Tortoises. China Agriculture Press, Beijing. Zhu SH, Zheng WJ, Zou JX and Yang YC (2007). Mitochondrial DNA control region structure and molecular phylogenetic relationship of Carangidae. Zool. Res. 28: 606-614. Zink RM and Blackwell RC (1998). Molecular systematics and biogeography of aridland gnatcatchers (genus Polioptila) and evidence supporting species status of the California gnatcatcher (Polioptila california). Mol. Phylogenet. Evol. 9: 26-32. doi:10.1006/mpev.1997.0444 PMid:9479690
S. Yang, Wang, L., Zhang, Y., Liu, X. C., Lin, H. R., and Meng, Z. N., Development and characterization of 32 microsatellite loci in the giant grouper Epinephelus lanceolatus (Serranidae), vol. 10. pp. 4006-4011, 2011.
Chistiakov DA, Hellemans B and Volckaert FAM (2006). Microsatellites and their genomic distribution, evolution, function and applications: A review with special reference to fish genetics. Aquaculture 255: 1-29. http://dx.doi.org/10.1016/j.aquaculture.2005.11.031   Dong HY, Zeng LX, Duan D and Zhang HF (2010). Growth hormone and two forms of insulin-like growth factors I in the giant grouper (Epinephelus lanceolatus): molecular cloning and characterization of tissue distribution. Fish Physiol. Biochem. 36: 201-212. http://dx.doi.org/10.1007/s10695-008-9231-4 PMid:20467861   Heemstra PC and Randall JE (1993). Groupers of the World (Family Serranidae, Subfamily Epinephelidae): An Annotated and Illustrated Catalogue of the Grouper, Rockcod, Hind, Coral Grouper and Lyretail Species Known to Date. FAO, Rome.   Hseu JR, Hwang PP and Ting YY (2004). Morphometric model and laboratory analysis of intracohort cannibalism in giant grouper Epinephelus lanceolatus fry. Fish. Sci. 70: 482-486. http://dx.doi.org/10.1111/j.1444-2906.2004.00829.x   Kalinowski ST, Taper ML and Marshall TC (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16: 1099-1106. http://dx.doi.org/10.1111/j.1365-294X.2007.03089.x PMid:17305863   Morris AV, Roberts CM and Hawkins JP (2000). The threatened status of groupers (Epinephinae). Biodivers. Conserv. 9: 919-942. http://dx.doi.org/10.1023/A:1008996002822   Nelson J (1994). Fishes of the World. John Wiley and Sons, New York.   Rice WR (1989). Analyzing tables of statistical tests. Evolution 43: 223-225. http://dx.doi.org/10.2307/2409177   Rousset F (2008). Genepop 007: a complete reimplementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8: 103-106. http://dx.doi.org/10.1111/j.1471-8286.2007.01931.x PMid:21585727   Rozen S and Skaletsky HJ (2000). Primer 3 on the WWW for General Users and for Biologist Programmers. In: Bioinformatics Methods and Protocols: Methods in Molecular Biology (Krawets S and Misener S, eds.). Humana Press, Totowa, 365-386. PMid:10547847   Van Oosterhout C, Hutchinson WF, Wills DPM and Shipley P (2004). MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4: 535-538. http://dx.doi.org/10.1111/j.1471-8286.2004.00684.x   Zane L, Bargelloni L and Patarnello T (2002). Strategies for microsatellite isolation: a review. Mol. Ecol. 11: 1-16. http://dx.doi.org/10.1046/j.0962-1083.2001.01418.x PMid:11903900   Zeng HS, Ding SX, Wang J and Su YQ (2008). Characterization of eight polymorphic microsatellite loci for the giant grouper (Epinephelus lanceolatus Bloch). Mol. Ecol. Resour. 8: 805-807. http://dx.doi.org/10.1111/j.1755-0998.2007.02070.x PMid:21585897
C. S. Xu, Chen, X. G., Chang, C. F., Wang, G. P., Wang, W. B., Zhang, L. X., Zhu, Q. S., and Wang, L., Differential gene expression and functional analysis of pit cells from regenerating rat liver, vol. 10, pp. 678-692, 2011.
