Publications

Found 19 results
Filters: Author is S.J. Li  [Clear All Filters]
2016
G. Shi, Cheng, C. M., Wang, T. T., Li, S. J., Fan, Y. M., Zhu, K. J., Shi, G., Cheng, C. M., Wang, T. T., Li, S. J., Fan, Y. M., and Zhu, K. J., Association between atopic dermatitis-related single nucleotide polymorphisms rs4722404 and psoriasis vulgaris in a southern Chinese cohort, vol. 15, p. -, 2016.
G. Shi, Cheng, C. M., Wang, T. T., Li, S. J., Fan, Y. M., and Zhu, K. J., Association between atopic dermatitis-related single nucleotide polymorphisms rs4722404 and psoriasis vulgaris in a southern Chinese cohort, vol. 15, p. -, 2016.
G. Shi, Cheng, C. M., Wang, T. T., Li, S. J., Fan, Y. M., Zhu, K. J., Shi, G., Cheng, C. M., Wang, T. T., Li, S. J., Fan, Y. M., and Zhu, K. J., Association between atopic dermatitis-related single nucleotide polymorphisms rs4722404 and psoriasis vulgaris in a southern Chinese cohort, vol. 15, p. -, 2016.
G. Shi, Li, S. J., Wang, T. T., Cheng, C. M., Fan, Y. M., Zhu, K. J., Shi, G., Li, S. J., Wang, T. T., Cheng, C. M., Fan, Y. M., and Zhu, K. J., The common CARD14 gene missense polymorphism rs11652075 (c.C2458T/p.Arg820Trp) is associated with psoriasis: a meta-analysis, vol. 15, p. -, 2016.
G. Shi, Li, S. J., Wang, T. T., Cheng, C. M., Fan, Y. M., Zhu, K. J., Shi, G., Li, S. J., Wang, T. T., Cheng, C. M., Fan, Y. M., and Zhu, K. J., The common CARD14 gene missense polymorphism rs11652075 (c.C2458T/p.Arg820Trp) is associated with psoriasis: a meta-analysis, vol. 15, p. -, 2016.
S. W. Chen, Liu, T., Gao, Y., Zhang, C., Peng, S. D., Bai, M. B., Li, S. J., Xu, L., Zhou, X. Y., Lin, L. B., Chen, S. W., Liu, T., Gao, Y., Zhang, C., Peng, S. D., Bai, M. B., Li, S. J., Xu, L., Zhou, X. Y., and Lin, L. B., Discovery of clubroot-resistant genes in Brassica napus by transcriptome sequencing, vol. 15, p. -, 2016.
S. W. Chen, Liu, T., Gao, Y., Zhang, C., Peng, S. D., Bai, M. B., Li, S. J., Xu, L., Zhou, X. Y., Lin, L. B., Chen, S. W., Liu, T., Gao, Y., Zhang, C., Peng, S. D., Bai, M. B., Li, S. J., Xu, L., Zhou, X. Y., and Lin, L. B., Discovery of clubroot-resistant genes in Brassica napus by transcriptome sequencing, vol. 15, p. -, 2016.
H. Y. Ma, Li, S. J., Feng, N. N., Ma, C. Y., Wang, W., Chen, W., Ma, L. B., Ma, H. Y., Li, S. J., Feng, N. N., Ma, C. Y., Wang, W., Chen, W., and Ma, L. B., First genetic linkage map for the mud crab (Scylla paramamosain) constructed using microsatellite and AFLP markers, vol. 15, p. -, 2016.
H. Y. Ma, Li, S. J., Feng, N. N., Ma, C. Y., Wang, W., Chen, W., Ma, L. B., Ma, H. Y., Li, S. J., Feng, N. N., Ma, C. Y., Wang, W., Chen, W., and Ma, L. B., First genetic linkage map for the mud crab (Scylla paramamosain) constructed using microsatellite and AFLP markers, vol. 15, p. -, 2016.
2013
K. Q. Tang, Yang, W. C., Li, S. J., and Yang, L. - G., Polymorphisms of the bovine growth differentiation factor 9 gene associated with superovulation performance in Chinese Holstein cows, vol. 12, pp. 390-399, 2013.
