Publications

Found 10 results
Filters: Author is L. Qin  [Clear All Filters]
2012
Y. D. Sun, Liang, Y., Wu, J. M., Li, Y. Z., Cui, X., and Qin, L., Dynamic QTL analysis for fruit lycopene content and total soluble solid content in a Solanum lycopersicum x S. pimpinellifolium cross, vol. 11, pp. 3696-3710, 2012.
Arazuri S, Jarén C, Arana JI and Pérez de Ciriza JJ (2007). Influence of mechanical harvest on the physical properties of processing tomato (Lycopersicon esculentum Mill.). J. Food Eng. 80: 190-198. http://dx.doi.org/10.1016/j.jfoodeng.2006.05.008   Bernacchi D, Beck-Bunn T, Eshed Y, Lopez J, et al. (1998). Advanced backcross QTL analysis in tomato. I. Identification of QTLs for traits of agronomic importance from Lycopersicon hirsutum. Theor. Appl. Genet. 97: 381-397. http://dx.doi.org/10.1007/s001220050908   Cagas CC, Lee OL, Keisuke N and Nobuo S (2008). Quantitative trait loci controlling flowering time and related traits in a Solanum lycopersicum x S. pimpinellifolium cross. Sci. Hort. 116: 144-151. http://dx.doi.org/10.1016/j.scienta.2007.12.003   Causse M, Saliba-Colombani V, Lecomte L, Duffe P, et al. (2002). QTL analysis of fruit quality in fresh market tomato: a few chromosome regions control the variation of sensory and instrumental traits. J. Exp. Bot. 53: 2089-2098. http://dx.doi.org/10.1093/jxb/erf058 PMid:12324532   Causse M, Duffe P, Gomez MC, Buret M, et al. (2004). A genetic map of candidate genes and QTLs involved in tomato fruit size and composition. J. Exp. Bot. 55: 1671-1685. http://dx.doi.org/10.1093/jxb/erh207 PMid:15258170   Causse M, Chaib J, Lecomte L, Buret M, et al. (2007). Both additivity and epistasis control the genetic variation for fruit quality traits in tomato. Theor. Appl. Genet. 115: 429-442. http://dx.doi.org/10.1007/s00122-007-0578-1 PMid:17571252   Chaib J, Lecomte L, Buret M and Causse M (2006). Stability over genetic backgrounds, generations and years of quantitative trait locus (QTLs) for organoleptic quality in tomato. Theor. Appl. Genet. 112: 934-944. http://dx.doi.org/10.1007/s00122-005-0197-7 PMid:16402187   Chen FQ, Foolad MR, Hyman J, Clair DASt, et al. (1999). Mapping of QTLs for lycopene and other fruit traits in a Lycopersicon esculentum x L. pimpinellifolium cross and comparison of QTLs across tomato species. Mol. Breed. 5: 283-299. http://dx.doi.org/10.1023/A:1009656910457   Doganlar S, Frary A, Ku HM and Tanksley SD (2002). Mapping quantitative trait loci in inbred backcross lines of Lycopersicon pimpinellifolium (LA1589). Genome 45: 1189-1202. http://dx.doi.org/10.1139/g02-091 PMid:12502266   Eshed Y and Zamir D (1996). Less-than-additive epistatic interactions of quantitative trait loci in tomato. Genetics 143: 1807-1817. PMid:8844166 PMCid:1207441   Foolad MR (2007). Genome mapping and molecular breeding of tomato. Int. J. Plant Genomics 2007: 64358. http://dx.doi.org/10.1155/2007/64358 PMid:18364989 PMCid:2267253   Frary A, Fulton TM, Zamir D and Tanksley SD (2004). Advanced backcross QTL analysis of a Lycopersicon esculentum x L. pennellii cross and identification of possible orthologs in the Solanaceae. Theor. Appl. Genet. 108: 485-496. http://dx.doi.org/10.1007/s00122-003-1422-x PMid:14740082   Fulton TM, Chunwingse J and Tanksley SD (1995). Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol. Biol. Rep. 13: 207-209. http://dx.doi.org/10.1007/BF02670897   Fulton TM, Beck-Bunn T, Emmatty D, Eshed Y, et al. (1997). QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theor. Appl. Genet. 