Bouwens L and Wisse E (1992). Pit cells in the liver. Liver 12: 3-9. doi:10.1111/j.1600-0676.1992.tb00547.x Clavien PA (2008). Liver regeneration: a spotlight on the novel role of platelets and serotonin. Swiss Med. Wkly. 138: 361-370. PMid:18587687 Diehl AM and Rai R (1996). Review: regulation of liver regeneration by pro-inflammatory cytokines. J. Gastroenterol. Hepatol. 11: 466-470. doi:10.1111/j.1440-1746.1996.tb00292.x PMid:8743919 Dong Z, Wei H, Sun R and Tian Z (2007). The roles of innate immune cells in liver injury and regeneration. Cell Mol. Immunol. 4: 241-252. PMid:17764614 Francavilla A, Vujanovic NL, Polimeno L, Azzarone A, et al. (1997). The in vivo effect of hepatotrophic factors augmenter of liver regeneration, hepatocyte growth factor, and insulin-like growth factor-II on liver natural killer cell functions. Hepatology 25: 411-415. PMid:9021955    PMCid:2993082 Gao B, Radaeva S and Park O (2009). Liver natural killer and natural killer T cells: immunobiology and emerging roles in liver diseases. J. Leukoc. Biol. 86: 513-528. Griffini P, Smorenburg SM, Vogels IM, Tigchelaar W, et al. (1996). Kupffer cells and pit cells are not effective in the defense against experimentally induced colon carcinoma metastasis in rat liver. Clin. Exp. Metastasis 14: 367-380. doi:10.1007/BF00123396 PMid:18590573    PMCid:2481271 Guo W, Cai C, Wang C, Zhao L, et al. (2008). A preliminary analysis of genome structure and composition in Gossypium hirsutum. B. M. C. Genomics 9: 314. doi:10.1186/1471-2164-9-314 He CX, Lai XF, Wang L, Jin YF, et al. (2009). Isolation, purification and identification of pit cells in rat liver. Henan Sci. 27: 1072-1076. Higgins GM and Anderson RM (1931). Experimental pathology of the liver I. Restoration of the liver of the white rat following partial surgical removal. Arch. Pathol. 12: 186-202. Kmiec Z (2001). Cooperation of liver cells in health and disease. Adv. Anat. Embryol. Cell Biol. 161: III-151. PMid:17376245    PMCid:1847526 Kube DM, Savci-Heijink CD, Lamblin AF, Kosari F, et al. (2007). Optimization of laser capture microdissection and RNA amplification for gene expression profiling of prostate cancer. BMC Mol. Biol. 8: 25. doi:10.1186/1471-2199-8-25 Li H, Chen X, Zhang F, Ma J, et al. (2007). Expression patterns of the cell junction-associated genes during rat liver regeneration. J. Genet. Genomics 34: 892-908. doi:10.1016/S1673-8527(07)60101-5 PMid:15057602 Nakatani K, Kaneda K, Seki S and Nakajima Y (2004). Pit cells as liver-associated natural killer cells: morphology and function. Med. Electron. Microsc. 37: 29-36. doi:10.1007/s00795-003-0229-9 PMid:1371051 Norton JN (1992). Total RNA isolation by a rapid centrifugation method. Am. Biotechnol. Lab. 10: 41. Paschos K, Canovas D and Bird N (2008). Malignant cell interactions with cells of the hepatic sinusoids mediate primarily the development of colorectal cancer liver metastasis. Ann. Gastroenterol. 21: 98-108. PMid:12576416 Ravandi F, Talpaz M and Estrov Z (2003). Modulation of cellular signaling pathways: prospects for targeted therapy in hematological malignancies. Clin. Cancer Res. 9: 535-550. PMid:7216231 Revel JP, Yancey SB, Meyer DJ and Nicholson B (1980). Cell junctions and intercellular communication. In Vitro 16: 1010-1017. doi:10.1007/BF02619251 PMid:8563804 Scott RJ (1995). Isolation of whole cell (total) RNA. Methods Mol. Biol. 49: 197-202. PMid:12177410    PMCid:123230 Su AI, Guidotti LG, Pezacki JP, Chisari FV, et al. (2002). Gene expression during the priming phase of liver regeneration after partial hepatectomy in mice. Proc. Natl. Acad. Sci. U. S. A. 99: 11181-11186. doi:10.1073/pnas.122359899 PMid:18302533 Swain MG (2008). Hepatic NKT cells: friend or foe? Clin. Sci. 114: 457-466. doi:10.1042/CS20070328 PMid:15459664 Taub R (2004). Liver regeneration: from myth to mechanism. Nat. Rev. Mol. Cell Biol. 5: 836-847. doi:10.1038/nrm1489 PMid:20339955 Wang GP and Xu CS (2010). Reference gene selection for real-time RT-PCR in eight kinds of rat regenerating hepatic cells. Mol. Biotechnol. 46: 49-57. doi:10.1007/s12033-010-9274-5 PMid:17344234 Wang JZ, Du Z, Payattakool R, Yu PS, et al. (2007). A new method to measure the semantic similarity of GO terms. Bioinformatics 23: 1274-1281. doi:10.1093/bioinformatics/btm087 PMid:19672731 Wang WB, Fan JM, Zhang XL, Xu J, et al. (2009). Serial expression analysis of liver regeneration-related genes in rat regenerating liver. Mol. Biotechnol. 43: 221-231. doi:10.1007/s12033-009-9199-z PMid:20448144 Wei H, Wei H, Wang H, Tian Z, et al. (2010). Activation of natural killer cells inhibits liver regeneration in toxin-induced liver injury model in mice via a tumor necrosis factor-alpha-dependent mechanism. Am. J. Physiol. Gastrointest. Liver Physiol. 299: G275-G282. doi:10.1152/ajpgi.00026.2010 PMid:18991167    PMCid:2657316 Xu CS, Shao HY, Liu SS, Qin B, et al. (2009). Possible regulation of genes associated with intracellular signaling cascade in rat liver regeneration. Scand. J. Gastroenterol. 44: 462-470. doi:10.1080/00365520802495560 PMid:19998497    PMCid:2791269 Zheng ZY, Weng SY and Yu Y (2009). Signal molecule-mediated hepatic cell communication during liver regeneration. World J. Gastroenterol. 15: 5776-5783. doi:10.3748/wjg.15.5776
X. J. Bu, Liu, L., Wang, L., and Nie, L. W., Isolation and characterization of 21 novel polymorphic microsatellite loci in the Chinese soft-shelled turtle Pelodiscus sinensis, vol. 10. pp. 1006-1010, 2011.
