Found 1 results
Filters: Author is L. Hao  [Clear All Filters]
T. Hasi, Hao, L., Yang, L., and Su, X. L., Acetaldehyde dehydrogenase 2 SNP rs671 and susceptibility to essential hypertension in Mongolians: a case control study, vol. 10, pp. 537-543, 2011.
Amamoto K, Okamura T, Tamaki S, Kita Y, et al. (2002). Epidemiologic study of the association of low-Km mitochondrial acetaldehyde dehydrogenase genotypes with blood pressure level and the prevalence of hypertension in a general population. Hypertens. Res. 25: 857-864. PMid:12484509   Beilin LJ (1995). Alcohol, hypertension and cardiovascular disease. J. Hypertens. 13: 939-942. PMid:8586827   Chen WJ, Loh EW, Hsu YP and Cheng AT (1997). Alcohol dehydrogenase and aldehyde dehydrogenase genotypes and alcoholism among Taiwanese aborigines. Biol. Psychiatry 41: 703-709.   Chen CC, Lu RB, Chen YC, Wang MF, et al. (1999). Interaction between the functional polymorphisms of the alcohol-metabolism genes in protection against alcoholism. Am. J. Hum. Genet. 65: 795-807. PMid:10441588 PMCid:1377988   Chen L, Davey SG, Harbord RM and Lewis SJ (2008). Alcohol intake and blood pressure: a systematic review implementing a Mendelian randomization approach. PLoS. Med. 5: e52. PMid:18318597 PMCid:2265305   Ferguson RA and Goldberg DM (1997). Genetic markers of alcohol abuse. Clin. Chim. Acta 257: 199-250.   Hui P, Nakayama T, Morita A, Sato N, et al. (2007). Common single nucleotide polymorphisms in Japanese patients with essential hypertension: aldehyde dehydrogenase 2 gene as a risk factor independent of alcohol consumption. Hypertens. Res. 30: 585-592. PMid:17785925   Itoh T, Matsumoto M, Nakamura M, Okada A, et al. (1997). Effects of daily alcohol intake on the blood pressure differ depending on an individual's sensitivity to alcohol: oriental flushing as a sign to stop drinking for health reasons. J. Hypertens. 15: 1211-1217. PMid:9383169   Minami J, Todoroki M, Ishimitsu T, Yamamoto H, et al. (2002). Effects of alcohol intake on ambulatory blood pressure, heart rate, and heart rate variability in Japanese men with different ALDH2 genotypes. J. Hum. Hypertens. 16: 345-351. PMid:12082496   Morimoto K and Takeshita T (1996). Low Km aldehyde dehydrogenase (ALDH2) polymorphism, alcohol-drinking behavior, and chromosome alterations in peripheral lymphocytes. Environ. Health Perspect. 104 (Suppl 3): 563-567. PMid:8781384 PMCid:1469639   Nishiyori A, Shibata A, Ogimoto I, Uchimura N, et al. (2005). Alcohol drinking frequency is more directly associated with alcohol use disorder than alcohol metabolizing enzymes among male Japanese. Psychiatry Clin. Neurosci. 59: 38-44. PMid:15679538   Saito K, Yokoyama T, Yoshiike N, Date C, et al. (2003). Do the ethanol metabolizing enzymes modify the relationship between alcohol consumption and blood pressure? J. Hypertens. 21: 1097-1105. PMid:12777946   Takagi S, Baba S, Iwai N, Fukuda M, et al. (2001). The aldehyde dehydrogenase 2 gene is a risk factor for hypertension in Japanese but does not alter the sensitivity to pressor effects of alcohol: the Suita study. Hypertens. Res. 24: 365-370. PMid:11510748   Tsuchihashi-Makaya M, Serizawa M, Yanai K, Katsuya T, et al. (2009). Gene-environmental interaction regarding alcohol-metabolizing enzymes in the Japanese general population. Hypertens. Res. 32: 207-213. PMid:19262484   Wang D (2005). Report on Nutrition and Health Survey of Chinese, 2002 Comprehensive Report. People's Medical Publishing House, Beijing,   Yamamoto K, Ueno Y, Mizoi Y and Tatsuno Y (1993). Genetic polymorphism of alcohol and aldehyde dehydrogenase and the effects on alcohol metabolism. Arukoru Kenkyu to Yakubutsu Izon 28: 13-25. PMid:8512495