Publications

Found 31 results
Filters: Author is Y.H. Liu  [Clear All Filters]
2016
J. J. Jin, Wang, H. Q., Kuang, H. P., Kang, B. B., Liu, Y. H., Wang, J., Jin, J. J., Wang, H. Q., Kuang, H. P., Kang, B. B., Liu, Y. H., and Wang, J., Analyzing the association between XRCC1 c.1804C>A genetic variant and lung cancer susceptibility in the Chinese population, vol. 15, p. -, 2016.
J. J. Jin, Wang, H. Q., Kuang, H. P., Kang, B. B., Liu, Y. H., Wang, J., Jin, J. J., Wang, H. Q., Kuang, H. P., Kang, B. B., Liu, Y. H., and Wang, J., Analyzing the association between XRCC1 c.1804C>A genetic variant and lung cancer susceptibility in the Chinese population, vol. 15, p. -, 2016.
Y. H. Liu, Yi, Q., Hou, X. B., Zhang, X. G., Zhang, J. J., Liu, H. M., Hu, Y. F., Huang, Y. B., Liu, Y. H., Yi, Q., Hou, X. B., Zhang, X. G., Zhang, J. J., Liu, H. M., Hu, Y. F., and Huang, Y. B., Comparative quantitative trait locus mapping of maize flowering-related traits in an F2:3 and recombinant inbred line population, vol. 15, p. -, 2016.
Y. H. Liu, Yi, Q., Hou, X. B., Zhang, X. G., Zhang, J. J., Liu, H. M., Hu, Y. F., Huang, Y. B., Liu, Y. H., Yi, Q., Hou, X. B., Zhang, X. G., Zhang, J. J., Liu, H. M., Hu, Y. F., and Huang, Y. B., Comparative quantitative trait locus mapping of maize flowering-related traits in an F2:3 and recombinant inbred line population, vol. 15, p. -, 2016.
S. H. Wang, Li, X., Hou, F. L., Tian, Y. J., Liu, Y. H., Zheng, S. L., Wang, S. H., Li, X., Hou, F. L., Tian, Y. J., Liu, Y. H., Zheng, S. L., Wang, S. H., Li, X., Hou, F. L., Tian, Y. J., Liu, Y. H., and Zheng, S. L., Comparison of the antiplatelet effect of clopidogrel benzene sulfonate and clopidogrel hydrogen sulfate in stable coronary heart disease, vol. 15, p. -, 2016.
S. H. Wang, Li, X., Hou, F. L., Tian, Y. J., Liu, Y. H., Zheng, S. L., Wang, S. H., Li, X., Hou, F. L., Tian, Y. J., Liu, Y. H., Zheng, S. L., Wang, S. H., Li, X., Hou, F. L., Tian, Y. J., Liu, Y. H., and Zheng, S. L., Comparison of the antiplatelet effect of clopidogrel benzene sulfonate and clopidogrel hydrogen sulfate in stable coronary heart disease, vol. 15, p. -, 2016.
S. H. Wang, Li, X., Hou, F. L., Tian, Y. J., Liu, Y. H., Zheng, S. L., Wang, S. H., Li, X., Hou, F. L., Tian, Y. J., Liu, Y. H., Zheng, S. L., Wang, S. H., Li, X., Hou, F. L., Tian, Y. J., Liu, Y. H., and Zheng, S. L., Comparison of the antiplatelet effect of clopidogrel benzene sulfonate and clopidogrel hydrogen sulfate in stable coronary heart disease, vol. 15, p. -, 2016.
H. M. Wang, Ma, J. D., Jin, L., Liu, Y. H., Che, T. D., Li, M. Z., Li, X. W., Wang, H. M., Ma, J. D., Jin, L., Liu, Y. H., Che, T. D., Li, M. Z., and Li, X. W., Developmental methylation pattern regulates porcine GPR120 expression, vol. 15, p. -, 2016.
H. M. Wang, Ma, J. D., Jin, L., Liu, Y. H., Che, T. D., Li, M. Z., Li, X. W., Wang, H. M., Ma, J. D., Jin, L., Liu, Y. H., Che, T. D., Li, M. Z., and Li, X. W., Developmental methylation pattern regulates porcine GPR120 expression, vol. 15, p. -, 2016.
Y. L. Qian, Chen, J., Dong, J. J., Wu, Z. C., Liu, Y. H., Xue, B. Y., Shao, F. W., Sun, X. Y., Qian, Y. L., Chen, J., Dong, J. J., Wu, Z. C., Liu, Y. H., Xue, B. Y., Shao, F. W., Sun, X. Y., Qian, Y. L., Chen, J., Dong, J. J., Wu, Z. C., Liu, Y. H., Xue, B. Y., Shao, F. W., and Sun, X. Y., Genetic analyses of the major and minor locus groups of bacterial wilt resistance in tobacco using a diallel cross design, vol. 15, p. -, 2016.
Y. L. Qian, Chen, J., Dong, J. J., Wu, Z. C., Liu, Y. H., Xue, B. Y., Shao, F. W., Sun, X. Y., Qian, Y. L., Chen, J., Dong, J. J., Wu, Z. C., Liu, Y. H., Xue, B. Y., Shao, F. W., Sun, X. Y., Qian, Y. L., Chen, J., Dong, J. J., Wu, Z. C., Liu, Y. H., Xue, B. Y., Shao, F. W., and Sun, X. Y., Genetic analyses of the major and minor locus groups of bacterial wilt resistance in tobacco using a diallel cross design, vol. 15, p. -, 2016.