Altherr S and Freyer D (2000). Asian turtles are threatened by extinction. Turtle Tortoise Newsl. 1: 7-11. Bloor PA, Barker FS, Watts PC and Noyes HA (2001). Microsatellite libraries by enrichment. Available at [http://www.genomics.liv.ac.uk/animal/MICROSAT.PDF]. Accessed January 2009. Bonin F, Devaux B and Dupré A (2006). Turtles of the World. Johns Hopkins University Press, Baltimore, 146-147. Fischer D and Bachmann K (1998). Microsatellite enrichment in organisms with large genomes (Allium cepa L.). Biotechniques 24: 796-800, 802. PMid:9591129 Kalinowski ST, Taper ML and Marshall TC (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16: 1099-1106. doi:10.1111/j.1365-294X.2007.03089.x PMid:17305863 Que Y, Zhu B, Rosenthal H and Chang JB (2007). Isolation and characterization of microsatellites in Chinese soft-shelled turtle, Pelodiscus sinensis. Mol. Ecol. 7: 1265-1267. doi:10.1111/j.1471-8286.2007.01850.x Raymond M and Rousset F (1995). GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Heredity 86: 248-249. Sambrook J and Russell DW (2001). Molecular Cloning. 3rd edn. Cold Spring Harbor Laboratory Press, New York. Van Oosterhout C, Hutchinson WF, Wills DPM and Shipley P (2004). Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4: 535-538. doi:10.1111/j.1471-8286.2004.00684.x Zhao EM (1998). China Red Data Book of Endangered Animals. In: Amphibia and Reptilia. Science Press, Beijing, 167-169.
R. L. Sun, Wang, H. Y., Yang, X. Y., Sheng, Z. J., Li, L. M., Wang, L., Wang, Z. G., and Fei, J., Resistance to lipopolysaccharide-induced endotoxic shock in heterozygous Zfp191 gene-knockout mice, vol. 10, pp. 3712-3721, 2011.
Albanese V, Biguet NF, Kiefer H, Bayard E, et al. (2001). Quantitative effects on gene silencing by allelic variation at a tetranucleotide microsatellite. Hum. Mol. Genet. 10: 1785-1792. http://dx.doi.org/10.1093/hmg/10.17.1785 PMid:11532988   Edelstein LC and Collins T (2005). The SCAN domain family of zinc finger transcription factors. Gene 359: 1-17. http://dx.doi.org/10.1016/j.gene.2005.06.022 PMid:16139965   Halees AS, Leyfer D and Weng Z (2003). PromoSer: A large-scale mammalian promoter and transcription start site identification service. Nucleic Acids Res. 31: 3554-3559. http://dx.doi.org/10.1093/nar/gkg549 PMid:12824364 PMCid:168956   Han ZG, Zhang QH, Ye M, Kan LX, et al. (1999). Molecular cloning of six novel Kruppel-like zinc finger genes from hematopoietic cells and identification of a novel transregulatory domain KRNB. J. Biol. Chem. 274: 35741-35748. http://dx.doi.org/10.1074/jbc.274.50.35741 PMid:10585455   Harper J, Yan L, Loureiro RM, Wu I, et al. (2007). Repression of vascular endothelial growth factor expression by the zinc finger transcription factor ZNF24. Cancer Res. 67: 8736-8741. http://dx.doi.org/10.1158/0008-5472.CAN-07-1617 PMid:17875714   Khalfallah O, Faucon-Biguet N, Nardelli J, Meloni R, et al. (2008). Expression of the transcription factor Zfp191 during embryonic development in the mouse. Gene Expr. Patterns 8: 148-154. http://dx.doi.org/10.1016/j.gep.2007.11.002 PMid:18096443   Khalfallah O, Ravassard P, Lagache CS, Fligny C, et al. (2009). Zinc finger protein 191 (ZNF191/Zfp191) is necessary to maintain neural cells as cycling progenitors. Stem Cells 27: 1643-1653. http://dx.doi.org/10.1002/stem.88 PMid:19544452   Kyriakis JM and Avruch J (2001). Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev. 81: 807-869. PMid:11274345   Lee JC, Kassis S, Kumar S, Badger A, et al. (1999). p38 mitogen-activated protein kinase inhibitors-mechanisms and therapeutic potentials. Pharmacol. Ther. 82: 389-397. http://dx.doi.org/10.1016/S0163-7258(99)00008-X   Li J, Chen X, Yang H, Wang S, et al. (2006). The zinc finger transcription factor 191 is required for early embryonic development and cell proliferation. Exp. Cell Res. 312: 3990-3998. http://dx.doi.org/10.1016/j.yexcr.2006.08.020 PMid:17064688   Li J, Chen X, Gong X, Liu Y, et al. (2009). A transcript profiling approach reveals the zinc finger transcription factor ZNF191 is a pleiotropic factor. BMC Genomics 10: 241. http://dx.doi.org/10.1186/1471-2164-10-241 PMid:19463170 PMCid:2694838   Lu D, Searles MA and Klug A (2003). Crystal structure of a zinc-finger-RNA complex reveals two modes of molecular recognition. Nature 426: 96-100. http://dx.doi.org/10.1038/nature02088 PMid:14603324   Mannel DN (2007). Advances in sepsis research derived from animal models. Int. J. Med. Microbiol. 