Publications

Found 5 results
Filters: Author is M.B. Oliveira  [Clear All Filters]
2012
E. A. Bueno, Oliveira, M. B., Andrade, R. V., M. Júnior, L., and Petrofeza, S., Effect of different carbon sources on proteases secreted by the fungal pathogen Sclerotinia sclerotiorum during Phaseolus vulgaris infection, vol. 11, pp. 2171-2181, 2012.
Billon-Grand G, Poussereau N and Fevre M (2002). The extracellular proteases secreted in vitro and in planta by the phytopathogenic fungus Sclerotinia sclerotiorum. J. Phytopathol. 150: 507-511. http://dx.doi.org/10.1046/j.1439-0434.2002.00782.x   Boland GJ and Hall R (1994). Index of plant hosts of Sclerotinia sclerotiorum. Can. J. Plant Pathol. 16: 93-108. http://dx.doi.org/10.1080/07060669409500766   Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. http://dx.doi.org/10.1016/0003-2697(76)90527-3   Clark SJ, Templeton MD and Sullivan PA (1997). A secreted aspartic proteinase from Glomerella cingulata: purification of the enzyme and molecular cloning of the cDNA. Microbiology 143: 1395-1403. http://dx.doi.org/10.1099/00221287-143-4-1395 PMid:9141702   Cotton P, Rascle C and Fevre M (2002). Characterization of PG2, an early endoPG produced by Sclerotinia sclerotiorum, expressed in yeast. FEMS Microbiol. Lett 213: 239-244. http://dx.doi.org/10.1111/j.1574-6968.2002.tb11312.x PMid:12167544   Farley PC and Sullivan PA (1998). The Rhizopus oryzae secreted aspartic proteinase gene family: an analysis of gene expression. Microbiology 144: 2355-2366. http://dx.doi.org/10.1099/00221287-144-8-2355 PMid:9720058   Hegedus DD and Rimmer SR (2005). Sclerotinia sclerotiorum: when "to be or not to be" a pathogen? FEMS Microbiol. Lett. 251: 177-184. http://dx.doi.org/10.1016/j.femsle.2005.07.040 PMid:16112822   Jarai G and Buxton F (1994). Nitrogen, carbon, and pH regulation of extracellular acidic proteases of Aspergillus niger. Curr. Genet. 26: 238-244. http://dx.doi.org/10.1007/BF00309554 PMid:7532112   Kim YT, Prusky D and Rollins JA (2007). An activating mutation of the Sclerotinia sclerotiorum pac1 gene increases oxalic acid production at low pH but decreases virulence. Mol. Plant. Pathol. 8: 611-622. http://dx.doi.org/10.1111/j.1364-3703.2007.00423.x PMid:20507525   Li R, Rimmer R, Buchwaldt L, Sharpe AG, et al. (2004). Interaction of Sclerotinia sclerotiorum with a resistant Brassica napus cultivar: expressed sequence tag analysis identifies genes associated with fungal pathogenesis. Fungal. Genet. Biol. 41: 735-753. http://dx.doi.org/10.1016/j.fgb.2004.03.001 PMid:15219559   MacDonald F and Odds FC (1980). Inducible proteinase of Candida albicans in diagnostic serology and in the pathogenesis of systemic candidosis. J. Med. Microbiol. 13: 423-435. http://dx.doi.org/10.1099/00222615-13-3-423 PMid:6997486   Magro P, Marciano P and Di Lenna P (1984). Oxalic acid production and its role in pathogenesis of Sclerotinia sclerotiorum. FEMS Microbiol. Lett. 24: 9-12. http://dx.doi.org/10.1111/j.1574-6968.1984.tb01234.x   Marciano P, Di Lenna P and Magro P (1983). Oxalic acid, cell wall degrading enzymes and pH in pathogenesis and their significance in the virulence of two Sclerotinia sclerotiorum isolates on sunflower. Physiol. Plant Pathol. 22: 339- 345.   Mathieu M and Felenbok B (1994). The Aspergillus nidulans CREA protein mediates glucose repression of the ethanol regulon at various levels through competition with the ALCR-specific transactivator. EMBO J. 13: 4022-4027. PMid:8076597 PMCid:395322   Movahedi S and Heale JB (1990). Purification and characterization of an aspartic proteinase secreted by Botrytis cinerea Pers ex. Pers in culture and in infected carrots. Physiol. Mol. Plant Pathol. 