Y. L. Qian, Chen, J., Dong, J. J., Wu, Z. C., Liu, Y. H., Xue, B. Y., Shao, F. W., Sun, X. Y., Qian, Y. L., Chen, J., Dong, J. J., Wu, Z. C., Liu, Y. H., Xue, B. Y., Shao, F. W., Sun, X. Y., Qian, Y. L., Chen, J., Dong, J. J., Wu, Z. C., Liu, Y. H., Xue, B. Y., Shao, F. W., and Sun, X. Y., Genetic analyses of the major and minor locus groups of bacterial wilt resistance in tobacco using a diallel cross design, vol. 15, p. -, 2016.
Y. Shen, Liu, Y. H., Zhang, X. J., Sha, Q., Chen, Z. D., Shen, Y., Liu, Y. H., Zhang, X. J., Sha, Q., and Chen, Z. D., Gynophore miRNA analysis at different developmental stages in Arachis duranensis, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch supported by the Self-Directed Innovation Fund of Agricultural Science and Technology in Jiangsu Province, China (grant #CX(13)5006). We thank Gene Pioneer Biotechnologies for their help with the bioinformatic analyses. REFERENCESAllen E, Xie Z, Gustafson AM, Carrington JC, et al (2005). microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121: 207-221. http://dx.doi.org/10.1016/j.cell.2005.04.004 Chen X, Zhu W, Azam S, Li H, et al (2013). Deep sequencing analysis of the transcriptomes of peanut aerial and subterranean young pods identifies candidate genes related to early embryo abortion. Plant Biotechnol. J. 11: 115-127. http://dx.doi.org/10.1111/pbi.12018 Chen X, Yang Q, Li H, Li H, et al (2016). Transcriptome-wide sequencing provides insights into geocarpy in peanut (Arachis hypogaea L.). Plant Biotechnol. J. 14: 1215-1224. http://dx.doi.org/10.1111/pbi.12487 Chen ZB, Wang ML, Barkley NA, Pittman RN, et al (2010). A simple allele-specific PCR assay for detecting FAD2 alleles in both A and B genomes of the cultivated peanut for high-oleate trait selection. Plant Mol. Biol. Rep. 28: 542-548. http://dx.doi.org/10.1007/s11105-010-0181-5 Chi X, Yang Q, Chen X, Wang J, et al (2011). Identification and characterization of microRNAs from peanut (Arachis hypogaea L.) by high-throughput sequencing. PLoS One 6: e27530. http://dx.doi.org/10.1371/journal.pone.0027530 Deng X, Li Z, Zhang W, et al (2012). Transcriptome sequencing of Salmonella enterica serovar Enteritidis under desiccation and starvation stress in peanut oil. Food Microbiol. 30: 311-315. http://dx.doi.org/10.1016/j.fm.2011.11.001 Du Z, Zhou X, Ling Y, Zhang Z, et al (2010). agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res. 38: W64-70. http://dx.doi.org/10.1093/nar/gkq310 Floyd SK, Bowman JL, et al (2004). Gene regulation: ancient microRNA target sequences in plants. Nature 428: 485-486. http://dx.doi.org/10.1038/428485a Griffiths-Jones S, et al (2006). miRBase: the microRNA sequence database. Methods Mol. Biol. 342: 129-138. Griffiths-Jones S, Moxon S, Marshall M, Khanna A, et al (2005). Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 33: D121-D124. http://dx.doi.org/10.1093/nar/gki081 Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, et al (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34: D140-D144. http://dx.doi.org/10.1093/nar/gkj112 Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ, et al (2008). miRBase: tools for microRNA genomics. Nucleic Acids Res. 36: D154-D158. http://dx.doi.org/10.1093/nar/gkm952 Herr AJ, et al (2005). Pathways through the small RNA world of plants. FEBS Lett. 579: 5879-5888. http://dx.doi.org/10.1016/j.febslet.2005.08.040 Lee RC, Feinbaum RL, Ambros V, et al (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843-854. http://dx.doi.org/10.1016/0092-8674(93)90529-Y Li M, Zhao SZ, Zhao CZ, Zhang Y, et al. (2016). Cloning and characterization of SPL-family genes in the peanut (Arachis hypogaea L.). Genet. Mol. Res. 15: gmr.15017344. Mi S, Cai T, Hu Y, Chen Y, et al (2008). Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133: 116-127. http://dx.doi.org/10.1016/j.cell.2008.02.034 Moctezuma E, et al (2003). The peanut gynophore: a developmental and physiological perspective. Can. J. Bot. 81: 183-190. http://dx.doi.org/10.1139/b03-024 Sunkar R, Jagadeeswaran G, et al (2008). In silico identification of conserved microRNAs in large number of diverse plant species. BMC Plant Biol. 8: 37. http://dx.doi.org/10.1186/1471-2229-8-37 Sunkar R, Zhou X, Zheng Y, Zhang W, et al (2008). Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol. 8: 25. http://dx.doi.org/10.1186/1471-2229-8-25 Vazquez F, et al (2006). Arabidopsis endogenous small RNAs: highways and byways. Trends Plant Sci. 11: 460-468. http://dx.doi.org/10.1016/j.tplants.2006.07.006 Wang C, Li C, Hou L, Liu X, et al (2013). Cloning and expression analysis of Gibberellin 2-Oxidase gene from peanut (Arachis hypogaea L). Shandong Agric. Sci. 45: 14-18. Xia H, Zhao C, Hou L, Li A, et al (2013). Transcriptome profiling of peanut gynophores revealed global reprogramming of gene expression during early pod development in darkness. BMC Genomics 14: 517. http://dx.doi.org/10.1186/1471-2164-14-517 Yao Y, Guo G, Ni Z, Sunkar R, et al (2007). Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biol. 8: R96. http://dx.doi.org/10.1186/gb-2007-8-6-r96 Zhang B, Pan X, Cannon CH, Cobb GP, et al (2006). Conservation and divergence of plant microRNA genes. Plant J. 46: 243-259. http://dx.doi.org/10.1111/j.1365-313X.2006.02697.x Zhao CZ, Xia H, Frazier TP, Yao YY, et al (2010). Deep sequencing identifies novel and conserved microRNAs in peanuts (Arachis hypogaea L.). BMC Plant Biol. 10: 3. http://dx.doi.org/10.1186/1471-2229-10-3 Zhao C, Zhao S, Hou L, Xia H, et al (2015). Proteomics analysis reveals differentially activated pathways that operate in peanut gynophores at different developmental stages. BMC Plant Biol. 15: 188. http://dx.doi.org/10.1186/s12870-015-0582-6 Zhu W, Zhang E, Li H, Chen X, et al (2013). Comparative proteomics analysis of developing peanut aerial and subterranean pods identifies pod swelling related proteins. J. Proteomics 91: 172-187. http://dx.doi.org/10.1016/j.jprot.2013.07.002 Zhu W, Chen X, Li H, Zhu F, et al (2014). Comparative transcriptome analysis of aerial and subterranean pods development provides insights into seed abortion in peanut. Plant Mol. Biol. 85: 395-409. http://dx.doi.org/10.1007/s11103-014-0193-x Zuker M, et al (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31: 3406-3415. http://dx.doi.org/10.1093/nar/gkg595  
Y. Shen, Liu, Y. H., Zhang, X. J., Sha, Q., Chen, Z. D., Shen, Y., Liu, Y. H., Zhang, X. J., Sha, Q., and Chen, Z. D., Gynophore miRNA analysis at different developmental stages in Arachis duranensis, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch supported by the Self-Directed Innovation Fund of Agricultural Science and Technology in Jiangsu Province, China (grant #CX(13)5006). We thank Gene Pioneer Biotechnologies for their help with the bioinformatic analyses. REFERENCESAllen E, Xie Z, Gustafson AM, Carrington JC, et al (2005). microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121: 207-221. http://dx.doi.org/10.1016/j.cell.2005.04.004 Chen X, Zhu W, Azam S, Li H, et al (2013). Deep sequencing analysis of the transcriptomes of peanut aerial and subterranean young pods identifies candidate genes related to early embryo abortion. Plant Biotechnol. J. 11: 115-127. http://dx.doi.org/10.1111/pbi.12018 Chen X, Yang Q, Li H, Li H, et al (2016). Transcriptome-wide sequencing provides insights into geocarpy in peanut (Arachis hypogaea L.). Plant Biotechnol. J. 14: 1215-1224. http://dx.doi.org/10.1111/pbi.12487 Chen ZB, Wang ML, Barkley NA, Pittman RN, et al (2010). A simple allele-specific PCR assay for detecting FAD2 alleles in both A and B genomes of the cultivated peanut for high-oleate trait selection. Plant Mol. Biol. Rep. 28: 542-548. http://dx.doi.org/10.1007/s11105-010-0181-5 Chi X, Yang Q, Chen X, Wang J, et al (2011). Identification and characterization of microRNAs from peanut (Arachis hypogaea L.) by high-throughput sequencing. PLoS One 6: e27530. http://dx.doi.org/10.1371/journal.pone.0027530 Deng X, Li Z, Zhang W, et al (2012). Transcriptome sequencing of Salmonella enterica serovar Enteritidis under desiccation and starvation stress in peanut oil. Food Microbiol. 30: 311-315. http://dx.doi.org/10.1016/j.fm.2011.11.001 Du Z, Zhou X, Ling Y, Zhang Z, et al (2010). agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res. 38: W64-70. http://dx.doi.org/10.1093/nar/gkq310 Floyd SK, Bowman JL, et al (2004). Gene regulation: ancient microRNA target sequences in plants. Nature 428: 485-486. http://dx.doi.org/10.1038/428485a Griffiths-Jones S, et al (2006). miRBase: the microRNA sequence database. Methods Mol. Biol. 342: 129-138. Griffiths-Jones S, Moxon S, Marshall M, Khanna A, et al (2005). Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 33: D121-D124. http://dx.doi.org/10.1093/nar/gki081 Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, et al (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34: D140-D144. http://dx.doi.org/10.1093/nar/gkj112 Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ, et al (2008). miRBase: tools for microRNA genomics. Nucleic Acids Res. 36: D154-D158. http://dx.doi.org/10.1093/nar/gkm952 Herr AJ, et al (2005). Pathways through the small RNA world of plants. FEBS Lett. 579: 5879-5888. http://dx.doi.org/10.1016/j.febslet.2005.08.040 Lee RC, Feinbaum RL, Ambros V, et al (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843-854. http://dx.doi.org/10.1016/0092-8674(93)90529-Y Li M, Zhao SZ, Zhao CZ, Zhang Y, et al. (2016). Cloning and characterization of SPL-family genes in the peanut (Arachis hypogaea L.). Genet. Mol. Res. 15: gmr.15017344. Mi S, Cai T, Hu Y, Chen Y, et al (2008). Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133: 116-127. http://dx.doi.org/10.1016/j.cell.2008.02.034 Moctezuma E, et al (2003). The peanut gynophore: a developmental and physiological perspective. Can. J. Bot. 81: 183-190. http://dx.doi.org/10.1139/b03-024 Sunkar R, Jagadeeswaran G, et al (2008). In silico identification of conserved microRNAs in large number of diverse plant species. BMC Plant Biol. 8: 37. http://dx.doi.org/10.1186/1471-2229-8-37 Sunkar R, Zhou X, Zheng Y, Zhang W, et al (2008). Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol. 8: 25. http://dx.doi.org/10.1186/1471-2229-8-25 Vazquez F, et al (2006). Arabidopsis endogenous small RNAs: highways and byways. Trends Plant Sci. 11: 460-468. http://dx.doi.org/10.1016/j.tplants.2006.07.006 Wang C, Li C, Hou L, Liu X, et al (2013). Cloning and expression analysis of Gibberellin 2-Oxidase gene from peanut (Arachis hypogaea L). Shandong Agric. Sci. 45: 14-18. Xia H, Zhao C, Hou L, Li A, et al (2013). Transcriptome profiling of peanut gynophores revealed global reprogramming of gene expression during early pod development in darkness. BMC Genomics 14: 517. http://dx.doi.org/10.1186/1471-2164-14-517 Yao Y, Guo G, Ni Z, Sunkar R, et al (2007). Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biol. 8: R96. http://dx.doi.org/10.1186/gb-2007-8-6-r96 Zhang B, Pan X, Cannon CH, Cobb GP, et al (2006). Conservation and divergence of plant microRNA genes. Plant J. 46: 243-259. http://dx.doi.org/10.1111/j.1365-313X.2006.02697.x Zhao CZ, Xia H, Frazier TP, Yao YY, et al (2010). Deep sequencing identifies novel and conserved microRNAs in peanuts (Arachis hypogaea L.). BMC Plant Biol. 10: 3. http://dx.doi.org/10.1186/1471-2229-10-3 Zhao C, Zhao S, Hou L, Xia H, et al (2015). Proteomics analysis reveals differentially activated pathways that operate in peanut gynophores at different developmental stages. BMC Plant Biol. 15: 188. http://dx.doi.org/10.1186/s12870-015-0582-6 Zhu W, Zhang E, Li H, Chen X, et al (2013). Comparative proteomics analysis of developing peanut aerial and subterranean pods identifies pod swelling related proteins. J. Proteomics 91: 172-187. http://dx.doi.org/10.1016/j.jprot.2013.07.002 Zhu W, Chen X, Li H, Zhu F, et al (2014). Comparative transcriptome analysis of aerial and subterranean pods development provides insights into seed abortion in peanut. Plant Mol. Biol. 85: 395-409. http://dx.doi.org/10.1007/s11103-014-0193-x Zuker M, et al (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31: 3406-3415. http://dx.doi.org/10.1093/nar/gkg595  
Y. H. Liu and Du, Z. W., Management of clinically negative nodes (N0) in supraglottic laryngeal carcinoma: A systematic review, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.REFERENCESAmerican Cancer Society (2013). Cancer facts & figures: 2013. American Cancer Society, Atlanta. Arens C, et al (2012). Transoral treatment strategies for head and neck tumors. GMS Curr. Top. Otorhinolaryngol. Head Neck Surg. 11: Doc05. Brazilian Head and Neck Cancer Study Groupet al (1999). End results of a prospective trial on elective lateral neck dissection vs type III modified radical neck dissection in the management of supraglottic and transglottic carcinomas. Head Neck 21: 694-702. http://dx.doi.org/10.1002/(SICI)1097-0347(199912)21:8<694::AID-HED3>3.0.CO;2-B Canis M, Martin A, Ihler F, Wolff HA, et al (2013). Results of transoral laser microsurgery for supraglottic carcinoma in 277 patients. Eur. Arch. Otorhinolaryngol. 270: 2315-2326. http://dx.doi.org/10.1007/s00405-012-2327-6 Chawla S, Carney AS, et al (2009). Organ preservation surgery for laryngeal cancer. Head Neck Oncol. 1: 12-15. http://dx.doi.org/10.1186/1758-3284-1-12 Li A, Liang H, Li W, Wang Z, et al (2013). Spectral CT imaging of laryngeal and hypopharyngeal squamous cell carcinoma: evaluation of image quality and status of lymph nodes. PLoS One 8: e83492. http://dx.doi.org/10.1371/journal.pone.0083492 Li JZ, Gao W, Chan JY, Ho WK, et al (2012). Hypoxia in head and neck squamous cell carcinoma. ISRN Otolaryngol. 