Publications

Found 119 results
Filters: Author is Y. Zhang  [Clear All Filters]
2013
G. Lin, Zhao, J., Wu, J., R. O, A., Zhang, W. - H., Zhang, Y., and Yu, L., Contribution of catechol-O-methyltransferase Val158Met polymorphism to endometrial cancer risk in postmenopausal women: a meta-analysis, vol. 12, pp. 6442-6453, 2013.
S. - H. Zhang, Zhu, L., Wu, Z. - H., Zhang, Y., Tang, G. - Q., Jiang, Y. - Z., Li, M. - Z., Bai, L., and Li, X. - W., Effect of muscle-fiber type on glycogenin-1 gene expression and its relationship with the glycolytic potential and pH of pork, vol. 12, pp. 3383-3390, 2013.
D. C. He, Xiao, J. J., Zhang, Y., Lin, H., Ding, X. J., and Tu, Y., Effect of the Jianpi Bushen Prescription on expressions of the Wnt3a and Cyclin D1 genes in radiation-damaged mice, vol. 12, pp. 4137-4146, 2013.
Y. S. Wang, Liu, Z. Y., Li, Y. F., Zhang, Y., Yang, X. F., and Feng, H., Identification of sequence-related amplified polymorphism markers linked to the red leaf trait in ornamental kale (Brassica oleracea L. var. acephala), vol. 12, pp. 870-877, 2013.
Bassam BJ, Caetano-Anolles G and Gresshoff PM (1991). Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem. 196: 80-83. http://dx.doi.org/10.1016/0003-2697(91)90120-I   Chen F, Zhang JF, Chen S, Gu H, et al. (2007). SRAP markers linked to recessive genic male sterile gene in rapeseed (Brassica napus L.). Jiangsu J. Agric. Sci. 23: 283-284.   Clark MS (1997). Plant Molecular Biology: A Laboratory Manual. Springer, Berlin.   Fang DQ and Roose ML (1997). Identification of closely related citrus cultivars with inter-simple sequence repeat markers. Theor. Appl. Genet. 95: 408-471. http://dx.doi.org/10.1007/s001220050577   Feng H, Jiang FY, Feng JY and Wang CN (2007). Establishment and application of the system for isolated microspore culture in Kale (Brassica oleracea L. var. acephala DC.). Acta. Hort. 34: 1019-1022.   Ferriol M, Pico B and Nuez F (2003). Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor. Appl. Genet. 107: 271-282. http://dx.doi.org/10.1007/s00122-003-1242-z PMid:12845442   Gu WH, Zheng HJ, Zhang Y and Liu ZY (2002). A preliminary study on selection and breeding of new lines and main genetic characteristics of ornamental kale. J. Shanghai Jiaotong Univ. 20: 129-132.   Isaacson T, Ronen G, Zamir D and Hirschberg J (2002). Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of beta-carotene and xanthophylls in plants. Plant Cell 14: 333-342. http://dx.doi.org/10.1105/tpc.010303 PMid:11884678 PMCid:152916   Kosambi DD (1944). The estimation of map distance from recombination values. Ann. Eugen. 12: 172-175.   Lands R and Thompson R (1990). Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124: 743-756.   Li G and Quiros CF (2001). Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor. Appl. Genet. 103: 455-461. http://dx.doi.org/10.1007/s001220100570   Li G, Gao M, Yang B and Quiros CF (2003). Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping. Theor. Appl. Genet. 107: 168-180. PMid:12835942   Lichter R (1989). Efficient yield of embryods by culture of isolated microspores of different Brassicaceae species. Plant Breed. 103: 119-123. http://dx.doi.org/10.1111/j.1439-0523.1989.tb00359.x   Lin ZX, Zhang XL and Nie YC (2004). Evaluation of application of a new molecular marker SRAP on analysis of F2 segregation population and genetic diversity in cotton. Yi Chuan Xue Bao 31: 622-626. PMid:15490882   Liu LJ, Liu ZC, Chen HR and Luo LJ (2009). SRAP marker technique and its application in genetic diversity analyses of vegetable crops. Chin. Agric. Sci. Bull. 25: 43-48.   Liu LW, Gong YQ, Huang H and Zhu XW (2004). Novel molecular marker systems - SRAP and TRAP and their application. Yi Chuan 26: 777-781. PMid:15640101   Michelmore RW, Paran I and Kesseli RV (1991). Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. U. S. A. 88: 9828-9832. http://dx.doi.org/10.1073/pnas.88.21.9828 PMid:1682921 PMCid:52814   Rahman M, McVetty PB and Li G (2007). Development of SRAP, SNP and multiplexed SCAR molecular markers for the major seed coat color gene in Brassica rapa L. Theor. Appl. Genet. 115: 1101-1107. http://dx.doi.org/10.1007/s00122-007-0636-8 PMid:17846742   Riaz A, Li G, Quresh Z, Swati MS, et al. (2001). Genetic diversity of oil seed Brassica napus inbred lines based on sequence-related amplified polymorphism and its relation to hybrid performance. Plant Breed. 120: 411-415. http://dx.doi.org/10.1046/j.1439-0523.2001.00636.x   Ronen G, Carmel-Goren L, Zamir D and Hirschberg J (2000). An alternative pathway to β-carotene formation in plant chromoplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato. Proc. Natl. Acad. Sci. U. S. A. 97: 11102-11107. http://dx.doi.org/10.1073/pnas.190177497 PMid:10995464 PMCid:27155   Tanksley SD, Ganal MW and Martin GB (1995). Chromosome landing: a paradigm for map-based gene cloning in plants with large genomes. Trends Genet. 11: 63-68. http://dx.doi.org/10.1016/S0168-9525(00)88999-4   Van Ooijen JW and Voorrips RE (2001). JoinMap® 3.0, Software for the Calculation of Genetic Linkage Maps. Plant Research International, Wageningen, The Netherlands.   Voorrips RE (2002). MapChart: software for the graphical presentation of linkage maps and QTLs. J. Hered. 93: 77-78. http://dx.doi.org/10.1093/jhered/93.1.77 PMid:12011185   Wang HM, Du GC, Jia CY, Tan XW, et al. (1995). In vitro propagation of ornamental kale (Brassica oleracea var. acephala f. tricolor hort.). Acta. Agric. Boreal.-Sin. 10: 64-69.   Wang YS, Tong Y, Li YF, Zhang Y, et al. (2011). High frequency plant regeneration from microspore-derived embryos of ornamental kale (Brassica oleracea L. var. acephala). Sci. Hortic. 130: 296-302. http://dx.doi.org/10.1016/j.scienta.2011.06.029   Wu J, Tan WF, He JR, Pu ZG, et al. (2005). Construct on of SRAP linkage map and QTL mapping for starch content in sweet potato. Mol. Plant Breed. 3: 841-845.   Xiao JP, Chen LG, Xie M, Liu HL, et al. (2009). Identification of AFLP fragments linked to seedlessness in Ponkan mandarin (Citrus reticulata Blanco) and conversion to SCAR markers. Sci. Hortic. 121: 505-510. http://dx.doi.org/10.1016/j.scienta.2009.03.006   Xie LN (2003). Genetic Analysis of Leaf Color and Shape and Mechanism of Self-Incompatibility of Brassica oleracea var. acephala. Master's thesis, Northeast Forestry University, Harbin.   Xu C and Zhao BH (2009). The development and application of SRAP molecular markers. Life Sci. Instrum. 7: 24-27.   Young ND (1999). A cautiously optimistic vision for marker-assisted breeding. Mol. Breed. 5: 505-510. http://dx.doi.org/10.1023/A:1009684409326   Yu YJ, Zhang YW and Zhang DS (2009). SRAP markers linked to purple trait in Chinese cabbage. Mol. Plant Breed. 7: 573-578. http://dx.doi.org/10.1007/s11032-009-9257-z   Yuan XJ, Pan JS, Cai R, Guan Y, et al. (2008). Genetic mapping and QTL analysis of fruit and flower related traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Euphytica 164: 473-491. http://dx.doi.org/10.1007/s10681-008-9722-5   Zhao XS, Li MY, Zhang WL and Liu F (2009). Establishment of high adventitious shoot regeneration system of ornamental kale. Genom. Appl. Biol. 28: 141-148.
Q. Xu, Sun, D. X., Li, J. L., Liu, R., Wang, Y. C., and Zhang, Y., Inheritance of cytosine methylation patterns in purebred versus hybrid chicken lines, vol. 12, pp. 2674-2687, 2013.
W. Cai, Wang, Z. T., Zhong, J., and Zhang, Y., Lack of association between Cyclin D1 gene G870A polymorphism and esophageal cancer: evidence from a meta-analysis, vol. 12, pp. 6636-6645, 2013.
J. Huo, Yang, G., Zhang, Y., and Li, F., A new strategy for identification of currant (Ribes nigrum L.) cultivars using RAPD markers, vol. 12, pp. 2056-2067, 2013.
M. Wang, Liu, C., Zhang, Y., Hao, Y., Zhang, X., and Zhang, Y. M., Protein interaction and microRNA network analysis in osteoarthritis meniscal cells, vol. 12, pp. 738-746, 2013.