36: 289-302. http://dx.doi.org/10.1016/0885-5765(90)90060-B   Murphy JM and Walton JD (1996). Three extracellular proteases from Cochliobolus carbonum: cloning and targeted disruption of ALP1. Mol. Plant Microbe Interact. 9: 290-297. http://dx.doi.org/10.1094/MPMI-9-0290 PMid:8634479   Panozzo C, Cornillot E and Felenbok B (1998). The CreA repressor is the sole DNA-binding protein responsible for carbon catabolite repression of the alcA gene in Aspergillus nidulans via its binding to a couple of specific sites. J. Biol. Chem. 273: 6367-6372. http://dx.doi.org/10.1074/jbc.273.11.6367 PMid:9497366   Paris R and Lamattina L (1999). Phytophthora infestans secretes extracellular proteases with necrosis inducing activity on potato. Eur. J. Plant Pathol. 105: 753-760. http://dx.doi.org/10.1023/A:1008734527651   Pereira JL, Franco OL and Noronha EF (2006). Production and biochemical characterization of insecticidal enzymes from Aspergillus fumigatus toward Callosobruchus maculatus. Curr. Microbiol. 52: 430-434. http://dx.doi.org/10.1007/s00284-005-0192-x PMid:16732450   Poussereau N, Creton S, Billon-Grand G, Rascle C, et al. (2001a). Regulation of acp1, encoding a non-aspartyl acid protease expressed during pathogenesis of Sclerotinia sclerotiorum. Microbiology 147: 717-726. PMid:11238979   Poussereau N, Gente S, Rascle C, Billon-Grand G, et al. (2001b). aspS encoding an unusual aspartyl protease from Sclerotinia sclerotiorum is expressed during phytopathogenesis. FEMS Microbiol. Lett. 194: 27-32. http://dx.doi.org/10.1111/j.1574-6968.2001.tb09441.x PMid:11150661   Riou C, Freyssinet G and Fevre M (1992). Purification and Characterization of Extracellular Pectinolytic Enzymes Produced by Sclerotinia sclerotiorum. Appl. Environ. Microbiol. 58: 578-583. PMid:16348646 PMCid:195287   Rolland SG and Bruel CA (2008). Sulphur and nitrogen regulation of the protease-encoding ACP1 gene in the fungus Botrytis cinerea: correlation with a phospholipase D activity. Microbiology 154: 1464-1473. http://dx.doi.org/10.1099/mic.0.2007/012005-0 PMid:18451055   Rolland S, Bruel C, Rascle C, Girard V, et al. (2009). pH controls both transcription and post-translational processing of the protease BcACP1 in the phytopathogenic fungus Botrytis cinerea. Microbiology 155: 2097-2105. http://dx.doi.org/10.1099/mic.0.025999-0 PMid:19359322   Rollins JA (2003). The Sclerotinia sclerotiorum pac1 gene is required for sclerotial development and virulence. Mol. Plant Microbe Interact. 16: 785-795. http://dx.doi.org/10.1094/MPMI.2003.16.9.785 PMid:12971602   Rollins JA and Dickman MB (2001). pH signaling in Sclerotinia sclerotiorum: identification of a pacC/RIM1 homolog. Appl. Environ. Microbiol. 67: 75-81. http://dx.doi.org/10.1128/AEM.67.1.75-81.2001 PMid:11133430 PMCid:92519   Sexton AC, Cozijnsen AJ, Keniry A, Jewell E, et al. (2006). Comparison of transcription of multiple genes at three developmental stages of the plant pathogen Sclerotinia sclerotiorum. FEMS Microbiol. Lett. 258: 150-160. http://dx.doi.org/10.1111/j.1574-6968.2006.00212.x PMid:16630270   ten Have A, Dekkers E, Kay J, Phylip LH, et al. (2004). An aspartic proteinase gene family in the filamentous fungus Botrytis cinerea contains members with novel features. Microbiology 150: 2475-2489. http://dx.doi.org/10.1099/mic.0.27058-0 PMid:15256589   Vautard-Mey G and Fevre M (2003). Carbon and pH modulate the expression of the fungal glucose repressor encoding genes. Curr. Microbiol. 46: 146-150. http://dx.doi.org/10.1007/s00284-002-3838-y PMid:12520371
2010
M. B. Oliveira, Nascimento, L. B., Junior, M. L., and Petrofeza, S., Characterization of the dry bean polygalacturonase-inhibiting protein (PGIP) gene family during Sclerotinia sclerotiorum (Sclerotiniaceae) infection, vol. 9, pp. 994-1004, 2010.