2012: 708974. http://dx.doi.org/10.5402/2012/708974 Liu J, et al (2001). Evaluation of the system of non-randomized studies. Chinese Journal of Evidence-Based Medicine 1: 239-243. McLeod RS, et al (1999). Issues in surgical randomized controlled trials. World J. Surg. 23: 1210-1214. http://dx.doi.org/10.1007/s002689900649 Mutlu V, Ucuncu H, Altas E, Aktan B, et al (2014). The relationship between the localization, size, stage and histopathology of the primary laryngeal tumor with neck metastasis. Eurasian J Med 46: 1-7. http://dx.doi.org/10.5152/eajm.2014.01 Orús C, León X, Vega M, Quer M, et al (2000). Initial treatment of the early stages (I, II) of supraglottic squamous cell carcinoma: partial laryngectomy versus radiotherapy. Eur. Arch. Otorhinolaryngol. 257: 512-516. http://dx.doi.org/10.1007/s004050000276 Parmar MKB, Torri V, Stewart L, et al (1998). Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. Stat. Med. 17: 2815-2834. http://dx.doi.org/10.1002/(SICI)1097-0258(19981230)17:24<2815::AID-SIM110>3.0.CO;2-8 Pillsbury HC3rdClarkM, et al (1997). A rationale for therapy of the N0 neck. Laryngoscope 107: 1294-1315. http://dx.doi.org/10.1097/00005537-199710000-00004 Redaelli de Zinis LO, Nicolai P, Barezzani MG, Tomenzoli D, et al (1994). Incidence and distribution of lymph node metastases in supraglottic squamous cell carcinoma: therapeutic implications. Acta. Otorhinolaryngol. Ital. 14: 19-27.Sessions DG, Lenox J and Spector GJ (2005). Supraglottic laryngeal cancer: analysis of treatment results. Laryngoscope 115: 1402-1410. Ji W, Yu J, Guan C, et al (2001). Pathologic features of occult lymphatic metastasis in supraglottic carcinoma. Chin. Med. J. (Engl.) 114: 88-89. Sessions DG, Lenox J, Spector GJ, et al (2005). Supraglottic laryngeal cancer: analysis of treatment results. Laryngoscope 115: 1402-1410. http://dx.doi.org/10.1097/01.MLG.0000166896.67924.B7 Siegel R, Naishadham D, Jemal A, et al (2013). Cancer statistics, 2013. CA Cancer J. Clin. 63: 11-30. http://dx.doi.org/10.3322/caac.21166 Spriano G, Antognoni P, Piantanida R, Varinelli D, et al (1997). Conservative management of T1-T2N0 supraglottic cancer: a retrospective study. Am. J. Otolaryngol. 18: 299-305. http://dx.doi.org/10.1016/S0196-0709(97)90023-5 Tantiwongkosi B, Yu F, Kanard A, Miller FR, et al (2014). Role of (18)F-FDG PET/CT in pre and post treatment evaluation in head and neck carcinoma. World J. Radiol. 6: 177-191. http://dx.doi.org/10.4329/wjr.v6.i5.177 Zhang H (2009). Dissection in the management of the clinically negative neck (N_0) supraglottic laryngeal squamous cell carcinoma. Available at [http://cdmd.cnki. com.cn/Article/CDMD-10114-2009123560.htm].  
Y. H. Liu, Huang, D., Li, Z. J., Li, X. H., Wang, X., Yang, H. P., Tian, S. P., Mao, Y., Liu, M. F., Wang, Y. F., Wu, Y., Han, X. F., Liu, Y. H., Huang, D., Li, Z. J., Li, X. H., Wang, X., Yang, H. P., Tian, S. P., Mao, Y., Liu, M. F., Wang, Y. F., Wu, Y., Han, X. F., Liu, Y. H., Huang, D., Li, Z. J., Li, X. H., Wang, X., Yang, H. P., Tian, S. P., Mao, Y., Liu, M. F., Wang, Y. F., Wu, Y., and Han, X. F., Toll-like receptor-4-dependence of the lipopolysaccharide-mediated inhibition of osteoblast differentiation, vol. 15, p. -, 2016.
Y. H. Liu, Huang, D., Li, Z. J., Li, X. H., Wang, X., Yang, H. P., Tian, S. P., Mao, Y., Liu, M. F., Wang, Y. F., Wu, Y., Han, X. F., Liu, Y. H., Huang, D., Li, Z. J., Li, X. H., Wang, X., Yang, H. P., Tian, S. P., Mao, Y., Liu, M. F., Wang, Y. F., Wu, Y., Han, X. F., Liu, Y. H., Huang, D., Li, Z. J., Li, X. H., Wang, X., Yang, H. P., Tian, S. P., Mao, Y., Liu, M. F., Wang, Y. F., Wu, Y., and Han, X. F., Toll-like receptor-4-dependence of the lipopolysaccharide-mediated inhibition of osteoblast differentiation, vol. 15, p. -, 2016.
Y. H. Liu, Huang, D., Li, Z. J., Li, X. H., Wang, X., Yang, H. P., Tian, S. P., Mao, Y., Liu, M. F., Wang, Y. F., Wu, Y., Han, X. F., Liu, Y. H., Huang, D., Li, Z. J., Li, X. H., Wang, X., Yang, H. P., Tian, S. P., Mao, Y., Liu, M. F., Wang, Y. F., Wu, Y., Han, X. F., Liu, Y. H., Huang, D., Li, Z. J., Li, X. H., Wang, X., Yang, H. P., Tian, S. P., Mao, Y., Liu, M. F., Wang, Y. F., Wu, Y., and Han, X. F., Toll-like receptor-4-dependence of the lipopolysaccharide-mediated inhibition of osteoblast differentiation, vol. 15, p. -, 2016.
2012
M. N. Chen, Wang, P., Zhang, J., Zhou, B. Y., Mao, Q., and Liu, Y. H., Analysis of the role of hMLH1 hypermethylation and microsatellite instability in meningioma progression, vol. 11, pp. 3933-3941, 2012.