Abramson SB and Attur M (2009). Developments in the scientific understanding of osteoarthritis. Arthritis Res. Ther. 11: 227. http://dx.doi.org/10.1186/ar2655 PMid:19519925 PMCid:2714096   Barre PE, Redini F, Boumediene K, Vielpeau C, et al. (2000). Semiquantitative reverse transcription-polymerase chain reaction analysis of syndecan-1 and -4 messages in cartilage and cultured chondrocytes from osteoarthritic joints. Osteoarthritis Cartilage 8: 34-43. http://dx.doi.org/10.1053/joca.1999.0286 PMid:10607497   Gobezie R, Kho A, Krastins B, Sarracino DA, et al. (2007). High abundance synovial fluid proteome: distinct profiles in health and osteoarthritis. Arthritis Res. Ther. 9: R36. http://dx.doi.org/10.1186/ar2172 PMid:17407561 PMCid:1906814   Hardingham T (2008). Extracellular matrix and pathogenic mechanisms in osteoarthritis. Curr. Rheumatol. Rep. 10: 30-36. http://dx.doi.org/10.1007/s11926-008-0006-9 PMid:18457609   Hopwood B, Tsykin A, Findlay DM and Fazzalari NL (2007). Microarray gene expression profiling of osteoarthritic bone suggests altered bone remodelling, WNT and transforming growth factor-beta/bone morphogenic protein signalling. Arthritis Res. Ther. 9: R100. http://dx.doi.org/10.1186/ar2301 PMid:17900349 PMCid:2212557   Huang dW, Sherman BT and Lempicki RA (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4: 44-57.   Ikeda S, He A, Kong SW, Lu J, et al. (2009). MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes. Mol. Cell Biol. 29: 2193-2204. http://dx.doi.org/10.1128/MCB.01222-08 PMid:19188439 PMCid:2663304   Ivanov AI and Romanovsky AA (2006). Putative dual role of ephrin-Eph receptor interactions in inflammation. IUBMB Life 58: 389-394. http://dx.doi.org/10.1080/15216540600756004 PMid:16801213   Jiang Q, Wang Y, Hao Y, Juan L, et al. (2009). miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res. 37: D98-104. http://dx.doi.org/10.1093/nar/gkn714 PMid:18927107 PMCid:2686559   Joos H, Albrecht W, Laufer S, Reichel H, et al. (2008). IL-1beta regulates FHL2 and other cytoskeleton-related genes in human chondrocytes. Mol. Med. 14: 150-159. http://dx.doi.org/10.2119/2007-00138.Joos PMid:18224250 PMCid:2213891   Kawahara C, Forster T, Chapman K, Carr A, et al. (2005). Genetic association analysis of the IGFBP7, ADAMTS3, and IL8 genes as the potential osteoarthritis susceptibility that maps to chromosome 4q. Ann. Rheum. Dis. 64: 474-476. http://dx.doi.org/10.1136/ard.2004.027342 PMid:15708897 PMCid:1755421   Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, et al. (2009). Human Protein Reference Database - 2009 update. Nucleic Acids Res. 37: D767-D772. http://dx.doi.org/10.1093/nar/gkn892 PMid:18988627 PMCid:2686490   Liu Y, Patel S, Nibbe R, Maxwell S, et al. (2011). Systems biology analyses of gene expression and genome wide association study data in obstructive sleep apnea. Pac. Symp. Biocomput. 14-25. PMid:21121029   Lu M, Zhang Q, Deng M, Miao J, et al. (2008). An analysis of human microRNA and disease associations. PLoS One 3: e3420. http://dx.doi.org/10.1371/journal.pone.0003420 PMid:18923704 PMCid:2559869   Luyten FP, Tylzanowski P and Lories RJ (2009). Wnt signaling and osteoarthritis. Bone 44: 522-527. http://dx.doi.org/10.1016/j.bone.2008.12.006 PMid:19136083   Martel-Pelletier J (2004). Pathophysiology of osteoarthritis. Osteoarthritis. Cartilage. 12 (Suppl A): S31-S33. http://dx.doi.org/10.1016/j.joca.2003.10.002 PMid:14698638   Martel-Pelletier J, Di Battista JA, Lajeunesse D and Pelletier JP (1998). IGF/IGFBP axis in cartilage and bone in osteoarthritis pathogenesis. Inflamm. Res. 47: 90-100. http://dx.doi.org/10.1007/s000110050288 PMid:9562333   Papadopoulos GL, Reczko M, Simossis VA, Sethupathy P, et al. (2009). The database of experimentally supported targets: a functional update of TarBase. Nucleic Acids Res. 37: D155-D158. http://dx.doi.org/10.1093/nar/gkn809 PMid:18957447 PMCid:2686456   Poulou M, Kaliakatsos M, Tsezou A, Kanavakis E, et al. (2008). Association of the CALM1 core promoter polymorphism with knee osteoarthritis in patients of Greek origin. Genet. Test. 12: 263-265. http://dx.doi.org/10.1089/gte.2007.0114 PMid:18452398   Rousseau JC and Delmas PD (2007). Biological markers in osteoarthritis. Nat. Clin. Pract. Rheumatol. 3: 346-356. http://dx.doi.org/10.1038/ncprheum0508 PMid:17538566   Salminen-Mankonen H, Saamanen AM, Jalkanen M, Vuorio E, et al. (2005). Syndecan-1 expression is upregulated in degenerating articular cartilage in a transgenic mouse model for osteoarthritis. Scand. J. Rheumatol. 34: 469-474. http://dx.doi.org/10.1080/03009740500304338 PMid:16393771   Sarzi-Puttini P, Cimmino MA, Scarpa R, Caporali R, et al. (2005). Osteoarthritis: an overview of the disease and its treatment strategies. Semin. Arthritis Rheum. 35: 1-10. http://dx.doi.org/10.1016/j.semarthrit.2005.01.013 PMid:16084227   Shahrara S, Volin MV, Connors MA, Haines GK, et al. (2002). Differential expression of the angiogenic Tie receptor family in arthritic and normal synovial tissue. Arthritis Res. 4: 201-208. http://dx.doi.org/10.1186/ar407 PMid:12010571 PMCid:111023   Smyth GK (2004). Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet Mol. Biol. 3: Article3.   Stark C, Breitkreutz BJ, Chatr-Aryamontri A, Boucher L, et al. (2011). The BioGRID Interaction Database: 2011 update. Nucleic Acids Res. 39: D698-D704. http://dx.doi.org/10.1093/nar/gkq1116 PMid:21071413 PMCid:3013707   Subramanian A, Sharma AK, Banerjee D, Jiang WG, et al. (2007). Evidence for a tumour suppressive function of IGF1- binding proteins in human breast cancer. Anticancer Res. 27: 3513-3518. PMid:17972510   Sun Y, Mauerhan DR, Honeycutt PR, Kneisl JS, et al. (2010). Analysis of meniscal degeneration and meniscal gene expression. BMC Musculoskelet. Disord. 11: 19. http://dx.doi.org/10.1186/1471-2474-11-19 PMid:20109188 PMCid:2828422   Todoerti K, Barbui V, Pedrini O, Lionetti M, et al. (2010). Pleiotropic anti-myeloma activity of ITF2357: inhibition of interleukin-6 receptor signaling and repression of miR-19a and miR-19b. Haematologica 95: 260-269. http://dx.doi.org/10.3324/haematol.2009.012088 PMid:19713220 PMCid:2817029   Valdes AM, Loughlin J, Oene MV, Chapman K, et al. (2007). Sex and ethnic differences in the association of ASPN, CALM1, COL2A1, COMP, and FRZB with genetic susceptibility to osteoarthritis of the knee. Arthritis Rheum. 56: 137-146. http://dx.doi.org/10.1002/art.22301 PMid:17195216   Wu X and Song Y (2011). Preferential regulation of miRNA targets by environmental chemicals in the human genome. BMC Genomics 12: 244. http://dx.doi.org/10.1186/1471-2164-12-244 PMid:21592377 PMCid:3118786   Xiao F, Zuo Z, Cai G, Kang S, et al. (2009). miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res. 37: D105-D110. http://dx.doi.org/10.1093/nar/gkn851 PMid:18996891 PMCid:2686554   Yang JH, Li JH, Shao P, Zhou H, et al. (2011). starBase: a database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data. Nucleic Acids Res. 39: D202-D209. http://dx.doi.org/10.1093/nar/gkq1056 PMid:21037263 PMCid:3013664
2012
Y. Wang, Zhou, X. O., Zhang, Y., Gao, P. J., and Zhu, D. L., Association of the CD36 gene with impaired glucose tolerance, impaired fasting glucose, type-2 diabetes, and lipid metabolism in essential hypertensive patients, vol. 11, pp. 2163-2170, 2012.
