Publications

Found 2 results
Filters: Author is T. Hasi  [Clear All Filters]
2011
T. Hasi, Hao, L., Yang, L., and Su, X. L., Acetaldehyde dehydrogenase 2 SNP rs671 and susceptibility to essential hypertension in Mongolians: a case control study, vol. 10, pp. 537-543, 2011.
Amamoto K, Okamura T, Tamaki S, Kita Y, et al. (2002). Epidemiologic study of the association of low-Km mitochondrial acetaldehyde dehydrogenase genotypes with blood pressure level and the prevalence of hypertension in a general population. Hypertens. Res. 25: 857-864. http://dx.doi.org/10.1291/hypres.25.857 PMid:12484509   Beilin LJ (1995). Alcohol, hypertension and cardiovascular disease. J. Hypertens. 13: 939-942. http://dx.doi.org/10.1097/00004872-199509000-00001 PMid:8586827   Chen WJ, Loh EW, Hsu YP and Cheng AT (1997). Alcohol dehydrogenase and aldehyde dehydrogenase genotypes and alcoholism among Taiwanese aborigines. Biol. Psychiatry 41: 703-709. http://dx.doi.org/10.1016/S0006-3223(96)00072-8   Chen CC, Lu RB, Chen YC, Wang MF, et al. (1999). Interaction between the functional polymorphisms of the alcohol-metabolism genes in protection against alcoholism. Am. J. Hum. Genet. 65: 795-807. http://dx.doi.org/10.1086/302540 PMid:10441588 PMCid:1377988   Chen L, Davey SG, Harbord RM and Lewis SJ (2008). Alcohol intake and blood pressure: a systematic review implementing a Mendelian randomization approach. PLoS. Med. 5: e52. http://dx.doi.org/10.1371/journal.pmed.0050052 PMid:18318597 PMCid:2265305   Ferguson RA and Goldberg DM (1997). Genetic markers of alcohol abuse. Clin. Chim. Acta 257: 199-250. http://dx.doi.org/10.1016/S0009-8981(96)06444-3   Hui P, Nakayama T, Morita A, Sato N, et al. (2007). Common single nucleotide polymorphisms in Japanese patients with essential hypertension: aldehyde dehydrogenase 2 gene as a risk factor independent of alcohol consumption. Hypertens. Res. 30: 585-592. http://dx.doi.org/10.1291/hypres.30.585 PMid:17785925   Itoh T, Matsumoto M, Nakamura M, Okada A, et al. (1997). Effects of daily alcohol intake on the blood pressure differ depending on an individual's sensitivity to alcohol: oriental flushing as a sign to stop drinking for health reasons. J. Hypertens. 15: 1211-1217. http://dx.doi.org/10.1097/00004872-199715110-00004 PMid:9383169   Minami J, Todoroki M, Ishimitsu T, Yamamoto H, et al. (2002). Effects of alcohol intake on ambulatory blood pressure, heart rate, and heart rate variability in Japanese men with different ALDH2 genotypes. J. Hum. Hypertens. 16: 345-351. http://dx.doi.org/10.1038/sj.jhh.1001381 PMid:12082496   Morimoto K and Takeshita T (1996). Low Km aldehyde dehydrogenase (ALDH2) polymorphism, alcohol-drinking behavior, and chromosome alterations in peripheral lymphocytes. Environ. Health Perspect. 104 (Suppl 3): 563-567. PMid:8781384 PMCid:1469639   Nishiyori A, Shibata A, Ogimoto I, Uchimura N, et al. (2005). Alcohol drinking frequency is more directly associated with alcohol use disorder than alcohol metabolizing enzymes among male Japanese. Psychiatry Clin. Neurosci. 59: 38-44. http://dx.doi.org/10.1111/j.1440-1819.2005.01329.x PMid:15679538   Saito K, Yokoyama T, Yoshiike N, Date C, et al. (2003). Do the ethanol metabolizing enzymes modify the relationship between alcohol consumption and blood pressure? J. Hypertens. 21: 1097-1105. http://dx.doi.org/10.1097/00004872-200306000-00009 PMid:12777946   Takagi S, Baba S, Iwai N, Fukuda M, et al. (2001). The aldehyde dehydrogenase 2 gene is a risk factor for hypertension in Japanese but does not alter the sensitivity to pressor effects of alcohol: the Suita study. Hypertens. Res. 24: 365-370. http://dx.doi.org/10.1291/hypres.24.365 PMid:11510748   Tsuchihashi-Makaya M, Serizawa M, Yanai K, Katsuya T, et al. (2009). Gene-environmental interaction regarding alcohol-metabolizing enzymes in the Japanese general population. Hypertens. Res. 32: 207-213. http://dx.doi.org/10.1038/hr.2009.3 PMid:19262484   Wang D (2005). Report on Nutrition and Health Survey of Chinese, 2002 Comprehensive Report. People's Medical Publishing House, Beijing,   Yamamoto K, Ueno Y, Mizoi Y and Tatsuno Y (1993). Genetic polymorphism of alcohol and aldehyde dehydrogenase and the effects on alcohol metabolism. Arukoru Kenkyu to Yakubutsu Izon 28: 13-25. PMid:8512495
2010
Z. F. Yang, Cui, H. W., Hasi, T., Jia, S. Q., Gong, M. L., and Su, X. L., Genetic polymorphisms of cytochrome P450 enzymes 2C9 and 2C19 in a healthy Mongolian population in China, vol. 9, pp. 1844-1851, 2010.