Alvino E, Fernandez E and Pallini R (2000). Microsatellite instability in primary brain tumors. Neurol. Res. 22: 571-575. PMid:11045018   Baylin SB and Herman JG (2000). DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet. 16: 168-174. http://dx.doi.org/10.1016/S0168-9525(99)01971-X   Bello MJ, Aminoso C, Lopez-Marin I, Arjona D, et al. (2004). DNA methylation of multiple promoter-associated CpG islands in meningiomas: relationship with the allelic status at 1p and 22q. Acta Neuropathol. 108: 413-421. http://dx.doi.org/10.1007/s00401-004-0911-6 PMid:15365725   Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, et al. (1998). A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 58: 5248-5257. PMid:9823339   Cunningham JM, Christensen ER, Tester DJ, Kim CY, et al. (1998). Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability. Cancer Res. 58: 3455-3460. PMid:9699680   Dams E, Van de Kelft EJ, Martin JJ, Verlooy J, et al. (1995). Instability of microsatellites in human gliomas. Cancer Res. 55: 1547-1549. PMid:7882363   Deng G, Chen A, Hong J, Chae HS, et al. (1999). Methylation of CpG in a small region of the hMLH1 promoter invariably correlates with the absence of gene expression. Cancer Res. 59: 2029-2033. PMid:10232580   Dietmaier W, Wallinger S, Bocker T, Kullmann F, et al. (1997). Diagnostic microsatellite instability: definition and correlation with mismatch repair protein expression. Cancer Res. 57: 4749-4756. PMid:9354436   Dong SM, Pang JC, Poon WS, Hu J, et al. (2001). Concurrent hypermethylation of multiple genes is associated with grade of oligodendroglial tumors. J. Neuropathol. Exp. Neurol. 60: 808-816. PMid:11487055   Esteller M, Catasus L, Matias-Guiu X, Mutter GL, et al. (1999). hMLH1 promoter hypermethylation is an early event in human endometrial tumorigenesis. Am. J. Pathol. 155: 1767-1772. http://dx.doi.org/10.1016/S0002-9440(10)65492-2   Fleisher AS, Esteller M, Tamura G, Rashid A, et al. (2001). Hypermethylation of the hMLH1 gene promoter is associated with microsatellite instability in early human gastric neoplasia. Oncogene 20: 329-335. http://dx.doi.org/10.1038/sj.onc.1204104 PMid:11313962   Herman JG, Umar A, Polyak K, Graff JR, et al. (1998). Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc. Natl. Acad. Sci. U. S. A. 95: 6870-6875. http://dx.doi.org/10.1073/pnas.95.12.6870 PMid:9618505 PMCid:22665   Kulke MH, Thakore KS, Thomas G, Wang H, et al. (2001). Microsatellite instability and hMLH1/hMSH2 expression in Barrett esophagus-associated adenocarcinoma. Cancer 91: 1451-1457. http://dx.doi.org/10.1002/1097-0142(20010415)91:8<1451::AID-CNCR1152>3.0.CO;2-Z   Leung SY, Yuen ST, Chung LP, Chu KM, et al. (1999). hMLH1 promoter methylation and lack of hMLH1 expression in sporadic gastric carcinomas with high-frequency microsatellite instability. Cancer Res. 59: 159-164. PMid:9892201   Liu Y, Pang JC, Dong S, Mao B, et al. (2005). Aberrant CpG island hypermethylation profile is associated with atypical and anaplastic meningiomas. Hum. Pathol. 36: 416-425. http://dx.doi.org/10.1016/j.humpath.2005.02.006 PMid:15892004   Longstreth WT Jr, Dennis LK, McGuire VM, Drangsholt MT, et al. (1993). Epidemiology of intracranial meningioma. Cancer 72: 639-648. http://dx.doi.org/10.1002/1097-0142(19930801)72:3<639::AID-CNCR2820720304>3.0.CO;2-P   Lundin DA, Blank A, Berger MS and Silber JR (1998). Microsatellite instability is infrequent in sporadic adult gliomas. Oncol. Res. 10: 421-428. PMid:10100759   Ng HK, Lau KM, Tse JY, Lo KW, et al. (1995). Combined molecular genetic studies of chromosome 22q and the neurofibromatosis type 2 gene in central nervous system tumors. Neurosurgery 37: 764-773. http://dx.doi.org/10.1227/00006123-199510000-00022 PMid:8559307   Perry A, Stafford SL, Scheithauer BW, Suman VJ, et al. (1997). Meningioma grading: an analysis of histologic parameters. Am. J. Surg. Pathol. 21: 1455-1465. http://dx.doi.org/10.1097/00000478-199712000-00008 PMid:9414189   Perry A, Scheithauer BW, Stafford SL, Lohse CM, et al. (1999). "Malignancy" in meningiomas: a clinicopathologic study of 116 patients, with grading implications. Cancer 85: 2046-2056. http://dx.doi.org/10.1002/(SICI)1097-0142(19990501)85:9<2046::AID-CNCR23>3.0.CO;2-M   Perry A, Giannini C, Raghavan R, Scheithauer BW, et al. (2001). Aggressive phenotypic and genotypic features in pediatric and NF2-associated meningiomas: a clinicopathologic study of 53 cases. J. Neuropathol. Exp. Neurol. 