Aitman TJ, Glazier AM, Wallace CA, Cooper LD, et al. (1999). Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat. Genet. 21: 76-83. http://dx.doi.org/10.1038/5013 PMid:9916795   Almgren T, Wilhelmsen L, Samuelsson O, Himmelmann A, et al. (2007). Diabetes in treated hypertension is common and carries a high cardiovascular risk: results from a 28-year follow-up. J. Hypertens. 25: 1311-1317. http://dx.doi.org/10.1097/HJH.0b013e328122dd58 PMid:17563546   Bokor S, Legry V, Meirhaeghe A, Ruiz JR, et al. (2010). Single-nucleotide polymorphism of CD36 locus and obesity in European adolescents. Obesity 18: 1398-1403. http://dx.doi.org/10.1038/oby.2009.412 PMid:19893500   Coburn CT, Knapp FF Jr, Febbraio M, Beets AL, et al. (2000). Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice. J. Biol. Chem. 275: 32523-32529. http://dx.doi.org/10.1074/jbc.M003826200 PMid:10913136   Gurnell M, Savage DB, Chatterjee VK and O'Rahilly S (2003). The metabolic syndrome: peroxisome proliferator-activated receptor gamma and its therapeutic modulation. J. Clin. Endocrinol. Metab. 88: 2412-2421. http://dx.doi.org/10.1210/jc.2003-030435 PMid:12788836   Hajri T and Abumrad NA (2002). Fatty acid transport across membranes: relevance to nutrition and metabolic pathology. Annu. Rev. Nutr. 22: 383-415. http://dx.doi.org/10.1146/annurev.nutr.22.020402.130846 PMid:12055351   Han XX, Chabowski A, Tandon NN, Calles-Escandon J, et al. (2007). Metabolic challenges reveal impaired fatty acid metabolism and translocation of FAT/CD36 but not FABPpm in obese Zucker rat muscle. Am. J. Physiol. Endocrinol. Metab. 293: E566-E575. http://dx.doi.org/10.1152/ajpendo.00106.2007 PMid:17519284   Harasim E, Kalinowska A, Chabowski A and Stepek T (2008). The role of fatty-acid transport proteins (FAT/CD36, FABPpm, FATP) in lipid metabolism in skeletal muscles. Postepy Hig. Med. Dosw. 62: 433-441.   Lepretre F, Vasseur F, Vaxillaire M, Scherer PE, et al. (2004). A CD36 nonsense mutation associated with insulin resistance and familial type 2 diabetes. Hum. Mutat. 24: 104. http://dx.doi.org/10.1002/humu.9256 PMid:15221799   Love-Gregory L, Sherva R, Sun L, Wasson J, et al. (2008). Variants in the CD36 gene associate with the metabolic syndrome and high-density lipoprotein cholesterol. Hum. Mol. Genet. 17: 1695-1704. http://dx.doi.org/10.1093/hmg/ddn060 PMid:18305138 PMCid:2655228   Ma X, Bacci S, Mlynarski W, Gottardo L, et al. (2004). A common haplotype at the CD36 locus is associated with high free fatty acid levels and increased cardiovascular risk in Caucasians. Hum. Mol. Genet. 13: 2197-2205. http://dx.doi.org/10.1093/hmg/ddh233 PMid:15282206   Noel SE, Lai CQ, Mattei J, Parnell LD, et al. (2010). Variants of the CD36 gene and metabolic syndrome in Boston Puerto Rican adults. Atherosclerosis 211: 210-215. http://dx.doi.org/10.1016/j.atherosclerosis.2010.02.009 PMid:20223461 PMCid:2923842   Osei K, Rhinesmith S, Gaillard T and Schuster D (2004). Impaired insulin sensitivity, insulin secretion, and glucose effectiveness predict future development of impaired glucose tolerance and type 2 diabetes in pre-diabetic African Americans: implications for primary diabetes prevention. Diabetes Care 27: 1439-1446. http://dx.doi.org/10.2337/diacare.27.6.1439 PMid:15161801   Pontiroli AE, Pizzocri P, Caumo A, Perseghin G, et al. (2004). Evaluation of insulin release and insulin sensitivity through oral glucose tolerance test: differences between NGT, IFG, IGT, and type 2 diabetes mellitus. A cross-sectional and follow-up study. Acta Diabetol. 41: 70-76. http://dx.doi.org/10.1007/s00592-004-0147-x PMid:15224208   Pravenec M and Kurtz TW (2002). Genetics of Cd36 and the hypertension metabolic syndrome. Semin. Nephrol. 22: 148-153. http://dx.doi.org/10.1053/snep.2002.2002.30218 PMid:11891508   Susztak K, Ciccone E, McCue P, Sharma K, et al. (2005). Multiple metabolic hits converge on CD36 as novel mediator of tubular epithelial apoptosis in diabetic nephropathy. PLoS Med. 2: e45. http://dx.doi.org/10.1371/journal.pmed.0020045 PMid:15737001 PMCid:549593   Wang X and Snieder H (2010). Genome-wide association studies and beyond: what's next in blood pressure genetics? Hypertension 56: 1035-1037. http://dx.doi.org/10.1161/HYPERTENSIONAHA.110.157214 PMid:21060002   Yamauchi T, Hara K, Maeda S, Yasuda K, et al. (2010). A genome-wide association study in the Japanese population identifies susceptibility loci for type 2 diabetes at UBE2E2 and C2CD4A-C2CD4B. Nat. Genet. 42: 864-868. http://dx.doi.org/10.1038/ng.660 PMid:20818381   Zhou X, Wang Y, Zhang Y, Gao P, et al. (2010). Association of CAPN10 gene with insulin sensitivity, glucose tolerance and renal function in essential hypertensive patients. Clin. Chim. Acta 411: 1126-1131. http://dx.doi.org/10.1016/j.cca.2010.04.012 PMid:20406624
Y. Zhang, Kang, Y., Qin, Y., Zhou, Z., Lei, M., and Guo, H., Genetic diversity of endangered Polyporus umbellatus from China assessed using a sequence-related amplified polymorphism technique, vol. 11. pp. 4121-4129, 2012.
Ayana A, Bekele E and Bryngelsson T (2000). Genetic variation in wild sorghum (Sorghum bicolor ssp. verticilliflorum (L.) Moench) germplasm from Ethiopia assessed by random amplified polymorphic DNA (RAPD). Hereditas 132: 249-254. http://dx.doi.org/10.1111/j.1601-5223.2000.t01-1-00249.x PMid:11075520   Budak H, Shearman RC, Parmaksiz I, Gaussoin RE, et al. (2004). Molecular characterization of Buffalograss germplasm using sequence-related amplified polymorphism markers. Theor. Appl. Genet. 108: 328-334. http://dx.doi.org/10.1007/s00122-003-1428-4 PMid:13679978   Imazeki R and Hongo T (1965). Colored Illustrations of Fungi of Japan. Vol. 2. Hoikusha, Osaka.   Kikuchi G and Yamaji H (2010). Identification of Armillaria species associated with Polyporus umbellatus using ITS sequences of nuclear ribosomal DNA. Mycoscience 51: 366-372. http://dx.doi.org/10.1007/s10267-010-0053-8   Lakhanpaul S, Velayudhan KC and Bhat KV (2003). Analysis of genetic diversity in Indian taro [Colocasia esculenta (L.) Schott] using random amplified polymorphic DNA (RAPD) markers. Genet. Resour. Crop Evol. 50: 603-609. http://dx.doi.org/10.1023/A:1024498408453   Li G and Quiros CF (2001). Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor. Appl. Genet. 103: 455-461. http://dx.doi.org/10.1007/s001220100570   Li SQ (2008). Endangered Polyporus umbellatus need immediate conservation. Mod. Chin. Med. 10: 43-45.   Peakall R and Smouse PE (2001). GenAlEX V5: Genetic Analysis in Microsoft Excel. Population Genetic Software for Teaching and Research. Australian National University, Canberra. Available at [http://biology.anu.edu.cn/BoZo/GenAlEX/Welcome.html] Accessed November 27, 2012.   Ren X, Huang J, Liao B, Zhang X, et al. (2010). Genomic affinities of Arachis genus and interspecific hybrids were revealed by SRAP markers. Genet. Resour. Crop Evol. 57: 903-913. http://dx.doi.org/10.1007/s10722-010-9532-1   Rohlf FJ (2000). NTSYS-PC Version 2.10 s. Numerical Taxonomy and Multivariate Analysis System. Exeter Publications, Setauket.   Wang HC (2010). Advances in the studies of systematics of Armillaria all over the world. J. Chongqing Univer. 27: 61-68.   Wang Z, Wang JE, Wang XM, Gao HW, et al. (2011). Assessment of genetic diversity in Galega officinalis L. using ISSR and SRAP markers. Genet. Resour. Crop Evol. 59: 865-873. http://dx.doi.org/10.1007/s10722-011-9727-0   Xing XK and Guo SX (2004). The phylogenetic relationships of Grifola umbellata and its companion fungus: evidence from ITS sequence analysis. Microbiology 31: 34-38.   Xu GB, Fu WJ and Zhao XK (2003). Advances in studies on Polyporus umbellatus in China. J. Fung. Res. 1: 58-61.   Xu JT (1997). Medicinal Fungi in China. United Publishing House of Beijing Medical University and Chinese Union Medical University, Beijing.   Yuan D, Mori J, Komatsu KI, Makino T, et al. (2004). An anti-aldosteronic diuretic component (drain dampness) in Polyporus sclerotium. Biol. Pharm. Bull. 27: 867-870. http://dx.doi.org/10.1248/bpb.27.867 PMid:15187435   Zhang YJ, Fan S, Liang ZS, Wang W, et al. (2010). Mycelial growth and polysaccharide content of Polyporus umbellatus. J. Med. Plant Res. 4: 1847-1852.   Zhang YJ, Qin Y, Wang Z, Guo L, et al. (2011). DNA isolation and optimization of sequence-related amplified polymorphism-polymerase chain reaction (SRAP-PCR) condition for endangered Polyporus umbellatus. J. Med. Plant Res. 5: 6890-6894.   Zhao YY, Chao X, Zhang Y, Lin RC, et al. (2010). Cytotoxic steroids from Polyporus umbellatus. Planta Med. 76: 1755-1758. http://dx.doi.org/10.1055/s-0030-1249926 PMid:20458671
Y. Zhang, Wang, Z. T., and Zhong, J., Meta-analysis demonstrates that the NAD(P)H: quinone oxidoreductase 1 (NQO1) gene 609 C>T polymorphism is associated with increased gastric cancer risk in Asians, vol. 11, pp. 2328-2337, 2012.