Bertilsson L (1995). Geographical/interracial differences in polymorphic drug oxidation. Current state of knowledge of cytochromes P450 (CYP) 2D6 and 2C19. Clin. Pharmacokinet. 29: 192-209. http://dx.doi.org/10.2165/00003088-199529030-00005 PMid:8521680   Chen L, Qin S, Xie J, Tang J, et al. (2008). Genetic polymorphism analysis of CYP2C19 in Chinese Han populations from different geographic areas of mainland China. Pharmacogenomics 9: 691-702. http://dx.doi.org/10.2217/14622416.9.6.691 PMid:18518848   de Morais SM, Wilkinson GR, Blaisdell J, Nakamura K, et al. (1994a). The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J. Biol. Chem. 269: 15419-15422. PMid:8195181   de Morais SM, Wilkinson GR, Blaisdell J, Meyer UA, et al. (1994b). Identification of a new genetic defect responsible for the polymorphism of (S)-mephenytoin metabolism in Japanese. Mol. Pharmacol. 46: 594-598. PMid:7969038   Desta Z, Zhao X, Shin JG and Flockhart DA (2002). Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin. Pharmacokinet. 41: 913-958. http://dx.doi.org/10.2165/00003088-200241120-00002 PMid:12222994   Evans WE and Johnson JA (2001). Pharmacogenomics: the inherited basis for interindividual differences in drug response. Annu. Rev. Genomics Hum. Genet. 2: 9-39. http://dx.doi.org/10.1146/annurev.genom.2.1.9 PMid:11701642   Gardiner SJ and Begg EJ (2006). Pharmacogenetics, drug-metabolizing enzymes, and clinical practice. Pharmacol. Rev. 58: 521-590. http://dx.doi.org/10.1124/pr.58.3.6 PMid:16968950   Goldstein JA (2001). Clinical relevance of genetic polymorphisms in the human CYP2C subfamily. Br. J. Clin. Pharmacol. 52: 349-355. http://dx.doi.org/10.1046/j.0306-5251.2001.01499.x PMid:11678778 PMCid:2014584   Goldstein JA, Ishizaki T, Chiba K, de Morais SM, et al. (1997). Frequencies of the defective CYP2C19 alleles responsible for the mephenytoin poor metabolizer phenotype in various Oriental, Caucasian, Saudi Arabian and American black populations. Pharmacogenetics 7: 59-64. http://dx.doi.org/10.1097/00008571-199702000-00008 PMid:9110363   Goto T, Miura M, Murata A, Terata K, et al. (2010). Standard warfarin dose in a patient with the CYP2C9*3/*3 genotype leads to hematuria. Clin. Chim. Acta 411: 1375-1377. http://dx.doi.org/10.1016/j.cca.2010.04.014 PMid:20420818   Hitchen L (2006). Adverse drug reactions result in 250,000 UK admissions a year. BMJ 332: 1109. http://dx.doi.org/10.1136/bmj.332.7550.1109 PMid:16690649 PMCid:1459569   Kesavan R, Narayan SK and Adithan C (2010). Influence of CYP2C9 and CYP2C19 genetic polymorphisms on phenytoin-induced neurological toxicity in Indian epileptic patients. Eur. J. Clin. Pharmacol. 66: 689-696. http://dx.doi.org/10.1007/s00228-010-0817-2 PMid:20390258   Kimura S, Pastewka J, Gelboin HV and Gonzalez FJ (1987). cDNA and amino acid sequences of two members of the human P450IIC gene subfamily. Nucleic Acids Res. 15: 10053-10054. http://dx.doi.org/10.1093/nar/15.23.10053 PMid:3697070 PMCid:306558   Lee CR, Goldstein JA and Pieper JA (2002). Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data. Pharmacogenetics 12: 251-263. http://dx.doi.org/10.1097/00008571-200204000-00010 PMid:11927841   Leung AY, Chow HC, Kwong YL, Lie AK, et al. (2001). Genetic polymorphism in exon 4 of cytochrome P450 CYP2C9 may be associated with warfarin sensitivity in Chinese patients. Blood 98: 2584-2587. http://dx.doi.org/10.1182/blood.V98.8.2584 PMid:11588061   Liou YH, Lin CT, Wu YJ and Wu LS (2006). The high prevalence of the poor and ultrarapid metabolite alleles of CYP2D6, CYP2C9, CYP2C19, CYP3A4, and CYP3A5 in Taiwanese population. J. Hum. Genet. 51: 857-863. http://dx.doi.org/10.1007/s10038-006-0034-0 PMid:16924387   Miners JO and Birkett DJ (1998). Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br. J. Clin. Pharmacol. 45: 525-538. http://dx.doi.org/10.1046/j.1365-2125.1998.00721.x PMid:9663807 PMCid:1873650   Nasu K, Kubota T and Ishizaki T (1997). Genetic analysis of CYP2C9 polymorphism in a Japanese population. Pharmacogenetics 7: 405-409. http://dx.doi.org/10.1097/00008571-199710000-00011 PMid:9352578   Niu CY, Luo JY and Hao ZM (2004). Genetic polymorphism analysis of cytochrome P4502C19 in Chinese Uigur and Han populations. Chin. J. Dig. Dis. 5: 76-80. http://dx.doi.org/10.1111/j.1443-9573.2004.00160.x PMid:15612662   Roh HK, Dahl ML, Tybring G, Yamada H, et al. (1996). CYP2C19 genotype and phenotype determined by omeprazole in a Korean population. Pharmacogenetics 6: 547-551. http://dx.doi.org/10.1097/00008571-199612000-00008 PMid:9014204   Ross AM, Gao R, Coyne KS, Chen J, et al. (2001). A randomized trial confirming the efficacy of reduced dose recombinant tissue plasminogen activator in a Chinese myocardial infarction population and demonstrating superiority to usual dose urokinase: the TUCC trial. Am. Heart J. 142: 244-247. http://dx.doi.org/10.1067/mhj.2001.116963 PMid:11479462   Sanderson S, Emery J and Higgins J (2005). CYP2C9 gene variants, drug dose, and bleeding risk in warfarin-treated patients: a HuGEnet systematic review and meta-analysis. Genet. Med. 7: 97-104. http://dx.doi.org/10.1097/01.GIM.0000153664.65759.CF PMid:15714076   Sullivan-Klose TH, Ghanayem BI, Bell DA, Zhang ZY, et al. (1996). The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics 6: 341-349. http://dx.doi.org/10.1097/00008571-199608000-00007 PMid:8873220   Xie HG, Prasad HC, Kim RB and Stein CM (2002). CYP2C9 allelic variants: ethnic distribution and functional significance. Adv. Drug Deliv. Rev. 54: 1257-1270. http://dx.doi.org/10.1016/S0169-409X(02)00076-5   Yu HC, Chan TY, Critchley JA and Woo KS (1996). Factors determining the maintenance dose of warfarin in Chinese patients. QJM 89: 127-135. http://dx.doi.org/10.1093/qjmed/89.2.127 PMid:8729554   Zhang S, Dong Z, Tang L, Zhou Q, et al. (2002). Cytochrome P450 2C19 gene polymorphism in four Chinese nationality populations. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 19: 52-54. PMid:11836688   Zhou SF, Liu JP and Chowbay B (2009a). Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab. Rev. 41: 89-295. http://dx.doi.org/10.1080/03602530902843483 PMid:19514967   Zhou SF, Zhou ZW, Yang LP and Cai JP (2009b). Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr. Med. Chem. 16: 3480-3675. http://dx.doi.org/10.2174/092986709789057635 PMid:19515014