Barzegari A, Atashpaz S, Ghabili K, Nemati Z, et al. (2010). Polymorphisms in GDF9 and BMP15 associated with fertility and ovulation rate in Moghani and Ghezel sheep in Iran. Reprod. Domest. Anim. 45: 666-669. PMid:19144040   Bastidas P and Randel RD (1987). Seasonal effects on embryo transfer results in Brahman cows. Theriogenology 28: 531-540. http://dx.doi.org/10.1016/0093-691X(87)90258-5   Chu MX, Yang J, Feng T, Cao GL, et al. (2011). GDF9 as a candidate gene for prolificacy of Small Tail Han sheep. Mol. Biol. Rep. 38: 5199-5204. http://dx.doi.org/10.1007/s11033-010-0670-5 PMid:21184179   Dixit H, Rao LK, Padmalatha VV, Kanakavalli M, et al. (2006). Missense mutations in the BMP15 gene are associated with ovarian failure. Hum. Genet. 119: 408-415. http://dx.doi.org/10.1007/s00439-006-0150-0 PMid:16508750   Dong J, Albertini DF, Nishimori K, Kumar TR, et al. (1996). Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383: 531-535. http://dx.doi.org/10.1038/383531a0 PMid:8849725   Du ZY, Lin JB, Tan C, Wang JF, et al. (2008). Study on the polymorphisms of exon 2 of GDF9 gene in Guizhou White goat. Anim. Husb. Vet. Med. 40: 46-48.   Elvin JA, Clark AT, Wang P, Wolfman NM, et al. (1999). Paracrine actions of growth differentiation factor-9 in the mammalian ovary. Mol. Endocrinol. 13: 1035-1048. http://dx.doi.org/10.1210/me.13.6.1035 PMid:10379900   Eppig JJ, Chesnel F, Hirao Y, O'Brien MJ, et al. (1997). Oocyte control of granulosa cell development: how and why. Hum. Reprod. 12: 127-132. PMid:9433969   Feng T, Geng CX, Lang XZ, Chu MX, et al. (2011). Polymorphisms of caprine GDF9 gene and their association with litter size in Jining Grey goats. Mol. Biol. Rep. 38: 5189-5197. http://dx.doi.org/10.1007/s11033-010-0669-y PMid:21181498   Gao Y, Zhang YH, Zhang S, Li F, et al. (2011). Association of A-FABP gene polymorphism in intron 1 with meat quality traits in Junmu No. 1 white swine. Gene 487: 170-173. http://dx.doi.org/10.1016/j.gene.2011.07.005 PMid:21846497   Hanrahan JP, Gregan SM, Mulsant P, Mullen M, et al. (2004). Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biol. Reprod. 70: 900-909. http://dx.doi.org/10.1095/biolreprod.103.023093 PMid:14627550   Hasler JF (2003). The current status and future of commercial embryo transfer in cattle. Anim. Reprod. Sci. 79: 245-264. http://dx.doi.org/10.1016/S0378-4320(03)00167-2   Joseph S and David WR (2002). Molecular Cloning a Laboratory Manual. 3rd edn. Science Press, Beijing.   Kovanci E, Rohozinski J, Simpson JL, Heard MJ, et al. (2007). Growth differentiating factor-9 mutations may be associated with premature ovarian failure. Fertil. Steril. 87: 143-146. http://dx.doi.org/10.1016/j.fertnstert.2006.05.079 PMid:17156781   Krawczak M, Thomas NS, Hundrieser B, Mort M, et al. (2007). Single base-pair substitutions in exon-intron junctions of human genes: nature, distribution, and consequences for mRNA splicing. Hum. Mutat. 28: 150-158. http://dx.doi.org/10.1002/humu.20400 PMid:17001642   Laissue P, Christin-Maitre S, Touraine P, Kuttenn F, et al. (2006). Mutations and sequence variants in GDF9 and BMP15 in patients with premature ovarian failure. Eur. J. Endocrinol. 154: 739-744. http://dx.doi.org/10.1530/eje.1.02135 PMid:16645022   Lee W, Song K, Lim K, Lee S, et al. (2012). Influence of factors during superovulation on embryo production in Korean Holstein cattle. J. Vet. Med. Sci. 74: 167-174. http://dx.doi.org/10.1292/jvms.11-0057 PMid:21959893   Lerner SP, Thayne WV, Baker RD, Henschen T, et al. (1986). Age, dose of FSH and other factors affecting superovulation in Holstein cows. J. Anim. Sci. 63: 176-183. PMid:3090006   Liu BH (1998). Statistical Genomics, Linkage, Mapping and QTL Analysis. CRC Press, Boca Raton, 404-409.   Malhi PS, Adams GP, Mapletoft RJ and Singh J (2008). Superovulatory response in a bovine model of reproductive aging. Anim. Reprod. Sci. 109: 100-109. http://dx.doi.org/10.1016/j.anireprosci.2007.12.002 PMid:18374524   Mapletoft RJ, Steward KB and Adams GP (2002). Recent advances in the superovulation in cattle. Reprod. Nutr. Dev. 42: 601-611. http://dx.doi.org/10.1051/rnd:2002046 PMid:12625424   McNatty KP, Juengel JL, Wilson T, Galloway SM, et al. (2003). Oocyte-derived growth factors and ovulation rate in sheep. Reprod. Suppl. 