Agüero CB, Uratsu SL, Greve C, Powell ALT, et al. (2005). Evaluation of tolerance to Pierce's disease and Botrytis in transgenic plants of Vitis vinifera L. expressing the pear PGIP gene. Mol. Plant. Pathol. 6: 43-51. http://dx.doi.org/10.1111/j.1364-3703.2004.00262.x PMid:20565637   Alghisi P and Favaron F (1995). Pectin-degrading enzymes and plant-parasite interactions. Eur. J. Plant. Pathol. 101: 365-375. http://dx.doi.org/10.1007/BF01874850   Annis SL and Goodwin PH (1997). Recent advances in the molecular genetics of plant cell wall-degrading enzymes produced by plant pathogenic fungi. Eur. J. Plant Pathol. 103: 1-14. http://dx.doi.org/10.1023/A:1008656013255   Boland GJ and Hall R (1994). Index of plant hosts of Sclerotinia sclerotiorum. Can. J. Plant Pathol. 16: 93-108. http://dx.doi.org/10.1080/07060669409500766   Boudart G, Charpentier M, Lafitte C, Martinez Y, et al. (2003). Elicitor activity of a fungal endopolygalacturonase in tobacco requires a functional catalytic site and cell wall localization. Plant Physiol. 131: 93-101. http://dx.doi.org/10.1104/pp.011585 PMid:12529518 PMCid:166790   Cessna SG, Sears VE, Dickman MB and Low PS (2000). Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. Plant Cell 12: 2191-2200. PMid:11090218 PMCid:150167   Cotton P, Rascle C and Fevre M (2002). Characterization of PG2, an early endoPG produced by Sclerotinia sclerotiorum, expressed in yeast. FEMS Microbiol. Lett. 213: 239-244. http://dx.doi.org/10.1111/j.1574-6968.2002.tb11312.x PMid:12167544   D'Ovidio R, Raiola A, Capodicasa C, Devoto A, et al. (2004). Characterization of the complex locus of bean encoding polygalacturonase-inhibiting proteins reveals subfunctionalization for defense against fungi and insects. Plant Physiol. 135: 2424-2435. http://dx.doi.org/10.1104/pp.104.044644 PMid:15299124 PMCid:520809   De Lorenzo G and Ferrari S (2002). Polygalacturonase-inhibiting proteins in defense against phytopathogenic fungi. Curr. Opin. Plant Biol. 5: 295-299. http://dx.doi.org/10.1016/S1369-5266(02)00271-6   De Lorenzo G, D'Ovidio R and Cervone F (2001). The role of polygalacturonase-inhibiting proteins (PGIPs) in defense against pathogenic fungi. Annu. Rev. Phytopathol. 39: 313-335. http://dx.doi.org/10.1146/annurev.phyto.39.1.313 PMid:11701868   Ferrari S, Vairo D, Ausubel FM, Cervone F, et al. (2003). Tandemly duplicated Arabidopsis genes that encode polygalacturonase-inhibiting proteins are regulated coordinately by different signal transduction pathways in response to fungal infection. Plant Cell 15: 93-106. http://dx.doi.org/10.1105/tpc.005165 PMid:12509524 PMCid:143454   Fraissinet-Tachet L and Févre M (1996). Regulation by galacturonic acid of pectinolytic enzyme production by Sclerotinia sclerotiorum. Curr. Microbiol. 33: 49-53. http://dx.doi.org/10.1007/s002849900073 PMid:8661689   Hegedus DD, Li R, Buchwaldt L, Parkin I, et al. (2008). Brassica napus possesses an expanded set of polygalacturonase inhibitor protein genes that are differentially regulated in response to Sclerotinia sclerotiorum infection, wounding and defense hormone treatment. Planta 228: 241-253. http://dx.doi.org/10.1007/s00425-008-0733-1 PMid:18431596   Isshiki A, Akimitsu K, Yamamoto M and Yamamoto H (2001). Endopolygalacturonase is essential for citrus black rot caused by Alternaria citri but not brown spot caused by Alternaria alternata. Mol. Plant Microbe Interact. 