297: 393-400. http://dx.doi.org/10.1016/j.ijmm.2007.03.005 PMid:17452126   Manthey CL, Wang SW, Kinney SD and Yao Z (1998). SB202190, a selective inhibitor of p38 mitogen-activated protein kinase, is a powerful regulator of LPS-induced mRNAs in monocytes. J. Leukoc. Biol. 64: 409-417. PMid:9738669   Moriyama M, Matsukawa A, Kudoh S, Takahashi T, et al. (2006). The neuropeptide neuromedin U promotes IL-6 production from macrophages and endotoxin shock. Biochem. Biophys. Res. Commun. 341: 1149-1154. http://dx.doi.org/10.1016/j.bbrc.2006.01.075 PMid:16466693   Noll L, Peterson FC, Hayes PL, Volkman BF, et al. (2008). Heterodimer formation of the myeloid zinc finger 1 SCAN domain and association with promyelocytic leukemia nuclear bodies. Leuk. Res. 32: 1582-1592. http://dx.doi.org/10.1016/j.leukres.2008.03.024 PMid:18472161   Prost JF, Negre D, Cornet-Javaux F, Cortay JC, et al. (1999). Isolation, cloning, and expression of a new murine zinc finger encoding gene. Biochim. Biophys. Acta 1447: 278-283. http://dx.doi.org/10.1016/S0167-4781(99)00157-8   Remick DG and Ward PA (2005). Evaluation of endotoxin models for the study of sepsis. Shock 24 (Suppl 1): 7-11. http://dx.doi.org/10.1097/01.shk.0000191384.34066.85 PMid:16374366   Roth K, Chen WM and Lin TJ (2008). Positive and negative regulatory mechanisms in high-affinity IgE receptor-mediated mast cell activation. Arch. Immunol. Ther. Exp. 56: 385-399. http://dx.doi.org/10.1007/s00005-008-0041-2 PMid:19082920   Silvestri C, Narimatsu M, von B, I, Liu Y, et al. (2008). Genome-wide identification of Smad/Foxh1 targets reveals a role for Foxh1 in retinoic acid regulation and forebrain development. Dev. Cell 14: 411-423. http://dx.doi.org/10.1016/j.devcel.2008.01.004 PMid:18331719   Sriskandan S and Altmann DM (2008). The immunology of sepsis. J. Pathol. 214: 211-223. http://dx.doi.org/10.1002/path.2274 PMid:18161754   Tarca AL, Draghici S, Khatri P, Hassan SS, et al. (2009). A novel signaling pathway impact analysis. Bioinformatics 25: 75-82. http://dx.doi.org/10.1093/bioinformatics/btn577 PMid:18990722 PMCid:2732297   van der Poll T and van Deventer SJ (1999). Cytokines and anticytokines in the pathogenesis of sepsis. Infect. Dis. Clin. North Am. 13: 413-26, ix. http://dx.doi.org/10.1016/S0891-5520(05)70083-0   Wang H, Sun R, Liu G, Yao M, et al. (2008). Characterization of the target DNA sequence for the DNA-binding domain of zinc finger protein 191. Acta Biochim. Biophys. Sin. 40: 704-710.   Watanabe E, Hirasawa H, Oda S, Matsuda K, et al. (2005). Extremely high interleukin-6 blood levels and outcome in the critically ill are associated with tumor necrosis factor- and interleukin-1-related gene polymorphisms. Crit. Care Med. 33: 89-97. http://dx.doi.org/10.1097/01.CCM.0000150025.79100.7D PMid:15644653
T. - Y. Wang, Wang, L., and Wang, F., Simplified preparation of a DNA ladder using PCR, vol. 10. pp. 1631-1635, 2011.
Hu ALW, Hartley JL and Jordan HJ (2005). Nucleic Acid Ladders. US Patent No. 6,924,098. Invitrogen Corporation, Carlsbad. Hyman ED (1998). DNA Ladders. US Patent No. 5,840,575. United States Patent Office, Alexandria. Wang TY, Guo L and Zhang JH (2010). Preparation of DNA ladder based on multiplex PCR technique. J. Nucleic Acids 2010. Doi 10.4061/2010/421803. http://dx.doi.org/10.4061/2010/421803 PMid:20725620    PMCid:2915804 Wei LJ, Wei YT, Huang XF, Wei XQ, et al. (2004). Construction of a new kind of DNA marker vector. Biotechnology 14: 33-35. Zhu CJ, Wei QY, Qu WL and Ding H (2005). Experimental study on making a new DNA marker from positive and negative DNA samples. Acta Med. Sin. 18: 937-938.
T. Y. Wang, Wang, L., Zhang, J. H., and Dong, W. H., A simplified universal genomic DNA extraction protocol suitable for PCR, vol. 10, pp. 519-525, 2011.