61: 339-351. PMid:14635946   McNatty KP, Juengel JL, Reader KL, Lun S, et al. (2005). Bone morphogenetic protein 15 and growth differentiation factor 9 co-operate to regulate granulosa cell function in ruminants. Reproduction 129: 481-487. http://dx.doi.org/10.1530/rep.1.00517 PMid:15798023   Melo EO, Silva BDM, Castro EA, Silva TASN, et al. (2008). A novel mutation in the growth and differentiation factor 9 (GDF9) gene is associated, in homozygosis, with increased ovulation rate in Santa Ines sheep. Biol. Reprod. 78: 371.   Montgomery GW, Zhao ZZ, Marsh AJ, Mayne R, et al. (2004). A deletion mutation in GDF9 in sisters with spontaneous DZ twins. Twin Res. 7: 548-555. PMid:15607004   Newcomb R, Christie WB and Rowson LE (1978). Non-surgical recovery of bovine embryos. Vet. Rec. 102: 414-417. http://dx.doi.org/10.1136/vr.102.19.414 PMid:654055   Nicol L, Bishop SC, Pong-Wong R, Bendixen C, et al. (2009). Homozygosity for a single base-pair mutation in the oocyte-specific GDF9 gene results in sterility in Thoka sheep. Reproduction 138: 921-933. http://dx.doi.org/10.1530/REP-09-0193 PMid:19713444   Niu BY, Ye LZ, Li FE, Deng CY, et al. (2009). Identification of polymorphism and association analysis with reproductive traits in the porcine RNF4 gene. Anim. Reprod. Sci. 110: 283-292. http://dx.doi.org/10.1016/j.anireprosci.2008.01.020 PMid:18358646   Orisaka M, Orisaka S, Jiang JY, Craig J, et al. (2006). Growth differentiation factor 9 is antiapoptotic during follicular development from preantral to early antral stage. Mol. Endocrinol. 20: 2456-2468. http://dx.doi.org/10.1210/me.2005-0357 PMid:16740654   Palmer JS, Zhao ZZ, Hoekstra C, Hayward NK, et al. (2006). Novel variants in growth differentiation factor 9 in mothers of dizygotic twins. J. Clin. Endocrinol. Metab. 91: 4713-4716. http://dx.doi.org/10.1210/jc.2006-0970 PMid:16954162   Pang Y, Wang J, Zhang C, Lei C, et al. (2011). The polymorphisms of bovine VEGF gene and their associations with growth traits in Chinese cattle. Mol. Biol. Rep. 38: 755-759. http://dx.doi.org/10.1007/s11033-010-0163-6 PMid:20376703   Polley S, De S, Brahma B, Mukherjee A, et al. (2010). Polymorphism of BMPR1B, BMP15 and GDF9 fecundity genes in prolific Garole sheep. Trop. Anim. Health Prod. 42: 985-993. http://dx.doi.org/10.1007/s11250-009-9518-1 PMid:20020203   Rico C, Fabre S, Medigue C, di CN, et al. (2009). Anti-mullerian hormone is an endocrine marker of ovarian gonadotropin-responsive follicles and can help to predict superovulatory responses in the cow. Biol. Reprod. 80: 50-59. http://dx.doi.org/10.1095/biolreprod.108.072157 PMid:18784351   Shi YY and He L (2005). SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 15: 97-98. http://dx.doi.org/10.1038/sj.cr.7290272 PMid:15740637   Silva BD, Castro EA, Souza CJ, Paiva SR, et al. (2011). A new polymorphism in the Growth and Differentiation Factor 9 (GDF9) gene is associated with increased ovulation rate and prolificacy in homozygous sheep. Anim. Genet. 42: 89-92. http://dx.doi.org/10.1111/j.1365-2052.2010.02078.x PMid:20528846   Tang KQ, Li SJ, Yang WC, Yu JN, et al. (2011). An MspI polymorphism in the inhibin alpha gene and its associations with superovulation traits in Chinese Holstein cows. Mol. Biol. Rep. 38: 17-21. http://dx.doi.org/10.1007/s11033-010-0072-8 PMid:20238172   Van Laere AS, Nguyen M, Braunschweig M, Nezer C, et al. (2003). A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature 425: 832-836. http://dx.doi.org/10.1038/nature02064 PMid:14574411   Wang TT, Wu YT, Dong MY, Sheng JZ, et al. (2010). G546A polymorphism of growth differentiation factor-9 contributes to the poor outcome of ovarian stimulation in women with diminished ovarian reserve. Fertil. Steril. 94: 2490-2492. http://dx.doi.org/10.1016/j.fertnstert.2010.03.070 PMid:20451184   Yan C, Wang P, DeMayo J, DeMayo FJ, et al. (2001). Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol. Endocrinol. 15: 854-866. http://dx.doi.org/10.1210/me.15.6.854 PMid:11376106   Yang WC, Li SJ, Tang KQ, Hua GH, et al. (2010). Polymorphisms in the 5' upstream region of the FSH receptor gene, and their association with superovulation traits in Chinese Holstein cows. Anim. Reprod. Sci. 119: 172-177. http://dx.doi.org/10.1016/j.anireprosci.2010.02.004 PMid:20207511   Zhao H, Qin Y, Kovanci E, Simpson JL, et al. (2007). Analyses of GDF9 mutation in 100 Chinese women with premature ovarian failure. Fertil. Steril. 88: 1474-1476. http://dx.doi.org/10.1016/j.fertnstert.2007.01.021 PMid:17482612 PMCid:2767161