Chen D, Chi Y, Yu Q, Wang S, et al. (2007). Interaction of polymorphisms of NQO1 and environmental risk factors in gastric cancer. Acta Univ. Medicinalis Anhui 42: 405-408.   Chen DJ, Ding R, Cao W and Ye DQ (2011). Interaction between polymorphisms in NQO1(C609T) and XRCC1(G28152A) and their correlation with smoking on gastric cancer. Zhonghua Liu Xing Bing Xue Za Zhi 32: 5-8. PMid:21518531   Cohn LD and Becker BJ (2003). How meta-analysis increases statistical power. Psychol. Methods 8: 243-253. http://dx.doi.org/10.1037/1082-989X.8.3.243 PMid:14596489   El-Rifai W, Frierson HF Jr, Moskaluk CA, Harper JC, et al. (2001). Genetic differences between adenocarcinomas arising in Barrett's esophagus and gastric mucosa. Gastroenterology 121: 592-598. http://dx.doi.org/10.1053/gast.2001.27215 PMid:11522743   Forman D, Newell DG, Fullerton F, Yarnell JW, et al. (1991). Association between infection with Helicobacter pylori and risk of gastric cancer: evidence from a prospective investigation. BMJ 302: 1302-1305. http://dx.doi.org/10.1136/bmj.302.6788.1302 PMid:2059685 PMCid:1670011   Gammon MD, Schoenberg JB, Ahsan H, Risch HA, et al. (1997). Tobacco, alcohol, and socioeconomic status and adenocarcinomas of the esophagus and gastric cardia. J. Natl. Cancer Inst. 89: 1277-1284. http://dx.doi.org/10.1093/jnci/89.17.1277 PMid:9293918   Goto Y, Hamajima N, Honda H, Matsuo K, et al. (2005). Association between Helicobacter pylori seropositivity and NAD(P)H:quinone oxidoreductase 1 (NQO1) C609T polymorphism observed in outpatients and health checkup examinees. Gastric. Cancer 8: 12-17. http://dx.doi.org/10.1007/s10120-004-0308-1 PMid:15747169   Hamajima N, Matsuo K, Iwata H, Shinoda M, et al. (2002). NAD(P)H: quinone oxidoreductase 1 (NQO1) C609T polymorphism and the risk of eight cancers for Japanese. Int. J. Clin. Oncol. 7: 103-108. PMid:12018106   Hemminki K, Lorenzo BJ and Forsti A (2006). The balance between heritable and environmental aetiology of human disease. Nat. Rev. Genet. 7: 958-965. http://dx.doi.org/10.1038/nrg2009 PMid:17139327   Higgins JP and Thompson SG (2002). Quantifying heterogeneity in a meta-analysis. Stat. Med. 21: 1539-1558. http://dx.doi.org/10.1002/sim.1186 PMid:12111919   Higgins JP, Thompson SG, Deeks JJ and Altman DG (2003). Measuring inconsistency in meta-analyses. BMJ 327: 557-560. http://dx.doi.org/10.1136/bmj.327.7414.557 PMid:12958120 PMCid:192859   Iskander K, Gaikwad A, Paquet M, Long DJ, et al. (2005). Lower induction of p53 and decreased apoptosis in NQO1-null mice lead to increased sensitivity to chemical-induced skin carcinogenesis. Cancer Res. 65: 2054-2058. http://dx.doi.org/10.1158/0008-5472.CAN-04-3157 PMid:15781611   Kuehl BL, Paterson JW, Peacock JW, Paterson MC, et al. (1995). Presence of a heterozygous substitution and its relationship to DT-diaphorase activity. Br. J. Cancer 72: 555-561. http://dx.doi.org/10.1038/bjc.1995.373 PMid:7669561 PMCid:2033894   Long DJ, Waikel RL, Wang XJ, Perlaky L, et al. (2000). NAD(P)H:quinone oxidoreductase 1 deficiency increases susceptibility to benzo(a)pyrene-induced mouse skin carcinogenesis. Cancer Res. 60: 5913-5915. PMid:11085502   Long N, Moore MA, Chen W, Gao CM, et al. (2010). Cancer epidemiology and control in north-East Asia - past, present and future. Asian Pac. J. Cancer Prev. (Suppl 11) 2: 107-148.   Malik MA, Zargar SA and Mittal B (2011). Role of NQO1 609C>T and NQO2-3423G>A polymorphisms in susceptibility to gastric cancer in Kashmir valley. DNA Cell Biol. 30: 297-303. http://dx.doi.org/10.1089/dna.2010.1115 PMid:21294640   Parkin DM, Bray F, Ferlay J and Pisani P (2005). Global cancer statistics, 2002. CA Cancer J. Clin. 55: 74-108. http://dx.doi.org/10.3322/canjclin.55.2.74 PMid:15761078   Parsonnet J, Friedman GD, Vandersteen DP, Chang Y, et al. (1991). Helicobacter pylori infection and the risk of gastric carcinoma. N. Engl. J. Med. 325: 1127-1131. http://dx.doi.org/10.1056/NEJM199110173251603 PMid:1891020   Rauth AM, Goldberg Z and Misra V (1997). DT-diaphorase: possible roles in cancer chemotherapy and carcinogenesis. Oncol. Res. 9: 339-349. PMid:9406240   Ren JJ, Ouyang XH and Su XL (2006). NAD(P)H: quinone oxidoreductase gene polymorphism association with gastric carcinoma. Chin. J. Cancer Prev. Treat. 13: 1686-1688.   Ruano-Ravina A, Perez-Rios M and Barros-Dios JM (2008). Population-based versus hospital-based controls: are they comparable? Gac. Sanit. 22: 609-613. http://dx.doi.org/10.1016/S0213-9111(08)75363-9   Salanti G, Sanderson S and Higgins JP (2005). Obstacles and opportunities in meta-analysis of genetic association studies. Genet. Med. 7: 13-20. http://dx.doi.org/10.1097/01.GIM.0000151839.12032.1A PMid:15654223   Sarbia M, Bitzer M, Siegel D, Ross D, et al. (2003). Association between NAD(P)H: quinone oxidoreductase 1 (NQ01) inactivating C609T polymorphism and adenocarcinoma of the upper gastrointestinal tract. Int. J. Cancer 107: 381- 386. http://dx.doi.org/10.1002/ijc.11430 PMid:14506737   Suerbaum S and Michetti P (2002). Helicobacter pylori infection. N. Engl. J. Med. 347: 1175-1186. http://dx.doi.org/10.1056/NEJMra020542 PMid:12374879   Tajima Y, Yamazaki K, Makino R, Nishino N, et al. (2007). Differences in the histological findings, phenotypic marker expressions and genetic alterations between adenocarcinoma of the gastric cardia and distal stomach. Br. J. Cancer 96: 631-638. http://dx.doi.org/10.1038/sj.bjc.6603583 PMid:17262083 PMCid:2360051   Wijnhoven BP, Siersema PD, Hop WC, van Dekken H, et al. (1999). Adenocarcinomas of the distal oesophagus and gastric cardia are one clinical entity. Rotterdam Oesophageal Tumour Study Group. Br. J. Surg. 86: 529-535. http://dx.doi.org/10.1046/j.1365-2168.1999.01082.x PMid:10215831   Xue L, Zhang X, Li Y, Yang H, et al. (2011). Differences of immunophenotypic markers and signaling molecules between adenocarcinomas of gastric cardia and distal stomach. Hum. Pathol. 42: 594-601. http://dx.doi.org/10.1016/j.humpath.2010.06.015 PMid:21146193   Yoshida T, Ono H, Kuchiba A, Saeki N, et al. (2010). Genome-wide germline analyses on cancer susceptibility and GeMDBJ database: gastric cancer as an example. Cancer Sci. 101: 1582-1589. http://dx.doi.org/10.1111/j.1349-7006.2010.01590.x PMid:20507324   Yu K, Zhang J, Zhang J, Dou C, et al. (2010). Methionine synthase A2756G polymorphism and cancer risk: a meta-analysis. Eur. J. Hum. Genet. 18: 370-378. http://dx.doi.org/10.1038/ejhg.2009.131 PMid:19826453 PMCid:2987221   Zhang JH, Li Y, Wang R, Geddert H, et al. (2003). NQO1 C609T polymorphism associated with esophageal cancer and gastric cardiac carcinoma in North China. World J. Gastroenterol. 9: 1390-1393. PMid:12854127   Zhu F, Loh M, Hill J, Lee S, et al. (2009). Genetic factors associated with intestinal metaplasia in a high risk Singapore- Chinese population: a cohort study. BMC Gastroenterol. 9: 76. http://dx.doi.org/10.1186/1471-230X-9-76 PMid:19822020 PMCid:2766386
H. - X. Tong, Li, M., Zhang, Y., Zhu, J., and Lu, W. - Q., A novel NF1 mutation in a Chinese patient with giant café-au-lait macule in neurofibromatosis type 1 associated with a malignant peripheral nerve sheath tumor and bone abnormality, vol. 11, pp. 2972-2978, 2012.