Ahmed I, Islam M, Arshad W, Mannan A, et al. (2009). High-quality plant DNA extraction for PCR: an easy approach. J. Appl. Genet. 50: 105-107. http://dx.doi.org/10.1007/BF03195661 PMid:19433907   Biase FH, Franco MM, Goulart LR and Antunes RC (2002). Protocol for extraction of genomic DNA from swine solid tissues. Genet. Mol. Biol. 25: 313-315. http://dx.doi.org/10.1590/S1415-47572002000300011   Cheng YJ, Guo WW, Yi HL, Pang XM, et al. (2003). An efficient protocol for genomic DNA extraction from citrus species. Plant Mol. Biol. Rep. 21: 177a-177g. http://dx.doi.org/10.1007/BF02774246   Doyle JJ and Doyle JL (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11-15.   Hoarau G, Coyer JA, Stam WT and Olsen JL (2007). A fast and inexpensive DNA extraction/purification protocol for brown macroalgae. Mol. Ecol. Notes 7: 191-193. http://dx.doi.org/10.1111/j.1471-8286.2006.01587.x   Huang X, Zeller FJ, Hsam SL, Wenzel G, et al. (2000). Chromosomal location of AFLP markers in common wheat utilizing nulli-tetrasomic stocks. Genome 43: 298-305. http://dx.doi.org/10.1139/g99-118 PMid:10791818   Jobes DV, Hurley DL and Thien LB (1995). Plant DNA isolation: a method to efficiently remove polyphenolics, polysac-charides, and RNA. Taxon 44: 379-386. http://dx.doi.org/10.2307/1223408   Kotchoni SO and Gachomo EW (2009). A rapid and hazardous reagent free protocol for genomic DNA extraction suitable for genetic studies in plants. Mol. Biol. Rep. 36: 1633-1636. http://dx.doi.org/10.1007/s11033-008-9362-9 PMid:18781397   Margam VM, Gachomo EW, Shukle JH, Ariyo OO, et al. (2010). A simplified arthropod genomic-DNA extraction protocol for polymerase chain reaction (PCR)-based specimen identification through barcoding. Mol. Biol. Rep. 37: 3631-3635. http://dx.doi.org/10.1007/s11033-010-0014-5 PMid:20204529   Roberge C, Pommier SA and Houde A (1997). Rapid DNA purification for Hal gene PCR diagnosis in porcine tissues and extension to other meat species. Meat Sci. 45: 17-22. http://dx.doi.org/10.1016/S0309-1740(96)00095-2   Sambrook J, Fritsch EF and Maniatis T (1989). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Nova York.   Walsh PS, Metzger DA and Higuchi R (1991). Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10: 506-513. PMid:1867860   Yue GH and Orban L (2005). A simple and affordable method for high-throughput DNA extraction from animal tissues for polymerase chain reaction. Electrophoresis 26: 3081-3083. http://dx.doi.org/10.1002/elps.200410411 PMid:16047311
2010
L. Gao, Wang, L., Yun, H., Su, L., and Su, X., Association of the PPARγ2 gene Pro12Ala variant with primary hypertension and metabolic lipid disorders in Han Chinese of Inner Mongolia, vol. 9, pp. 1312-1320, 2010.
Ahmed W, Ziouzenkova O, Brown J, Devchand P, et al. (2007). PPARs and their metabolic modulation: new mechanisms for transcriptional regulation? J. Intern. Med. 262: 184-198. http://dx.doi.org/10.1111/j.1365-2796.2007.01825.x PMid:17645586   Buzzetti R, Petrone A, Caiazzo AM, Alemanno I, et al. (2005). PPAR-gamma2 Pro12Ala variant is associated with greater insulin sensitivity in childhood obesity. Pediatr. Res. 57: 138-140. http://dx.doi.org/10.1203/01.PDR.0000147728.62185.21 PMid:15531738   Douglas JA, Erdos MR, Watanabe RM, Braun A, et al. (2001). The peroxisome proliferator-activated receptor-gamma2 Pro12A1a variant: association with type 2 diabetes and trait differences. Diabetes 50: 886-890. http://dx.doi.org/10.2337/diabetes.50.4.886 PMid:11289057   Ereqat S, Nasereddin A, Azmi K, Abdeen Z, et al. (2009). Impact of the Pro12Ala polymorphism of the PPAR-gamma 2 gene on metabolic and clinical characteristics in the Palestinian type 2 diabetic patients. PPAR Res. 2009: 874126. http://dx.doi.org/10.1155/2009/874126 PMid:19859551 PMCid:2766506   Gouni-Berthold I, Giannakidou E, Muller-Wieland D, Faust M, et al. (2005). Peroxisome proliferator-activated receptor-gamma2 Pro12Ala and endothelial nitric oxide synthase-4a/b gene polymorphisms are not associated with hypertension in diabetes mellitus type 2. J. Hypertens. 23: 301-308. http://dx.doi.org/10.1097/00004872-200502000-00012 PMid:15662218   Greene ME, Blumberg B, McBride OW, Yi HF, et al. (1995). Isolation of the human peroxisome proliferator activated receptor gamma cDNA: expression in hematopoietic cells and chromosomal mapping. Gene Expr. 4: 281-299. PMid:7787419   Hasstedt SJ, Ren QF, Teng K and Elbein SC (2001). Effect of the peroxisome proliferator-activated receptor-gamma 2 pro(12)ala variant on obesity, glucose homeostasis, and blood pressure in members of familial type 2 diabetic kindreds. J. Clin. Endocrinol. Metab. 