60: 994-1003. PMid:11589430   Pykett MJ, Murphy M, Harnish PR and George DL (1994). Identification of a microsatellite instability phenotype in meningiomas. Cancer Res. 54: 6340-6343. PMid:7987826   Radner H, Blumcke I, Reifenberger G and Wiestler OD (2002). The new WHO classification of tumors of the nervous system 2000. Pathology and genetics. Pathologe 23: 260-283. http://dx.doi.org/10.1007/s00292-002-0530-8 PMid:12185780   Salvesen HB, MacDonald N, Ryan A, Iversen OE, et al. (2000). Methylation of hMLH1 in a population-based series of endometrial carcinomas. Clin. Cancer Res. 6: 3607-3613. PMid:10999752   Sambrook J, Fritsh EF and Maniatis T (1989). Molecular Cloning: A Laboratory Manual. 2nd edn. Cold Spring Harbor Laboratory Press, New York.   Simpkins SB, Bocker T, Swisher EM, Mutch DG, et al. (1999). MLH1 promoter methylation and gene silencing is the primary cause of microsatellite instability in sporadic endometrial cancers. Hum. Mol. Genet. 8: 661-666. http://dx.doi.org/10.1093/hmg/8.4.661 PMid:10072435   Skotheim RI, Diep CB, Kraggerud SM, Jakobsen KS, et al. (2001). Evaluation of loss of heterozygosity/allelic imbalance scoring in tumor DNA. Cancer Genet. Cytogenet. 127: 64-70. http://dx.doi.org/10.1016/S0165-4608(00)00433-7   Sobrido MJ, Pereira CR, Barros F, Forteza J, et al. (2000). Low frequency of replication errors in primary nervous system tumours. J. Neurol. Neurosurg. Psychiatry 69: 369-375. http://dx.doi.org/10.1136/jnnp.69.3.369 PMid:10945812 PMCid:1737093   Thibodeau SN, Bren G and Schaid D (1993). Microsatellite instability in cancer of the proximal colon. Science 260: 816- 819. http://dx.doi.org/10.1126/science.8484122 PMid:8484122   Ueki K, Wen-Bin C, Narita Y, Asai A, et al. (1999). Tight association of loss of merlin expression with loss of heterozygosity at chromosome 22q in sporadic meningiomas. Cancer Res. 59: 5995-5998. PMid:10606247   Veigl ML, Kasturi L, Olechnowicz J, Ma AH, et al. (1998). Biallelic inactivation of hMLH1 by epigenetic gene silencing, a novel mechanism causing human MSI cancers. Proc. Natl. Acad. Sci. U. S. A. 95: 8698-8702. http://dx.doi.org/10.1073/pnas.95.15.8698 PMid:9671741 PMCid:21139   Wellenreuther R, Kraus JA, Lenartz D, Menon AG, et al. (1995). Analysis of the neurofibromatosis 2 gene reveals molecular variants of meningioma. Am. J. Pathol. 146: 827-832. PMid:7717450 PMCid:1869258   Wirtz HC, Müller W, Noguchi T, Scheven M, et al. (1998). Prognostic value and clinicopathological profile of microsatellite instability in gastric cancer. Clin. Cancer Res. 4: 1749-1754. PMid:9676851   Zhu J, Guo SZ, Beggs AH, Maruyama T, et al. (1996). Microsatellite instability analysis of primary human brain tumors. Oncogene 12: 1417-1423. PMid:8622857
2011
P. Wang, Ni, R. Y., Chen, M. N., Mou, K. J., Mao, Q., and Liu, Y. H., Expression of aquaporin-4 in human supratentorial meningiomas with peritumoral brain edema and correlation of VEGF with edema formation, vol. 10, pp. 2165-2171, 2011.
Bitzer M, Wockel L, Morgalla M, Keller C, et al. (1997a). Peritumoural brain oedema in intracranial meningiomas: influence of tumour size, location and histology. Acta Neurochir. 139: 1136-1142. http://dx.doi.org/10.1007/BF01410973 PMid:9479419 Bitzer M, Wockel L, Luft AR, Wakhloo AK, et al. (1997b). The importance of pial blood supply to the development of peritumoral brain edema in meningiomas. J. Neurosurg. 87: 368-373. http://dx.doi.org/10.3171/jns.1997.87.3.0368 PMid:9285600 Bitzer M, Opitz H, Popp J, Morgalla M, et al. (1998). Angiogenesis and brain oedema in intracranial meningiomas: influence of vascular endothelial growth factor. Acta Neurochir. 140: 333-340. http://dx.doi.org/10.1007/s007010050106 PMid:9689324 Campbell BA, Jhamb A, Maguire JA, Toyota B, et al. (2009). Meningiomas in 2009: controversies and future challenges. Am. J. Clin. Oncol. 32: 73-85. http://dx.doi.org/10.1097/COC.0b013e31816fc920 PMid:19194129 Ding YS, Wang HD, Tang K, Hu ZG, et al. (2008). Expression of vascular endothelial growth factor in human meningiomas and peritumoral brain areas. Ann. Clin. Lab. Sci. 38: 344-351. PMid:18988927 Goldman CK, Bharara S, Palmer CA, Vitek J, et al. (1997). Brain edema in meningiomas is associated with increased vascular endothelial growth factor expression. Neurosurgery 40: 1269-1277. http://dx.doi.org/10.1097/00006123-199706000-00029 PMid:9179901 Ide M, Jimbo M, Kubo O, Yamamoto M, et al. (1992). Peritumoral brain edema associated with meningioma-histological study of the tumor margin and surrounding brain. Neurol. Med. Chir. 32: 65-71. http://dx.doi.org/10.2176/nmc.32.65 PMid:1376862 Jung JS, Bhat RV, Preston GM, Guggino WB, et al. (1994). Molecular characterization of an aquaporin cDNA from brain: candidate osmoreceptor and regulator of water balance. Proc. Natl. Acad. Sci. U. S. A. 91: 13052-13056. http://dx.doi.org/10.1073/pnas.91.26.13052 Kalkanis SN, Carroll RS, Zhang J, Zamani AA, et al. (1996). Correlation of vascular endothelial growth factor messenger RNA expression with peritumoral vasogenic cerebral edema in meningiomas. J. Neurosurg. 