Bausch B, Borozdin W, Mautner VF, Hoffmann MM, et al. (2007). Germline NF1 mutational spectra and loss-of-heterozygosity analyses in patients with pheochromocytoma and neurofibromatosis type 1. J. Clin. Endocrinol. Metab. 92: 2784-2792. http://dx.doi.org/10.1210/jc.2006-2833 PMid:17426081   Bottillo I, Ahlquist T, Brekke H, Danielsen SA, et al. (2009). Germline and somatic NF1 mutations in sporadic and NF1- associated malignant peripheral nerve sheath tumours. J. Pathol. 217: 693-701. http://dx.doi.org/10.1002/path.2494 PMid:19142971   Brems H, Beert E, de RT and Legius E (2009). Mechanisms in the pathogenesis of malignant tumours in neurofibromatosis type 1. Lancet Oncol. 10: 508-515. http://dx.doi.org/10.1016/S1470-2045(09)70033-6   Cai Y, Fan Z, Liu Q, Li J, et al. (2005). Two novel mutations of the NF1 gene in Chinese Han families with type 1 neurofibromatosis. J. Dermatol. Sci. 39: 125-127. http://dx.doi.org/10.1016/j.jdermsci.2005.05.003 PMid:16005615   Cichowski K and Jacks T (2001). NF1 tumor suppressor gene function: narrowing the GAP. Cell 104: 593-604. http://dx.doi.org/10.1016/S0092-8674(01)00245-8   Erdi H, Boyvat A and Calikoglu E (1999). Giant cafe au lait spot in a patient with neurofibromatosis. Acta Derm. Venereol. 79: 496. http://dx.doi.org/10.1080/000155599750010157 PMid:10598783   Evans DG, Baser ME, McGaughran J, Sharif S, et al. (2002). Malignant peripheral nerve sheath tumours in neurofibromatosis 1. J. Med. Genet. 39: 311-314. http://dx.doi.org/10.1136/jmg.39.5.311 PMid:12011145 PMCid:1735122   Ferner RE and Gutmann DH (2002). International consensus statement on malignant peripheral nerve sheath tumors in neurofibromatosis. Cancer Res. 62: 1573-1577. PMid:11894862   Gutmann DH, Aylsworth A, Carey JC, Korf B, et al. (1997). The diagnostic evaluation and multidisciplinary management of neurofibromatosis 1 and neurofibromatosis 2. JAMA 278: 51-57. http://dx.doi.org/10.1001/jama.1997.03550010065042 PMid:9207339   Heim RA, Kam-Morgan LN, Binnie CG, Corns DD, et al. (1995). Distribution of 13 truncating mutations in the neurofibromatosis 1 gene. Hum. Mol. Genet. 4: 975-981. http://dx.doi.org/10.1093/hmg/4.6.975 PMid:7655472   Huson SM, Harper PS and Compston DA (1988). Von Recklinghausen neurofibromatosis. A clinical and population study in south-east Wales. Brain 111: 1355-1381. http://dx.doi.org/10.1093/brain/111.6.1355 PMid:3145091   Kar M, Deo SV, Shukla NK, Malik A, et al. (2006). Malignant peripheral nerve sheath tumors (MPNST)-clinicopathological study and treatment outcome of twenty-four cases. World J. Surg. Oncol. 4: 55. http://dx.doi.org/10.1186/1477-7819-4-55 PMid:16923196 PMCid:1560134   Lakkis MM, Golden JA, O'Shea KS and Epstein JA (1999). Neurofibromin deficiency in mice causes exencephaly and is a modifier for Splotch neural tube defects. Dev. Biol. 212: 80-92. http://dx.doi.org/10.1006/dbio.1999.9327 PMid:10419687   Messiaen L, Vogt J, Bengesser K, Fu C, et al. (2011). Mosaic type-1 NF1 microdeletions as a cause of both generalized and segmental neurofibromatosis type-1 (NF1). Hum. Mutat. 32: 213-219. http://dx.doi.org/10.1002/humu.21418 PMid:21280148   Origone P, De LA, Bellini C, Buccino A, et al. (2002). Ten novel mutations in the human neurofibromatosis type 1 (NF1) gene in Italian patients. Hum. Mutat. 20: 74-75. http://dx.doi.org/10.1002/humu.9039 PMid:12112660   Rasmussen SA and Friedman JM (2000). NF1 gene and neurofibromatosis 1. Am. J. Epidemiol. 151: 33-40. http://dx.doi.org/10.1093/oxfordjournals.aje.a010118 PMid:10625171   Shah KN (2010). The diagnostic and clinical significance of cafe-au-lait macules. Pediatr. Clin. North Am. 57: 1131-1153. http://dx.doi.org/10.1016/j.pcl.2010.07.002 PMid:20888463   Thappa DM, Jeevankumar B and Karthikeyan K (2001). Giant cafe-au-lait macule in neurofibromatosis type 1. J. Dermatol. 28: 60-61. PMid:11280470   Upadhyaya M, Osborn MJ, Maynard J, Kim MR, et al. (1997). Mutational and functional analysis of the neurofibromatosis type 1 (NF1) gene. Hum. Genet. 99: 88-92. http://dx.doi.org/10.1007/s004390050317 PMid:9003501   Upadhyaya M, Kluwe L, Spurlock G, Monem B, et al. (2008). Germline and somatic NF1 gene mutation spectrum in NF1- associated malignant peripheral nerve sheath tumors (MPNSTs). Hum. Mutat. 29: 74-82. http://dx.doi.org/10.1002/humu.20601 PMid:17960768   Yang CC, Happle R, Chao SC, Yu-Yun LJ, et al. (2008). Giant cafe-au-lait macule in neurofibromatosis 1: a type 2 segmental manifestation of neurofibromatosis 1? J. Am. Acad. Dermatol. 58: 493-497. http://dx.doi.org/10.1016/j.jaad.2007.03.013 PMid:18280349   Zhang W, Rhodes SD, Zhao L, He Y, et al. (2011). Primary osteopathy of vertebrae in a neurofibromatosis type 1 murine model. Bone 48: 1378-1387. http://dx.doi.org/10.1016/j.bone.2011.03.760 PMid:21439418
X. Liu, Guo, X. Y., Xu, X. Z., Wu, M., Zhang, X., Li, Q., Ma, P. P., Zhang, Y., Wang, C. Y., Geng, F. J., Qin, C. H., Liu, L., Shi, W. H., Wang, Y. C., and Yu, Y., Novel single nucleotide polymorphisms of the bovine methyltransferase 3b gene and their association with meat quality traits in beef cattle, vol. 11, pp. 2569-2577, 2012.