95: 881-894. http://dx.doi.org/10.1007/s001220050639   Fulton TM, Grandillo S, Beck-Bunn T, Fridman E, et al. (2000). Advanced backcross QTL analysis of a Lycopersicon esculentum x Lycopersicon parviflorum cross. Theor. Appl. Genet. 100: 1025-1042. http://dx.doi.org/10.1007/s001220051384   Grandillo S and Tanksley SD (1996). QTL analysis of horticultural traits differentiating the cultivated tomato from the closely related species Lycopersicon pimpinellifolium. Theor. Appl. Genet. 92: 935-951. http://dx.doi.org/10.1007/BF00224033   Grandillo S, Ku HM and Tanksley SD (1999). Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theor. Appl. Genet. 99: 978-987. http://dx.doi.org/10.1007/s001220051405   Gur A and Zamir D (2004). Unused natural variation can lift yield barriers in plant breeding. PLoS Biol. 2: e245. http://dx.doi.org/10.1371/journal.pbio.0020245 PMid:15328532 PMCid:514488   Gur A, Semel Y, Osorio S, Friedmann M, et al. (2011). Yield quantitative trait loci from wild tomato are predominately expressed by the shoot. Theor. Appl. Genet. 122: 405-420. http://dx.doi.org/10.1007/s00122-010-1456-9 PMid:20872209 PMCid:3021191   Heather EY, Anne F, Sami D, Anna F, et al. (2004). Comparative fine mapping of fruit quality QTLs on chromosome 4 introgressions derived from two wild tomato species. Euphytica 135: 283-296. http://dx.doi.org/10.1023/B:EUPH.0000013314.04488.87   Kader AA (1986). Effects of postharvest handling procedures on tomato quality. Acta Hort. 190: 209-221.   Ku HM, Grandillo S and Tanksley SD (2000). fs8.1, a major QTL, sets the pattern of tomato carpel shape well before anthesis. Theor. Appl. Genet. 101: 873-878. http://dx.doi.org/10.1007/s001220051555   Kuan-Hung L, Wei-Lung Y, Huei-Mei C and Hsiao-Feng L (2010). Quantitative trait loci influencing fruit-related characteristics of tomato grown in high-temperature conditions. Euphytica 174: 119-135. http://dx.doi.org/10.1007/s10681-010-0147-6   Lavecchia R and Zuorro A (2008). Improved lycopene extraction from tomato peels using cell-wall degrading enzymes. Eur. Food Res. Technol. 228: 153-158. http://dx.doi.org/10.1007/s00217-008-0897-8   Lecomte L, Duffe P, Buret M, Servin B, et al. (2004). Marker-assisted introgression of five QTLs controlling fruit quality traits into three tomato lines revealed interactions between QTLs and genetic backgrounds. Theor. Appl. Genet. 109: 658-668. http://dx.doi.org/10.1007/s00122-004-1674-0 PMid:15112037   Ma F and Cheng L (2003). The sun-exposed peel of apple fruit has higher xanthophyll cycle-dependent thermal dissipation and antioxidants of the ascorbate-glutathione pathway than the shaded peel. Plant Sci. 165: 819-827. http://dx.doi.org/10.1016/S0168-9452(03)00277-2   Riadh I, Chafik H, Marcello SL, Imen T, et al. (2011). Antioxidant activity and bioactive compound changes during fruit ripening of high-lycopene tomato cultivars. J. Food Compost. Anal. 24: 588-595. http://dx.doi.org/10.1016/j.jfca.2010.11.003   Roberto L and Antonio Z (2008). Improved lycopene extraction from tomato peels using cell-wall degrading enzymes. Eur. Food Res. Technol. 228: 153-158. http://dx.doi.org/10.1007/s00217-008-0897-8   Rousseaux MC, Jones CM, Adams D, Chetelat R, et al. (2005). QTL analysis of fruit antioxidants in tomato using Lycopersicon pennellii introgression lines. Theor. Appl. Genet. 