86: 536-541. http://dx.doi.org/10.1210/jc.86.2.536 PMid:11158005   He W (2009). PPARgamma2 polymorphism and human health. PPAR. Res. 2009: 849538. http://dx.doi.org/10.1155/2009/849538 PMid:19390629 PMCid:2669649   Horiki M, Ikegami H, Fujisawa T, Kawabata Y, et al. (2004). Association of Pro12Ala polymorphism of PPARgamma gene with insulin resistance and related diseases. Diabetes Res. Clin. Pract. 66 (Suppl 1): S63-S67. http://dx.doi.org/10.1016/j.diabres.2003.09.023 PMid:15563983   Mirzaei H, Akrami SM, Golmohammadi T, Doosti M, et al. (2009). Polymorphism of Pro12Ala in the peroxisome proliferator-activated receptor gamma2 gene in Iranian diabetic and obese subjects. Metab. Syndr. Relat. Disord. 7: 453-458. http://dx.doi.org/10.1089/met.2008.0099 PMid:19558269   Ostgren CJ, Lindblad U, Melander O, Melander A, et al. (2003). Peroxisome proliferator-activated receptor-gammaPro12Ala polymorphism and the association with blood pressure in type 2 diabetes: Skaraborg Hypertension and Diabetes Project. J. Hypertens. 21: 1657-1662.   Pinterova D, Cerna M, Kolostova K, Novota P, et al. (2004). The frequency of alleles of the Pro12Ala polymorphism in PPARgamma2 is different between healthy controls and patients with type 2 diabetes. Folia Biol. 50: 153-156.   Rodriguez-Esparragon FJ, Rodriguez-Perez JC, Macias-Reyes A and Alamo-Santana F (2003). Peroxisome proliferator-activated receptor-gamma2-Pro12Ala and endothelial nitric oxide synthase-4a/bgene polymorphisms are associated with essential hypertension. J. Hypertens. 21: 1649-1655. http://dx.doi.org/10.1097/00004872-200309000-00013 PMid:12923396   Sookoian S, Garcia SI, Porto PI, Dieuzeide G, et al. (2005). Peroxisome proliferator-activated receptor gamma and its coactivator-1 alpha may be associated with features of the metabolic syndrome in adolescents. J. Mol. Endocrinol. 35: 373-380. http://dx.doi.org/10.1677/jme.1.01837 PMid:16216916   Stefanski A, Majkowska L, Ciechanowicz A, Frankow M, et al. (2006). Association between the Pro12Ala variant of the peroxisome proliferator-activated receptor-gamma2 gene and increased 24-h diastolic blood pressure in obese patients with type II diabetes. J. Hum. Hypertens. 20: 684-692. http://dx.doi.org/10.1038/sj.jhh.1002040 PMid:16625233   Swarbrick MM, Chapman CM, McQuillan BM, Hung J, et al. (2001). A Pro12Ala polymorphism in the human peroxisome proliferator-activated receptor-gamma 2 is associated with combined hyperlipidaemia in obesity. Eur. J. Endocrinol. 144: 277-282. http://dx.doi.org/10.1530/eje.0.1440277 PMid:11248748   Tai ES, Corella D, Deurenberg-Yap M, Adiconis X, et al. (2004). Differential effects of the C1431T and Pro12Ala PPARgamma gene variants on plasma lipids and diabetes risk in an Asian population. J. Lipid Res. 45: 674-685. http://dx.doi.org/10.1194/jlr.M300363-JLR200 PMid:14729856   Tamori Y, Masugi J, Nishino N and Kasuga M (2002). Role of peroxisome proliferator-activated receptor-gamma in maintenance of the characteristics of mature 3T3-L1 adipocytes. Diabetes 51: 2045-2055. http://dx.doi.org/10.2337/diabetes.51.7.2045 PMid:12086932   Tavares V, Hirata RD, Rodrigues AC, Monte O, et al. (2005). Association between Pro12Ala polymorphism of the PPAR-gamma2 gene and insulin sensitivity in Brazilian patients with type-2 diabetes mellitus. Diabetes Obes. Metab. 7: 605-611. http://dx.doi.org/10.1111/j.1463-1326.2004.00453.x PMid:16050954   Vanden Heuvel JP (2007). The PPAR resource page. Biochim. Biophys. Acta 1771: 1108-1112. http://dx.doi.org/10.1016/j.bbalip.2007.03.007 PMid:17493868   Yliharsila H, Eriksson JG, Forsen T, Laakso M, et al. (2004). Interactions between peroxisome proliferator-activated receptor-gamma 2 gene polymorphisms and size at birth on blood pressure and the use of antihypertensive medication. J. Hypertens. 22: 1283-1287. http://dx.doi.org/10.1097/01.hjh.0000125438.28861.a4 PMid:15201543   Zietz B, Barth N, Spiegel D, Schmitz G, et al. (2002). Pro12Ala polymorphism in the peroxisome proliferator-activated receptor-gamma2 (PPARgamma2) is associated with higher levels of total cholesterol and LDL-cholesterol in male Caucasian type 2 diabetes patients. Exp. Clin. Endocrinol. Diabetes 110: 60-66. http://dx.doi.org/10.1055/s-2002-23487 PMid:11928067
X. Z. Kan, Li, X. F., Zhang, L. Q., Chen, L., Qian, C. J., Zhang, X. W., and Wang, L., Characterization of the complete mitochondrial genome of the Rock pigeon, Columba livia (Columbiformes: Columbidae), vol. 9, pp. 1234-1249, 2010.