Amara K, Ziadi S, Hachana M, Soltani N, et al. (2010). DNA methyltransferase DNMT3b protein overexpression as a prognostic factor in patients with diffuse large B-cell lymphomas. Cancer Sci. 101: 1722-1730. http://dx.doi.org/10.1111/j.1349-7006.2010.01569.x PMid:20398054   Barres R and Zierath JR (2011). DNA methylation in metabolic disorders. Am. J. Clin. Nutr. 93: 897S-900. http://dx.doi.org/10.3945/ajcn.110.001933 PMid:21289222   de Vogel S, Wouters KA, Gottschalk RW, van Schooten FJ, et al. (2011). Dietary methyl donors, methyl metabolizing enzymes, and epigenetic regulators: diet-gene interactions and promoter CpG island hypermethylation in colorectal cancer. Cancer Causes Control 22: 1-12. http://dx.doi.org/10.1007/s10552-010-9659-6 PMid:20960050 PMCid:3002163   Fan YY, Zan LS, Wang HB and Yang YJ (2010). Study on the relationship between polymorphism of PLIN gene and carcass and meat quality traits in Qinchuan cattle. Chin. J. Anim. Vet. Sci. 41: 268-273.   Fraga MF, Ballestar E, Paz MF, Ropero S, et al. (2005). Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl. Acad. Sci. U. S. A. 102: 10604-10609. http://dx.doi.org/10.1073/pnas.0500398102 PMid:16009939 PMCid:1174919   Guo X, Liu X, Xu X, Wu M, et al. (2012). The expression levels of DNMT3a/3b and their relationship with meat quality in beef cattle. Mol. Biol. Rep. 39: 5473-5479. http://dx.doi.org/10.1007/s11033-011-1349-2 PMid:22193622   Haggarty P, Hoad G, Harris SE, Starr JM, et al. (2010). Human intelligence and polymorphisms in the DNA methyltransferase genes involved in epigenetic marking. PLoS One 5: e11329. http://dx.doi.org/10.1371/journal.pone.0011329 PMid:20593030 PMCid:2892514   Halaschek-Wiener J, Amirabbasi-Beik M, Monfared N, Pieczyk M, et al. (2009). Genetic variation in healthy oldest-old. PLoS One 4: e6641. http://dx.doi.org/10.1371/journal.pone.0006641 PMid:19680556 PMCid:2722017   Hoey AJ, Reich MM, Davis G, Shorthose R, et al. (1995). Beta 2-adrenoceptor densities do not correlate with growth, carcass quality, or meat quality in cattle. J. Anim. Sci. 73: 3281-3286. PMid:8586585   Ji AG, Zhou ZK, Zhang LP, Yang RJ, et al. (2009). PON1 gene SNPs and association with growth and carcass traits in beef cattle. Acta Vet. Zootechnica Sin. 40: 122-128.   Kamei Y, Suganami T, Ehara T, Kanai S, et al. (2010). Increased expression of DNA methyltransferase 3a in obese adipose tissue: studies with transgenic mice. Obesity 18: 314-321. http://dx.doi.org/10.1038/oby.2009.246 PMid:19680236   Kurita S, Higuchi H, Saito Y, Nakamoto N, et al. (2010). DNMT1 and DNMT3b silencing sensitizes human hepatoma cells to TRAIL-mediated apoptosis via up-regulation of TRAIL-R2/DR5 and caspase-8. Cancer Sci. 101: 1431-1439. http://dx.doi.org/10.1111/j.1349-7006.2010.01565.x PMid:20398055   Li WF, Yang RJ, Gan QF, Zhang LP, et al. (2009). Polymorphism of PRKAG3 gene and Its association with carcass and meat quality traits in beef cattle. Acta Vet. Zootechnica Sin. 40: 1106-1111.   Liu Y, Li K, Liu WJ, Wang JF, et al. (2009). Study on the effect of down-regulation of DNMT1 on cell proliferation, metastasis ability of esophageal squamous cell carcinoma cell line EC9706 cells and its related mechanisms. China Oncol. 19: 826-830.   Maier S and Olek A (2002). Diabetes: a candidate disease for efficient DNA methylation profiling. J. Nutr. 132: 2440S-2443S. PMid:12163708   Okano M, Bell DW, Haber DA and Li E (1999). DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99: 247-257. http://dx.doi.org/10.1016/S0092-8674(00)81656-6   Page BT, Casas E, Heaton MP, Cullen NG, et al. (2002). Evaluation of single-nucleotide polymorphisms in CAPN1 for association with meat tenderness in cattle. J. Anim. Sci. 80: 3077-3085. PMid:12542147   Tidball JG and Spencer MJ (2002). Expression of a calpastatin transgene slows muscle wasting and obviates changes in myosin isoform expression during murine muscle disuse. J. Physiol. 545: 819-828. http://dx.doi.org/10.1113/jphysiol.2002.024935 PMid:12482888 PMCid:2290726   Turek-Plewa J and Jagodzinski PP (2005). The role of mammalian DNA methyltransferases in the regulation of gene expression. Cell Mol. Biol. Lett. 10: 631-647. PMid:16341272   Wang X, Zhu H, Snieder H, Su S, et al. (2010). Obesity related methylation changes in DNA of peripheral blood leukocytes. BMC Med. 8: 87. http://dx.doi.org/10.1186/1741-7015-8-87 PMid:21176133 PMCid:3016263   Yu Y, Zhang H, Tian F, Zhang W, et al. (2008). An integrated epigenetic and genetic analysis of DNA methyltransferase genes (DNMTs) in tumor resistant and susceptible chicken lines. PLoS One 3: e2672. http://dx.doi.org/10.1371/journal.pone.0002672 PMid:18648519 PMCid:2481300
2011
Y. Zhang, Wang, X. F., Li, Z. K., Zhang, G. Y., and Ma, Z. Y., Assessing genetic diversity of cotton cultivars using genomic and newly developed expressed sequence tag-derived microsatellite markers, vol. 10, pp. 1462-1470, 2011.
Abdalla AM, Reddy OUK, El-Zik KM and Pepper AE (2001). Genetic diversity and relationships of diploid and tetraploid cottons revealed using AFLP. Theor. Appl. Genet. 102: 222-229. doi:10.1007/s001220051639 Anderson JA, Churchill GA, Autrique JE, Tanksley SD, et al. (1993). Optimizing parental selection for genetic linkage maps. Genome 36: 181-186. doi:10.1139/g93-024 PMid:18469981 Brubaker CL and Wendel JF (1994). Reevaluating the origin of domesticated cotton (Gossypium hirsutum; Malvaceae) using nuclear restriction fragment length polymorphisms (RFLPs). Am. J. Bot. 81: 1309-1326. doi:10.2307/2445407 Gutiérrez OA, Basu S, Saha S, Jenkins JN, et al. (2002). Genetic distance among selected cotton genotypes and its relationship with F2 performance. Crop Sci. 42: 1841-1847. doi:10.2135/cropsci2002.1841 Iqbal MJ, Aziz N, Saeed NA, Zafar Y, et al. (1997). Genetic diversity evaluation of some elite cotton varieties by RAPD analysis. Theor. Appl. Genet. 94: 139-144. doi:10.1007/s001220050392 PMid:19352756 Lacape JM, Dessauw D, Rajab M, Noyer JL, et al. (2007). Microsatellite diversity in tetraploid Gossypium germplasm: assembling a highly informative genotyping set of cotton SSRs. Mol. Breed. 19: 45-58. doi:10.1007/s11032-006-9042-1 Liu D, Guo X, Lin Z, Nie Y, et al. (2006). Genetic diversity of Asian cotton (Gossypium arboretum L) in China evaluated by microsatellite analysis. Genet. Resour. Crop Evol. 53: 1145-1152. doi:10.1007/s10722-005-1304-y Liu S, Saha S, Stelly D, Burr B, et al. (2000a). Chromosomal assignment of microsatellite loci in cotton. J. Hered. 91: 326-332. doi:10.1093/jhered/91.4.326 Liu S, Cantrell RG, McCarty JC and Stewart JM (2000b). Simple sequence repeat-based assessment of genetic diversity in cotton race stock accessions. Crop Sci. 40: 1459-1469. doi:10.2135/cropsci2000.4051459x Monica AM, Robert RK, Natalie CU, William LR, et al. (2004). Genetic diversity of public inbreds of sorghum determined by mapped AFLP and SSR markers. Crop Sci. 44: 1236-1244. doi:10.2135/cropsci2004.1236 Morgante M, Hanafey M and Powell W (2002). Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat. Genet. 30: 194-200. doi:10.1038/ng822 PMid:11799393 Multani DS and Lyon BR (1995). Genetic fingerprinting of Australian cotton cultivars with RAPD markers. Genome 38: 1005-1008. doi:10.1139/g95-132 PMid:18470223 Murtaza N (2006). Cotton genetic diversity study by AFLP markers. Electron. J. Biotechnol. 9: 457-460. doi:10.2225/vol9-issue4-fulltext-9 Nei M and Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273. doi:10.1073/pnas.76.10.5269 Park YH, Alabady MS, Ulloa M, Sickler B, et al. (2005). Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred line cotton population. Mol. Genet. Genomics 274: 428-441. doi:10.1007/s00438-005-0037-0 PMid:16187061 Reddy OUK, Pepper AE, Abdurakhmonov I, Saha S, et al. (2001). New dinucleotide and trinucleotide microsatellite marker resources for cotton genome research. J. Cotton Sci. 5: 103-113. Rohlf FJ (2000). NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System, Version 2.1. User Guide. Exeter Software, New York. Rong J, Abbey C, Bowers JE, Brubaker CL, et al. (2004). A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics 166: 389-417. doi:10.1534/genetics.166.1.389 PMid:15020432    PMCid:1470701 Saha S, Wu J, Jenkins JN, McCarty JC Jr, et al. (2004). Effect of chromosome substitutions from Gossypium barbadense L.3-79 into G. hirsutum L. TM-1 on agronomic and fiber traits. J. Cotton Sci. 8: 162-169. Sun DL, Sun JL, Jia YH, Ma ZY, et al. (2009). Genetic diversiry of colored analyzed by simple sequence repeat markers. Int. J. Plant Sci. 170: 76-82. doi:10.1086/593037 Tatineni V, Canterell RG and Davis DD (1996). Genetic diversity in elite cotton germplasm determined by morphological characteristics and RAPDs. Crop Sci. 36: 186-192. doi:10.2135/cropsci1996.0011183X003600010033x Turkoglu Z, Bilgener S, Ercisli S, Bakir M, et al. (2010). Simple sequence repeat-based assessment of genetic relationships among Prunus rootstocks. Genet. Mol. Res. 9: 2156-2165. doi:10.4238/vol9-4gmr957 PMid:21053179 Ulloa M, Brubaker C and Chee P (2007). Cotton. In: Genome Mapping & Molecular Breeding (Kole C, ed.). Vol. 6. Technical Crops Springer, New York. Wang X, Ma J, Yang S, Zhang G, et al. (2007). Assessment of genetic diversity among Chinese upland cottons with Fusarium and/or Verticillium wilts resistance by AFLP and SSR markers. Front. Agric. China 1: 129-135. doi:10.1007/s11703-007-0023-x Zhang J and Stewart JM (2000). Economical and rapid method for extracting cotton genomic DNA. J. Cotton Sci. 4: 193-201. Zhang J, Wu YT, Guo WZ and Zhang TZ (2000). Fast screening of microsatellite markers in cotton with PAGE silver staining. J. Cotton Sci. 12: 267-269. Zhu LF, Zhang XL and Nie YC (2003). Analysis of genetic diversity in upland cotton (Gossypium hirsutum L.) cultivars from China and foreign countries by RAPDs and SSRs. J. Agric. Biotechnol. 11: 450-455.