14: 749-757. http://dx.doi.org/10.1094/MPMI.2001.14.6.749 PMid:11386370   Kasza Z, Vagvolgyi C, Fevre M and Cotton P (2004). Molecular characterization and in planta detection of Sclerotinia sclerotiorum endopolygalacturonase genes. Curr. Microbiol. 48: 208-213. http://dx.doi.org/10.1007/s00284-003-4166-6 PMid:15057467   Li R, Rimmer R, Yu M, Sharpe AG, et al. (2003). Two Brassica napus polygalacturonase inhibitory protein genes are expressed at different levels in response to biotic and abiotic stresses. Planta 217: 299-308. PMid:12783338   Li R, Rimmer R, Buchwaldt L, Sharpe AG, et al. (2004). Interaction of Sclerotinia sclerotiorum with Brassica napus: cloning and characterization of endo- and exo-polygalacturonases expressed during saprophytic and parasitic modes. Fungal Genet. Biol. 41: 754-765. http://dx.doi.org/10.1016/j.fgb.2004.03.002 PMid:15219560   Manfredini C, Sicilia F, Ferrari S, Pontiggia D, et al. (2005). Polygalacturonase-inhibiting protein 2 of Phaseolus vulgaris inhibits BcPG1, a polygalacturonase of Botrytis cinerea important for pathogenicity, and protects transgenic plants from infection. Physiol. Mol. Plant Pathol. 67: 108-115. http://dx.doi.org/10.1016/j.pmpp.2005.10.002   Miller GL (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 31: 426-428. http://dx.doi.org/10.1021/ac60147a030   Oeser B, Heidrich PM, Muller U, Tudzynski P, et al. (2002). Polygalacturonase is a pathogenicity factor in the Claviceps purpurea/rye interaction. Fungal Genet. Biol. 36: 176-186. http://dx.doi.org/10.1016/S1087-1845(02)00020-8   Poinssot B, Vandelle E, Bentejac M, Adrian M, et al. (2003). The endopolygalacturonase 1 from Botrytis cinerea activates grapevine defense reactions unrelated to its enzymatic activity. Mol. Plant Microbe Interact. 16: 553-564. http://dx.doi.org/10.1094/MPMI.2003.16.6.553 PMid:12795381   Powell AL, van Kan J, ten Have A, Visser J, et al. (2000). Transgenic expression of pear PGIP in tomato limits fungal colonization. Mol. Plant Microbe Interact. 13: 942-950. http://dx.doi.org/10.1094/MPMI.2000.13.9.942 PMid:10975651   Ridley BL, O'Neill MA and Mohnen D (2001). Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57: 929-967. http://dx.doi.org/10.1016/S0031-9422(01)00113-3   Sicilia F, Fernandez-Recio J, Caprari C, De Lorenzo G, et al. (2005). The polygalacturonase-inhibiting protein PGIP2 of Phaseolus vulgaris has evolved a mixed mode of inhibition of endopolygalacturonase PG1 of Botrytis cinerea. Plant Physiol. 139: 1380-1388. http://dx.doi.org/10.1104/pp.105.067546 PMid:16244152 PMCid:1283773   ten Have A, Mulder W, Visser J and van Kan JA (1998). The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea. Mol. Plant Microbe Interact. 11: 1009-1016. http://dx.doi.org/10.1094/MPMI.1998.11.10.1009 PMid:9768518   ten Have A, Breuil WO, Wubben JP, Visser J, et al. (2001). Botrytis cinerea endopolygalacturonase genes are differentially expressed in various plant tissues. Fungal Genet. Biol. 33: 97-105. http://dx.doi.org/10.1006/fgbi.2001.1269 PMid:11456462   Zuppini A, Navazio L, Sella L, Castiglioni C, et al. (2005). An endopolygalacturonase from Sclerotinia sclerotiorum induces calcium-mediated signaling and programmed cell death in soybean cells. Mol. Plant Microbe Interact. 18: 849-855. http://dx.doi.org/10.1094/MPMI-18-0849 PMid:16134897
M. B. Oliveira, Vieira, E. S. N., and Schuster, I., Construction of a molecular database for soybean cultivar identification in Brazil, vol. 9, pp. 705-720, 2010.