Boore JL (1999). Animal mitochondrial genomes. Nucleic Acids Res. 27: 1767-1780. http://dx.doi.org/10.1093/nar/27.8.1767 PMid:10101183 PMCid:148383   Brown GG, Gadaleta G, Pepe G, Saccone C, et al. (1986). Structural conservation and variation in the D-loop-containing region of vertebrate mitochondrial DNA. J. Mol. Biol. 192: 503-511. http://dx.doi.org/10.1016/0022-2836(86)90272-X   Cooper A, Lalueza-Fox C, Anderson S, Rambaut A, et al. (2001). Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution. Nature 409: 704-707. http://dx.doi.org/10.1038/35055536 PMid:11217857   Gibb GC, Kardailsky O, Kimball RT, Braun EL, et al. (2007). Mitochondrial genomes and avian phylogeny: complex characters and resolvability without explosive radiations. Mol. Biol. Evol. 24: 269-280. http://dx.doi.org/10.1093/molbev/msl158 PMid:17062634   Haddrath O and Baker AJ (2001). Complete mitochondrial DNA genome sequences of extinct birds: ratite phylogenetics and the vicariance biogeography hypothesis. Proc. Biol. Sci. 268: 939-945. http://dx.doi.org/10.1098/rspb.2001.1587 PMid:11370967 PMCid:1088691   Hall AT (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symp. Ser. 41: 95-98.   Harlid A, Janke A and Arnason U (1998). The complete mitochondrial genome of Rhea americana and early avian divergences. J. Mol. Evol. 46: 669-679. http://dx.doi.org/10.1007/PL00006347 PMid:9608049   Harrison GL, McLenachan PA, Phillips MJ, Slack KE, et al. (2004). Four new avian mitochondrial genomes help get to basic evolutionary questions in the late cretaceous. Mol. Biol. Evol. 21: 974-983. http://dx.doi.org/10.1093/molbev/msh065 PMid:14739240   Hazkani-Covo E, Zeller RM and Martin W (2010). Molecular poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear genomes. PLoS Genet. 6: e1000834. http://dx.doi.org/10.1371/journal.pgen.1000834 PMid:20168995 PMCid:2820518   Howard R and Moore A (2003). The Howard and Moore Complete Checklist of the Birds of the World. 3rd edn. Christopher Helm, London.   L'Abbé D, Duhaime JF, Lang BF and Morais R (1991). The transcription of DNA in chicken mitochondria initiates from one major bidirectional promoter. J. Biol. Chem. 266: 10844-10850. PMid:1710214   Larkin MA, Blackshields G, Brown NP, Chenna R, et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948. http://dx.doi.org/10.1093/bioinformatics/btm404 PMid:17846036   Livezey BC and Zusi RL (2007). Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion. Zool. J. Linn. Soc. 149: 1-95. http://dx.doi.org/10.1111/j.1096-3642.2006.00293.x PMid:18784798 PMCid:2517308   Lohse M, Drechsel O and Bock R (2007). OrganellarGenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr. Genet. 52: 267-274. http://dx.doi.org/10.1007/s00294-007-0161-y PMid:17957369   Lowe TM and Eddy SR (1997). tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25: 955-964. PMid:9023104 PMCid:146525   Mindell DP, Sorenson MD and Dimcheff DE (1998). Multiple independent origins of mitochondrial gene order in birds. Proc. Natl. Acad. Sci. U. S. A. 95: 10693-10697. http://dx.doi.org/10.1073/pnas.95.18.10693 PMid:9724766 PMCid:27957   Moore WS (1995). Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nuclear-gene trees. Evolution 49: 718-726. http://dx.doi.org/10.2307/2410325   Morgan-Richards M, Trewick SA, Bartosch-Harlid A, Kardailsky O, et al. (2008). Bird evolution: testing the Metaves clade with six new mitochondrial genomes. BMC Evol. Biol. 8: 20. http://dx.doi.org/10.1186/1471-2148-8-20 PMid:18215323 PMCid:2259304   Nishibori M, Hayashi T, Tsudzuki M, Yamamoto Y, et al. (2001). Complete sequence of the Japanese quail (Coturnix japonica) mitochondrial genome and its genetic relationship with related species. Anim. Genet. 32: 380-385. http://dx.doi.org/10.1046/j.1365-2052.2001.00795.x PMid:11736810   Nishibori M, Shimogiri T, Hayashi T and Yasue H (2005). Molecular evidence for hybridization of species in the genus Gallus except for Gallus varius. Anim Genet. 