Y. Wang, Zhou, X. O., Zhang, Y., Gao, P. J., and Zhu, D. L., Association of KCNJ11 with impaired glucose regulation in essential hypertension, vol. 10, pp. 1111-1119, 2011.
Cederholm J and Wibell L (1990). Insulin release and peripheral sensitivity at the oral glucose tolerance test. Diabetes Res. Clin. Pract. 10: 167-175. doi:10.1016/0168-8227(90)90040-Z De Marco M, de Simone G, Roman MJ, Chinali M, et al. (2009). Cardiovascular and metabolic predictors of progression of prehypertension into hypertension: the strong heart study. Hypertension 54: 974-980. doi:10.1161/HYPERTENSIONAHA.109.129031 PMid:19720957    PMCid:2776057 Dudbridge F (2003). Pedigree disequilibrium tests for multilocus haplotypes. Genet. Epidemiol. 25: 115-121. doi:10.1002/gepi.10252 PMid:12916020 Florez JC, Jablonski KA, Kahn SE, Franks PW, et al. (2007). Type 2 diabetes-associated missense polymorphisms KCNJ11 E23K and ABCC8 A1369S influence progression to diabetes and response to interventions in the Diabetes Prevention Program. Diabetes 56: 531-536. doi:10.2337/db06-0966 PMid:17259403    PMCid:2267937 Gloyn AL, Pearson ER, Antcliff JF, Proks P, et al. (2004). Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N. Engl. J. Med. 350: 1838-1849. doi:10.1056/NEJMoa032922 PMid:15115830 Hackam DG, Khan NA, Hemmelgarn BR, Rabkin SW, et al. (2010). The 2010 Canadian Hypertension Education Program recommendations for the management of hypertension: part 2 - therapy. Can. J. Cardiol. 26: 249-258. doi:10.1016/S0828-282X(10)70379-2 Lin YW, Bushman JD, Yan FF, Haidar S, et al. (2008). Destabilization of ATP-sensitive potassium channel activity by novel KCNJ11 mutations identified in congenital hyperinsulinism. J. Biol. Chem. 283: 9146-9156. doi:10.1074/jbc.M708798200 PMid:18250167    PMCid:2431039 Matthews DR, Hosker JP, Rudenski AS, Naylor BA, et al. (1985). Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28: 412-419. doi:10.1007/BF00280883 PMid:3899825 Nielsen EM, Hansen L, Carstensen B, Echwald SM, et al. (2003). The E23K variant of Kir6.2 associates with impaired post-OGTT serum insulin response and increased risk of type 2 diabetes. Diabetes 52: 573-577. doi:10.2337/diabetes.52.2.573 Ryder E, Gomez ME, Fernandez V, Campos G, et al. (2003). Presence of impaired insulin secretion and insulin resistance in normoglycemic male subjects with family history of type 2 diabetes. Diabetes Res. Clin. Pract. 60: 95-103. doi:10.1016/S0168-8227(02)00282-6 Saxena R, Voight BF, Lyssenko V, Burtt NP, et al. (2007). Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316: 1331-1336. doi:10.1126/science.1142358 PMid:17463246 Schaid DJ, Rowland CM, Tines DE, Jacobson RM, et al. (2002). Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am. J. Hum. Genet. 70: 425-434. doi:10.1086/338688 PMid:11791212 Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, et al. (2007). A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316: 1341-1345. doi:10.1126/science.1142382 PMid:17463248 Seino S, Iwanaga T, Nagashima K and Miki T (2000). Diverse roles of K(ATP) channels learned from Kir6.2 genetically engineered mice. Diabetes 49: 311-318. doi:10.2337/diabetes.49.3.311 PMid:10868950 Vaxillaire M, Veslot J, Dina C, Proenca C, et al. (2008). Impact of common type 2 diabetes risk polymorphisms in the DESIR prospective study. Diabetes 57: 244-254. doi:10.2337/db07-0615 PMid:17977958 Villareal DT, Koster JC, Robertson H, Akrouh A, et al. (2009). Kir6.2 variant E23K increases ATP-sensitive K+ channel activity and is associated with impaired insulin release and enhanced insulin sensitivity in adults with normal glucose tolerance. Diabetes 58: 1869-1878. doi:10.2337/db09-0025 PMid:19491206    PMCid:2712777 Vlasakova Z, Pelikanova T, Karasova L and Skibova J (2004). Insulin secretion, sensitivity, and metabolic profile of young healthy offspring of hypertensive parents. Metabolism 53: 469-475. doi:10.1016/j.metabol.2003.10.030 PMid:15045694 Yokoi N, Kanamori M, Horikawa Y, Takeda J, et al. (2006). Association studies of variants in the genes involved in pancreatic beta-cell function in type 2 diabetes in Japanese subjects. Diabetes 55: 2379-2386. doi:10.2337/db05-1203 PMid:16873704 Zeggini E, Weedon MN, Lindgren CM, Frayling TM, et al. (2007). Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316: 1336-1341. doi:10.1126/science.1142364 PMid:17463249
S. Yang, Wang, L., Zhang, Y., Liu, X. C., Lin, H. R., and Meng, Z. N., Development and characterization of 32 microsatellite loci in the giant grouper Epinephelus lanceolatus (Serranidae), vol. 10. pp. 4006-4011, 2011.
Chistiakov DA, Hellemans B and Volckaert FAM (2006). Microsatellites and their genomic distribution, evolution, function and applications: A review with special reference to fish genetics. Aquaculture 255: 1-29. http://dx.doi.org/10.1016/j.aquaculture.2005.11.031   Dong HY, Zeng LX, Duan D and Zhang HF (2010). Growth hormone and two forms of insulin-like growth factors I in the giant grouper (Epinephelus lanceolatus): molecular cloning and characterization of tissue distribution. Fish Physiol. Biochem. 36: 201-212. http://dx.doi.org/10.1007/s10695-008-9231-4 PMid:20467861   Heemstra PC and Randall JE (1993). Groupers of the World (Family Serranidae, Subfamily Epinephelidae): An Annotated and Illustrated Catalogue of the Grouper, Rockcod, Hind, Coral Grouper and Lyretail Species Known to Date. FAO, Rome.   Hseu JR, Hwang PP and Ting YY (2004). Morphometric model and laboratory analysis of intracohort cannibalism in giant grouper Epinephelus lanceolatus fry. Fish. Sci. 70: 482-486. http://dx.doi.org/10.1111/j.1444-2906.2004.00829.x   Kalinowski ST, Taper ML and Marshall TC (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16: 1099-1106. http://dx.doi.org/10.1111/j.1365-294X.2007.03089.x PMid:17305863   Morris AV, Roberts CM and Hawkins JP (2000). The threatened status of groupers (Epinephinae). Biodivers. Conserv. 9: 919-942. http://dx.doi.org/10.1023/A:1008996002822   Nelson J (1994). Fishes of the World. John Wiley and Sons, New York.   Rice WR (1989). Analyzing tables of statistical tests. Evolution 43: 223-225. http://dx.doi.org/10.2307/2409177   Rousset F (2008). Genepop 007: a complete reimplementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8: 103-106. http://dx.doi.org/10.1111/j.1471-8286.2007.01931.x PMid:21585727   Rozen S and Skaletsky HJ (2000). Primer 3 on the WWW for General Users and for Biologist Programmers. In: Bioinformatics Methods and Protocols: Methods in Molecular Biology (Krawets S and Misener S, eds.). Humana Press, Totowa, 365-386. PMid:10547847   Van Oosterhout C, Hutchinson WF, Wills DPM and Shipley P (2004). MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4: 535-538. http://dx.doi.org/10.1111/j.1471-8286.2004.00684.x   Zane L, Bargelloni L and Patarnello T (2002). Strategies for microsatellite isolation: a review. Mol. Ecol. 11: 1-16. http://dx.doi.org/10.1046/j.0962-1083.2001.01418.x PMid:11903900   Zeng HS, Ding SX, Wang J and Su YQ (2008). Characterization of eight polymorphic microsatellite loci for the giant grouper (Epinephelus lanceolatus Bloch). Mol. Ecol. Resour. 8: 805-807. http://dx.doi.org/10.1111/j.1755-0998.2007.02070.x PMid:21585897
H. G. Wang, Wang, X. F., Jing, X. Y., Li, Z., Zhang, Y., and Lv, Z. J., Effect of mutations in a simian virus 40 PolyA signal enhancer on green fluorescent protein reporter gene expression, vol. 10, pp. 1866-1883, 2011.