111: 1396-1408. http://dx.doi.org/10.1007/s00122-005-0071-7 PMid:16177901   Saliba-Colombani V, Causse M, Langlois D, Philouze J, et al. (2001). Genetic analysis of organoleptic quality in fresh market tomato. 1. Mapping QTLs for physical and chemical traits. Theor. Appl. Genet. 102: 259-272. http://dx.doi.org/10.1007/s001220051643   Semel Y, Nissenbaum J, Menda N, Zinder M, et al. (2006). Overdominant quantitative trait loci for yield and fitness in tomato. Proc. Natl. Acad. Sci. U. S. A. 103: 12981-12986. http://dx.doi.org/10.1073/pnas.0604635103 PMid:16938842 PMCid:1552043   Shirasawa K, Asamizu E, Fukuoka H, Ohyama A, et al. (2010). An interspecific linkage map of SSR and intronic polymorphism markers in tomato. Theor. Appl. Genet. 121: 731-739. http://dx.doi.org/10.1007/s00122-010-1344-3 PMid:20431859 PMCid:2909429   Sonah H, Deshmukh RK, Singh VP, Gupta DK, et al. (2011). Genomic resources in horticultural crops: status, utility and challenges. Biotechnol. Adv. 29: 199-209. http://dx.doi.org/10.1016/j.biotechadv.2010.11.002 PMid:21094247   Tanksley SD, Grandillo S, Fulton TM, Zamir D, et al. (1996). Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor. Appl. Genet. 92: 213-224. http://dx.doi.org/10.1007/BF00223378   Thorup TA, Tanyolac B, Livingstone KD, Popovsky S, et al. (2000). Candidate gene analysis of organ pigmentation loci in the Solanaceae. Proc. Natl. Acad. Sci. U. S. A. 97: 11192-11197. http://dx.doi.org/10.1073/pnas.97.21.11192 PMid:11027328 PMCid:17176   Wu M and Kubota C (2008). Effects of high electrical conductivity of nutrient solution and its application timing on lycopene, chlorophyll and sugar concentrations of hydroponic tomatoes during ripening. Sci. Hort. 116: 122-129. http://dx.doi.org/10.1016/j.scienta.2007.11.014   Yong-Sheng L, Amit G, Ronen G, Causse M, et al. (2003). There is more to tomato fruit colour than candidate carotenoid genes. Plant Biotechnol. J. 1: 195-207. http://dx.doi.org/10.1046/j.1467-7652.2003.00018.x PMid:17156032
N. Ally, Zou, X. L., Jiang, B. C., Qin, L., Zhai, L., Xiao, P., and Liu, H. L., Inhibition of vascular endothelial growth factor A expression in mouse granulosa cells by lentivector-mediated RNAi, vol. 11, pp. 4019-4033, 2012.
Abramovich D, Irusta G, Parborell F and Tesone M (2010). Intrabursal injection of vascular endothelial growth factor trap in eCG-treated prepubertal rats inhibits proliferation and increases apoptosis of follicular cells involving the PI3K/ AKT signaling pathway. Fertil. Steril. 93: 1369-1377. http://dx.doi.org/10.1016/j.fertnstert.2009.01.127 PMid:19328472   Accili D and Arden KC (2004). FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117: 421-426. http://dx.doi.org/10.1016/S0092-8674(04)00452-0   Barboni B, Turriani M, Galeati G, Spinaci M, et al. (2000). Vascular endothelial growth factor production in growing pig antral follicles. Biol. Reprod. 63: 858-864. http://dx.doi.org/10.1095/biolreprod63.3.858 PMid:10952932   Brummelkamp TR, Bernards R and Agami R (2002). A system for stable expression of short interfering RNAs in mammalian cells. Science 296: 550-553. http://dx.doi.org/10.1126/science.1068999 PMid:11910072   Bruno JB, Celestino JJ, Lima-Verde IB, Lima LF, et al. (2009). Expression of vascular endothelial growth factor (VEGF) receptor in goat ovaries and improvement of in vitro caprine preantral follicle survival and growth with VEGF. Reprod. Fertil. Dev. 