Abdelnoor RV, Barros EG and Moreira MA (1995). Determination of genetic diversity within Brazilian soybean germplasm using random amplified polymorphic DNA techniques and comparative analysis with pedigree data. Rev. Bras. Genet. 18: 265-273.   Alcântara Neto F (2001). Marcadores Microssatélites na Identificação de Cultivares de Soja. Master's thesis, Universidade Federal de Viçosa, Viçosa.   Anderson JA, Churchill GA, Autrique JE, Tanksley SD, et al. (1993). Optimizing parental selection for genetic linkage maps. Genome 36: 181-186. http://dx.doi.org/10.1139/g93-024 PMid:18469981   Bonato ALV, Calvo ES, Geraldi IO and Arias CAA (2006a). Genetic similarity among soybean (Glycine max (L) Merrill) cultivars released in Brazil using AFLP markers. Genet. Mol. Biol. 29: 692-704. http://dx.doi.org/10.1590/S1415-47572006000400019   Bonato ALV, Calvo ES, Arias CAA, de Ferraz Toledo JF, et al. (2006b). Prediction of genetic variability through AFLP-based measure of genetic distance in soybean. Crop Breed. Appl. Technol. 6: 30-39.   Caixeta ET, Oliveira ACB, Brito GG and Sakiyama NS (2009). Tipos de Marcadores Moleculares. In: Marcadores Moleculares (Borém A and Caixeta ET, eds.). 2nd edn. Folha de Viçosa, Viçosa, 11-94.   Companhia Nacional de Abastecimento (Conab) (2009). Acompanhamento da Safra Brasileira: Grãos - Safra 2008/2009 - Quarto Levantamento - Janeiro 2009. In: Companhia Nacional de Abastecimento. Conab, Brasília. Available at [http://www.conab.gov.br/conabweb/download/safra/3graos_08.09.pdf]. Accessed January 23, 2009.   Diwan N and Cregan PB (1997). Automated sizing of fluorescent-labeled simple sequence repeat (SSR) markers to assay genetic variation in soybean. Theor. Appl. Genet. 95: 723-733. http://dx.doi.org/10.1007/s001220050618   Ferreira ME and Grattapaglia D (1998). Introdução ao Uso de Marcadores Moleculares em Análise Genética. 3rd edn. Embrapa and Cenargen, Brasília.   Garcia AF, Alberini JL, Zucchi MI and Souza AP (2007). Microsatellite molecular markers in the cultivar identification of Brazilian soybean for human consumption. Crop Breed. Appl. Biotechnol. 7: 155-164.   Keim P, Shoemaker RC and Palmer RG (1989). Restriction fragment length polymorphism diversity in soybean. Theor. Appl. Genet. 77: 786-792. http://dx.doi.org/10.1007/BF00268327   Keim P, Beavis W, Schupp J and Freestone R (1992). Evaluation of soybean RFLP marker diversity in adapted germplasm. Theor. Appl. Genet. 85: 202-212. http://dx.doi.org/10.1007/BF00222861   McDonald MB, Elliot LJ and Sweeney PM (1994). DNA extraction from dry seeds for RAPD analyses in varietal identification studies. Seed Sci. Technol. 22: 171-176.   Narvel JM, Fehr WR, Chu WC, Grant D, et al. (2000). Simple sequence repeat diversity among soybean plant introductions and elite genotypes. Crop Sci. 40: 1452-1458. http://dx.doi.org/10.2135/cropsci2000.4051452x   National Research Council (NRC) (1996). The Evaluation of Forensic DNA Evidence. Committee on DNA Forensic Science: an Update. National Academy Press, Washington, DC.   Priolli RHG, Mendes-Júnior CT, Arantes NU and Contel EPB (2002). Characterization of Brazilian soybean cultivars using microsatellite markers. Genet. Mol. Biol. 25: 185-193. http://dx.doi.org/10.1590/S1415-47572002000200012   Schuster I, Queiroz VT, Teixeira AI, Barros EG, et al. (2004). Determination of genetic purity of soybean seeds with the aid of microsatellite molecular markers. Pesq. Agropec. Bras. 39: 247-253.   Schuster I, Vieira ESN and Padilha L (2009a). Marcadores Moleculares no Pós-Melhoramento. In: Marcadores Moleculares. 2nd edn. Folha de Viçosa, Viçosa, 177-208.   Schuster I, Vieira ESN, Silva GJ, Franco FA, et al. (2009b). Genetic variability in Brazilian wheat cultivars assessed by microsatellite markers. Genet. Mol. Biol. 32: 557-563. http://dx.doi.org/10.1590/S1415-47572009005000045 PMid:21637519 PMCid:3036063   Song QJ, Quigley CV, Nelson RL, Carter TE, et al. (1999). A selected set of trinucleotide simple sequence repeat markers for soybean cultivar identification. Plant Var. Seeds 12: 207-220.   Vieira ESN, Schuster I, Silva RB and Oliveira MAR (2009). Genetic variability of soybean cultivars obtained through microsatellite markers in agarose gel. Pesq. Agropec. Bras. 44: 1460-1466. http://dx.doi.org/10.1590/S0100-204X2009001100013   Yamanaka N, Sato H, Yang Z, Xu DH, et al. (2007). Genetic relationships between Chinese, Japanese, and Brazilian soybean gene pools revealed by simple sequence repeat (SSR) markers. Genet. Mol. Biol. 30: 85-88. http://dx.doi.org/10.1590/S1415-47572007000100016