36: 367-375. http://dx.doi.org/10.1111/j.1365-2052.2005.01318.x PMid:16167978   Paton T, Haddrath O and Baker AJ (2002). Complete mitochondrial DNA genome sequences show that modern birds are not descended from transitional shorebirds. Proc. Biol. Sci. 269: 839-846. http://dx.doi.org/10.1098/rspb.2002.1961 PMid:11958716 PMCid:1690957   Pereira SL, Johnson KP, Clayton DH and Baker AJ (2007). Mitochondrial and nuclear DNA sequences support a Cretaceous origin of Columbiformes and a dispersal-driven radiation in the Paleocene. Syst. Biol. 56: 656-672. http://dx.doi.org/10.1080/10635150701549672 PMid:17661233   Perna NT and Kocher TD (1995). Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 41: 353-358. http://dx.doi.org/10.1007/BF01215182 PMid:7563121   Pratt RC, Gibb GC, Morgan-Richards M, Phillips MJ, et al. (2009). Toward resolving deep neoaves phylogeny: data, signal enhancement, and priors. Mol. Biol. Evol. 26: 313-326. http://dx.doi.org/10.1093/molbev/msn248 PMid:18981298   Randi E and Lucchini V (1998). Organization and evolution of the mitochondrial DNA control region in the avian genus Alectoris. J. Mol. Evol. 47: 449-462. http://dx.doi.org/10.1007/PL00006402 PMid:9767690   Rokas A, Williams BL, King N and Carroll SB (2003). Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425: 798-804. http://dx.doi.org/10.1038/nature02053 PMid:14574403   Saccone C, Pesole G and Sbisa E (1991). The main regulatory region of mammalian mitochondrial DNA: structure-function model and evolutionary pattern. J. Mol. Evol. 33: 83-91. http://dx.doi.org/10.1007/BF02100199 PMid:1909377   Sambrook J and Russell DW (2001). Molecular Cloning: A Laboratory Manual. 3rd edn. Cold Spring Harbor Laboratory Press, New York.   San Mauro D, Garcia-Paris M and Zardoya R (2004). Phylogenetic relationships of discoglossid frogs (Amphibia: Anura: Discoglossidae) based on complete mitochondrial genomes and nuclear genes. Gene 343: 357-366. http://dx.doi.org/10.1016/j.gene.2004.10.001 PMid:15588590   Sbisa E, Tanzariello F, Reyes A, Pesole G, et al. (1997). Mammalian mitochondrial D-loop region structural analysis: identification of new conserved sequences and their functional and evolutionary implications. Gene 205: 125-140. http://dx.doi.org/10.1016/S0378-1119(97)00404-6   Shadel GS and Clayton DA (1997). Mitochondrial DNA maintenance in vertebrates. Annu. Rev. Biochem. 66: 409-435. http://dx.doi.org/10.1146/annurev.biochem.66.1.409 PMid:9242913   Shen X, Tian M, Liu Z, Cheng H, et al. (2009). Complete mitochondrial genome of the sea cucumber Apostichopus japonicus (Echinodermata: Holothuroidea): the first representative from the subclass Aspidochirotacea with the echinoderm ground pattern. Gene 439: 79-86. http://dx.doi.org/10.1016/j.gene.2009.03.008 PMid:19306915   Slack KE, Janke A, Penny D and Arnason U (2003). Two new avian mitochondrial genomes (penguin and goose) and a summary of bird and reptile mitogenomic features. Gene 302: 43-52. http://dx.doi.org/10.1016/S0378111902010533 PMid:12527195   Slack KE, Jones CM, Ando T, Harrison GL, et al. (2006). Early penguin fossils, plus mitochondrial genomes, calibrate avian evolution. Mol. Biol. Evol. 23: 1144-1155. http://dx.doi.org/10.1093/molbev/msj124 PMid:16533822   Slack KE, Delsuc F, McLenachan PA, Arnason U, et al. (2007). Resolving the root of the avian mitogenomic tree by breaking up long branches. Mol. Phylogenet. Evol. 42: 1-13. http://dx.doi.org/10.1016/j.ympev.2006.06.002 PMid:16854605   Walberg MW and Clayton DA (1981). Sequence and properties of the human KB cell and mouse L cell D-loop regions of mitochondrial DNA. Nucleic Acids Res. 9: 5411-5421. http://dx.doi.org/10.1093/nar/9.20.5411 PMid:7301592 PMCid:327529   Wang C, Chen Q, Lu G, Xu J, et al. (2008). Complete mitochondrial genome of the grass carp (Ctenopharyngodon idella, Teleostei): insight into its phylogenic position within Cyprinidae. Gene 424: 96-101. http://dx.doi.org/10.1016/j.gene.2008.07.011 PMid:18706492   Wolstenholme DR (1992). Animal mitochondrial DNA: structure and evolution. Int. Rev. Cytol. 141: 173-216. http://dx.doi.org/10.1016/S0074-7696(08)62066-5   Wyman SK, Jansen RK and Boore JL (2004). Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20: 3252-3255. http://dx.doi.org/10.1093/bioinformatics/bth352 PMid:15180927   Xia X and Xie Z (2001). DAMBE: software package for data analysis in molecular biology and evolution. J. Hered. 92: 371-373. http://dx.doi.org/10.1093/jhered/92.4.371 PMid:11535656

Pages