21: 679-687. http://dx.doi.org/10.1071/RD08181 PMid:19486605   Celik-Ozenci C, Akkoyunlu G, Kayisli UA, Arici A, et al. (2003). Localization of vascular endothelial growth factor in the zona pellucida of developing ovarian follicles in the rat: a possible role in destiny of follicles. Histochem. Cell Biol. 120: 383-390. http://dx.doi.org/10.1007/s00418-003-0586-4 PMid:14605899   Chang HY, Nishitoh H, Yang X, Ichijo H, et al. (1998). Activation of apoptosis signal-regulating kinase 1 (ASK1) by the adapter protein Daxx. Science 281: 1860-1863. http://dx.doi.org/10.1126/science.281.5384.1860 PMid:9743501   Danforth DR, Arbogast LK, Ghosh S, Dickerman A, et al. (2003). Vascular endothelial growth factor stimulates preantral follicle growth in the rat ovary. Biol. Reprod. 68: 1736-1741. http://dx.doi.org/10.1095/biolreprod.101.000679 PMid:12606430   Doyle LK, Walker CA and Donadeu FX (2010). VEGF modulates the effects of gonadotropins in granulosa cells. Domest. Anim. Endocrinol. 38: 127-137. http://dx.doi.org/10.1016/j.domaniend.2009.08.008 PMid:19815366   Einspanier R, Schonfelder M, Muller K, Stojkovic M, et al. (2002). Expression of the vascular endothelial growth factor and its receptors and effects of VEGF during in vitro maturation of bovine cumulus-oocyte complexes (COC). Mol. Reprod. Dev. 62: 29-36. http://dx.doi.org/10.1002/mrd.10068 PMid:11933158   Elbashir SM, Harborth J, Lendeckel W, Yalcin A, et al. (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411: 494-498. http://dx.doi.org/10.1038/35078107 PMid:11373684   Elbashir SM, Harborth J, Weber K and Tuschl T (2002). Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26: 199-213. http://dx.doi.org/10.1016/S1046-2023(02)00023-3   Ferrara N (2002). VEGF and the quest for tumour angiogenesis factors. Nat. Rev. Cancer 2: 795-803. http://dx.doi.org/10.1038/nrc909 PMid:12360282   Giering JC, Grimm D, Storm TA and Kay MA (2008). Expression of shRNA from a tissue-specific pol II promoter is an effective and safe RNAi therapeutic. Mol. Ther. 16: 1630-1636. http://dx.doi.org/10.1038/mt.2008.144 PMid:18665161   Greenaway J, Connor K, Pedersen HG, Coomber BL, et al. (2004). Vascular endothelial growth factor and its receptor, Flk- 1/KDR, are cytoprotective in the extravascular compartment of the ovarian follicle. Endocrinology 145: 2896-2905. http://dx.doi.org/10.1210/en.2003-1620 PMid:14988387   Hannon GJ (2002). RNA interference. Nature 418: 244-251. http://dx.doi.org/10.1038/418244a PMid:12110901   Hicklin DJ and Ellis LM (2005). Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J. Clin. Oncol. 23: 1011-1027. http://dx.doi.org/10.1200/JCO.2005.06.081 PMid:15585754   Irusta G, Abramovich D, Parborell F and Tesone M (2010). Direct survival role of vascular endothelial growth factor (VEGF) on rat ovarian follicular cells. Mol. Cell Endocrinol. 325: 93-100. http://dx.doi.org/10.1016/j.mce.2010.04.018 PMid:20417686   Klagsbrun M and D'Amore PA (1996). Vascular endothelial growth factor and its receptors. Cytokine Growth Factor Rev. 7: 259-270. http://dx.doi.org/10.1016/S1359-6101(96)00027-5   Kosaka N, Sudo N, Miyamoto A and Shimizu T (2007). Vascular endothelial growth factor (VEGF) suppresses ovarian granulosa cell apoptosis in vitro. Biochem. Biophys. Res. Commun. 363: 733-737. http://dx.doi.org/10.1016/j.bbrc.2007.09.061 PMid:17904528   Lee NS, Dohjima T, Bauer G, Li H, et al. (2002). Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat. Biotechnol. 20: 500-505. PMid:11981565   McManus MT and Sharp PA (2002). Gene silencing in mammals by small interfering RNAs. Nat. Rev. Genet. 3: 737-747. http://dx.doi.org/10.1038/nrg908 PMid:12360232   Okamura Y, Myoumoto A, Manabe N, Tanaka N, et al. (2001). Protein tyrosine kinase expression in the porcine ovary. Mol. Hum. Reprod. 7: 723-729. http://dx.doi.org/10.1093/molehr/7.8.723 PMid:11470859   Paul CP, Good PD, Winer I and Engelke DR (2002). Effective expression of small interfering RNA in human cells. Nat. Biotechnol. 20: 505-508. http://dx.doi.org/10.1038/nbt0502-505 PMid:11981566   Petersen CP, Bordeleau ME, Pelletier J and Sharp PA (2006). Short RNAs repress translation after initiation in mammalian cells. Mol. Cell 21: 533-542. http://dx.doi.org/10.1016/j.molcel.2006.01.031 PMid:16483934   Reynolds A, Leake D, Boese Q, Scaringe S, et al. (2004). Rational siRNA design for RNA interference. Nat. Biotechnol. 22: 326-330. http://dx.doi.org/10.1038/nbt936 PMid:14758366   Shen HL, Xu W, Wu ZY, Zhou LL, et al. (2007). Vector-based RNAi approach to isoform-specific downregulation of vascular endothelial growth factor (VEGF)165 expression in human leukemia cells. Leuk. Res. 31: 515-521. http://dx.doi.org/10.1016/j.leukres.2006.09.011 PMid:17034851   Shi Y (2003). Mammalian RNAi for the masses. Trends Genet. 19: 9-12. http://dx.doi.org/10.1016/S0168-9525(02)00005-7   Tamanini C and De Ambrogi M (2004). Angiogenesis in developing follicle and corpus luteum. Reprod. Domest. Anim. 39: 206-216. http://dx.doi.org/10.1111/j.1439-0531.2004.00505.x PMid:15225273   Tang TT and Lasky LA (2003). The forkhead transcription factor FOXO4 induces the down-regulation of hypoxia-inducible factor 1 alpha by a von Hippel-Lindau protein-independent mechanism. J. Biol. Chem. 278: 30125-30135. http://dx.doi.org/10.1074/jbc.M302042200 PMid:12761217   Terman BI and Dougher-Vermazen M (1996). Biological properties of VEGF/VPF receptors. Cancer Metastasis Rev. 15: 159-163. http://dx.doi.org/10.1007/BF00437468 PMid:8842487   Wolters NM and Mackeigan JP (2008). From sequence to function: using RNAi to elucidate mechanisms of human disease. Cell Death Differ. 15: 809-819. http://dx.doi.org/10.1038/sj.cdd.4402311 PMid:18202701   Wulff C, Wilson H, Wiegand SJ, Rudge JS, et al. (2002). Prevention of thecal angiogenesis, antral follicular growth, and ovulation in the primate by treatment with vascular endothelial growth factor Trap R1R2. Endocrinology 143: 2797-2807. http://dx.doi.org/10.1210/en.143.7.2797 PMid:12072415   Yoo JY, Kim JH, Kwon YG, Kim EC, et al. (2007). VEGF-specific short hairpin RNA-expressing oncolytic adenovirus elicits potent inhibition of angiogenesis and tumor growth. Mol. Ther. 15: 295-302. http://dx.doi.org/10.1038/sj.mt.6300023 PMid:17235307   Zhang GY, Yi CG, Li X, Zheng Y, et al. (2008). Inhibition of vascular endothelial growth factor expression in keloid fibroblasts by vector-mediated vascular endothelial growth factor shRNA: a therapeutic potential strategy for keloid. Arch. Dermatol. Res. 300: 177-184. http://dx.doi.org/10.1007/s00403-007-0825-y PMid:18239926   Zhang L, Yang N, Mohamed-Hadley A, Rubin SC, et al. (2003). Vector-based RNAi, a novel tool for isoform-specific knock-down of VEGF and anti-angiogenesis gene therapy of cancer. Biochem. Biophys. Res. Commun. 303: 1169-1178. http://dx.doi.org/10.1016/S0006-291X(03)00495-9