Cai L, Fritz D, Stefanovic L and Stefanovic B (2010). Binding of LARP6 to the conserved 5' stem-loop regulates translation of mRNAs encoding type I collagen. J. Mol. Biol. 395: 309-326. http://dx.doi.org/10.1016/j.jmb.2009.11.020 PMid:19917293    PMCid:2826804 Chou SH, Tseng YY and Chu BY (1999). Stable formation of a pyrimidine-rich loop hairpin in a cruciform promoter. J. Mol. Biol. 292: 309-320. http://dx.doi.org/10.1006/jmbi.1999.3066 PMid:10493877 Costa FF (2008). Non-coding RNAs, epigenetics and complexity. Gene 410: 9-17. http://dx.doi.org/10.1016/j.gene.2007.12.008 PMid:18226475 Costantini M and Bernardi G (2008). Correlations between coding and contiguous non-coding sequences in isochore families from vertebrate genomes. Gene 410: 241-248. http://dx.doi.org/10.1016/j.gene.2007.12.016 PMid:18252269 Dai X, Kloster M and Rothman-Denes LB (1998). Sequence-dependent extrusion of a small DNA hairpin at the N4 virion RNA polymerase promoters. J. Mol. Biol. 283: 43-58. http://dx.doi.org/10.1006/jmbi.1998.2096 PMid:9761672 Darlow JM and Leach DR (1998). Evidence for two preferred hairpin folding patterns in d(CGG).d(CCG) repeat tracts in vivo. J. Mol. Biol. 275: 17-23. http://dx.doi.org/10.1006/jmbi.1997.1452 PMid:9451435 Frolov I, Hardy R and Rice CM (2001). Cis-acting RNA elements at the 5' end of Sindbis virus genome RNA regulate minus- and plus-strand RNA synthesis. RNA 7: 1638-1651. http://dx.doi.org/10.1017/S135583820101010X PMid:11720292    PMCid:1370205 Gleghorn ML, Davydova EK, Rothman-Denes LB and Murakami KS (2008). Structural basis for DNA-hairpin promoter recognition by the bacteriophage N4 virion RNA polymerase. Mol. Cell 32: 707-717. http://dx.doi.org/10.1016/j.molcel.2008.11.010 PMid:19061645    PMCid:2639713 Grimwood J, Gordon LA, Olsen A, Terry A, et al. (2004). The DNA sequence and biology of human chromosome 19. Nature 428: 529-535. http://dx.doi.org/10.1038/nature02399 PMid:15057824 Kang H, Feng M, Schroeder ME, Giedroc DP, et al. (2006). Putative cis-acting stem-loops in the 5' untranslated region of the severe acute respiratory syndrome coronavirus can substitute for their mouse hepatitis virus counterparts. J. Virol. 80: 10600-10614. http://dx.doi.org/10.1128/JVI.00455-06 PMid:16920822    PMCid:1641749 Kuznetsov SV, Ren CC, Woodson SA and Ansari A (2008). Loop dependence of the stability and dynamics of nucleic acid hairpins. Nucleic Acids Res. 36: 1098-1112. http://dx.doi.org/10.1093/nar/gkm1083 PMid:18096625    PMCid:2275088 Lander ES, Linton LM, Birren B, Nusbaum C, et al. (2001). Initial sequencing and analysis of the human genome. Nature 409: 860-921. http://dx.doi.org/10.1038/35057062 PMid:11237011 Li L, Kang H, Liu P, Makkinje N, et al. (2008). Structural lability in stem-loop 1 drives a 5' UTR-3' UTR interaction in coronavirus replication. J. Mol. Biol. 377: 790-803. http://dx.doi.org/10.1016/j.jmb.2008.01.068 PMid:18289557    PMCid:2652258 Li Y, Ho ES, Gunderson SI and Kiledjian M (2009). Mutational analysis of a Dcp2-binding element reveals general enhancement of decapping by 5'-end stem-loop structures. Nucleic Acids Res. 37: 2227-2237. http://dx.doi.org/10.1093/nar/gkp087 PMid:19233875    PMCid:2673433 Lu ZJ, Zhai Y, Wang XF and Song SX (2003). DNA sequence composition on human X chromosome differing from that on chromosomes 6,7,8,10,11 and 12. Genet. Sin. 30: 1051-1060. Nelson MJ and Green BR (2005). Double hairpin elements and tandem repeats in the non-coding region of Adenoides eludens chloroplast gene minicircles. Gene 358: 102-110. http://dx.doi.org/10.1016/j.gene.2005.05.024 PMid:16043313 Nickens DG and Hardy RW (2008). Structural and functional analyses of stem-loop 1 of the Sindbis virus genome. Virology 370: 158-172. http://dx.doi.org/10.1016/j.virol.2007.08.006 PMid:17900652 Rosskopf JJ, Upton JH 3rd, Rodarte L, Romero TA, et al. (2010). A 3' terminal stem-loop structure in Nodamura virus RNA2 forms an essential cis-acting signal for RNA replication. Virus Res. 150: 12-21. http://dx.doi.org/10.1016/j.virusres.2010.02.006 PMid:20176063    PMCid:3017585 Sean P, Nguyen JHC and Semler BL (2009). Altered interactions between stem-loop IV within the 5' noncoding region of coxsackievirus RNA and poly(rC) binding protein 2: effects on IRES-mediated translation and viral infectivity. Virology 389: 45-58. http://dx.doi.org/10.1016/j.virol.2009.03.012 PMid:19446305    PMCid:2694229 Ueno M, Kodama EN, Shimura K, Sakurai Y, et al. (2009). Synonymous mutations in stem-loop III of Rev responsive elements enhance HIV-1 replication impaired by primary mutations for resistance to enfuvirtide. Antiviral Res. 82: 67-72. http://dx.doi.org/10.1016/j.antiviral.2009.02.002 PMid:19428597 Wang XF, Wang X, Liu J, Feng J, et al. (2009a). Alu tandem sequences inhibit GFP gene expression by triggering chromatin wrapping. Genes Genom. 31: 209-215. http://dx.doi.org/10.1007/BF03191192 Wang XF, Jin X, Wang X, Liu J, et al. (2009b). Effects of L1-ORF2 fragments on green fluorescent protein gene expression. Genet. Mol. Biol. 32: 688-696. http://dx.doi.org/10.1590/S1415-47572009005000068 PMid:21637438    PMCid:3036906 Xu ZL, Mizuguchi H, Ishii-Watabe A, Uchida E, et al. (2001). Optimization of transcriptional regulatory elements for constructing plasmid vectors. Gene 272: 149-156. http://dx.doi.org/10.1016/S0378-1119(01)00550-9 Yin K, Wang X, Ma H, Xie Y, et al. (2010). Impact of copy number of distinct SV40PolyA segments on expression of a GFP reporter gene. Sci. China Life Sci. 53: 606-612. http://dx.doi.org/10.1007/s11427-010-0110-8 PMid:20596944 Yu L and Markoff L (2005). The topology of bulges in the long stem of the flavivirus 3'stem-loop is a major determinant of RNA replication competence. J. Virol. 79: 2309-2324. http://dx.doi.org/10.1128/JVI.79.4.2309-2324.2005 PMid:15681432    PMCid:546603
L. L. Hao, Yu, H., Zhang, Y., Sun, S. C., Liu, S. C., Zeng, Y. Z., Ai, Y. X., and Jiang, H. Z., Single nucleotide polymorphism analysis of exons 3 and 4 of IGF-1 gene in pigs, vol. 10, pp. 1689-1695, 2011.
Godowski PJ, Leung DW, Meacham LR, Galgani JP, et al. (1989). Characterization of the human growth hormone receptor gene and demonstration of a partial gene deletion in two patients with Laron-type dwarfism. Proc. Natl. Acad. Sci. U. S. A. 86: 8083-8087. http://dx.doi.org/10.1073/pnas.86.20.8083 Gu YR (2007). The Genetic Diversity and Genetic Effects of IGF-1 Gene in Different Pig Breeds. Sichuan Agricultural University, Ya’an. Suzuki K, Nakagawa M, Katoh K, Kadowaki H, et al. (2004). Genetic correlation between serum insulin-like growth factor-1 concentration and performance and meat quality traits in Duroc pigs. J. Anim. Sci. 82: 994-999. PMid:15080319 Wang GH, Yin XM, Sun X and Zhao DM (2009). General situation of miniature pig resources at home and abroad. Chin. J. Comp. Med. 19: 71-73. Wintero AK, Fredholm M and Andersson L (1994). Assignment of the gene for porcine insulin-like growth factor 1 (IGF1) to chromosome 5 by linkage mapping. Anim. Genet. 25: 37-39. Xiao SQ, Zhang JB, Li S, Zhao ZH, et al. (2007). The exon4 polymorphism of IGF-I gene and its relationship with partial performances in Songliao black swine. China Anim. Husb. Vet. Med. 34: 55-57. Xue HL and Xu LX (2008). Genetic polymorphisms and genetic effects of IGF2 gene in pigs. Yi Chuan 30: 179-184. PMid:18244923

Pages