85: 1095-1101. http://dx.doi.org/10.3171/jns.1996.85.6.1095 PMid:8929501 Klatzo I (1994). Evolution of brain edema concepts. Acta Neurochir. Suppl. 60: 3-6. Machein MR and Plate KH (2000). VEGF in brain tumors. J. Neurooncol. 50: 109-120. http://dx.doi.org/10.1023/A:1006416003964 PMid:11245271 Ng WH, Hy JW, Tan WL, Liew D, et al. (2009). Aquaporin-4 expression is increased in edematous meningiomas. J. Clin. Neurosci. 16: 441-443. http://dx.doi.org/10.1016/j.jocn.2008.04.028 PMid:19153045 Otsuka S, Tamiya T, Ono Y, Michiue H, et al. (2004). The relationship between peritumoral brain edema and the expression of vascular endothelial growth factor and its receptors in intracranial meningiomas. J. Neurooncol. 70: 349-357. http://dx.doi.org/10.1007/s11060-004-9164-4 PMid:15662977 Provias J, Claffey K, delAguila L, Lau N, et al. (1997). Meningiomas: role of vascular endothelial growth factor/vascular permeability factor in angiogenesis and peritumoral edema. Neurosurgery 40: 1016-1026. http://dx.doi.org/10.1097/00006123-199705000-00027 PMid:9149260 Saadoun S, Papadopoulos MC, Davies DC, Krishna S, et al. (2002). Aquaporin-4 expression is increased in oedematous human brain tumours. J. Neurol. Neurosurg. Psychiatry 72: 262-265. http://dx.doi.org/10.1136/jnnp.72.2.262 PMid:50411 Tait MJ, Saadoun S, Bell BA and Papadopoulos MC (2008). Water movements in the brain: role of aquaporins. Trends Neurosci. 31: 37-43. http://dx.doi.org/10.1016/j.tins.2007.11.003 PMid:18054802 Yoshioka H, Hama S, Taniguchi E, Sugiyama K, et al. (1999). Peritumoral brain edema associated with meningioma: influence of vascular endothelial growth factor expression and vascular blood supply. Cancer 85: 936-944. http://dx.doi.org/10.1002/(SICI)1097-0142(19990215)85:4<936::AID-CNCR23>3.0.CO;2-J
2010
J. J. Zhang, Zhang, X. Q., Liu, Y. H., Liu, H. M., Wang, Y. B., Tian, M. L., and Huang, Y. B., Variation characteristics of the nitrate reductase gene of key inbred maize lines and derived lines in China, vol. 9, pp. 1824-1835, 2010.
Ali ML, Taylor JH, Jie L, Sun G, et al. (2005). Molecular mapping of QTLs for resistance to Gibberella ear rot, in corn, caused by Fusarium graminearum. Genome 48: 521-533. http://dx.doi.org/10.1139/g05-014 PMid:16121248   Appenroth K, Meco R, Jourdan VV and Lillo C (2000). Phytochrome and post-translational regulation of nitrate reductase in higher plants. Plant Sci. 159: 51-56. http://dx.doi.org/10.1016/S0168-9452(00)00323-X   Campbell WH (1999). Nitrate reductase structure, function and regulation: bridging the gap between biochemistry and physiology. Annu. Ver. Plant Physiol. Plant. Mol. Biol. 50: 277-303. http://dx.doi.org/10.1146/annurev.arplant.50.1.277 PMid:15012211   Chen Y, Chao Q, Tan G, Zhao J, et al. (2008). Identification and fine-mapping of a major QTL conferring resistance against head smut in maize. Theor. Appl. Genet. 117: 1241-1252. http://dx.doi.org/10.1007/s00122-008-0858-4 PMid:18762906   Chuanchai P, Tan XI, Silapapun A and Suthipong P (2010). Early hybrid testing in tropical maize: are molecular markers useful for selecting the parental component? Kasetsart J. Nat. Sci. 44: 70-78.   Desikan R, Griffiths R, Hancock J and Neill S (2002). A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 99: 16314-16318. http://dx.doi.org/10.1073/pnas.252461999 PMid:12446847 PMCid:138608   Foyer CH, Valadier MH, Migge A and Becker TW (1998). Drought-induced effects on nitrate reductase activity and mRNA and on the coordination of nitrogen and carbon metabolism in maize leaves. Plant Physiol. 117: 283-292. http://dx.doi.org/10.1104/pp.117.1.283 PMid:9576798 PMCid:35013   Fulton TM, Chunwongse J and Tanksley SD (1995). Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol. Biol. Rep. 13: 207-209. http://dx.doi.org/10.1007/BF02670897   Huber JL, Redinbaugh MG, Huber SC and Campbell WH (1994). Regulation of maize leaf nitrate reductase activity involves both gene expression and protein phosphorylation. Plant Physiol. 106: 1667-1674. PMid:12232440 PMCid:159711   Kolbert Z and Erdei L (2008). Involvement of nitrate reductase in auxin-induced NO synthesis. Plant Signal Behav. 3: 972-973. PMid:19704423 PMCid:2633746   Krakowsky MD, Lee M, Garay L, Woodman-Clikeman W, et al. (2006). Quantitative trait loci for callus initiation and totipotency in maize (Zea mays L.). Theor. Appl. Genet. 113: 821-830. http://dx.doi.org/10.1007/s00122-006-0334-y PMid:16896717   Legesse BW, Myburg AA, Pixley KV and Botha AM (2007). Genetic diversity of African maize inbred lines revealed by SSR markers. Hereditas 144: 10-17. http://dx.doi.org/10.1111/j.2006.0018-0661.01921.x PMid:17567435   Li SS (1997). Selection and application of maize inbred line huangzaosi. Beijing Agric. Sci. 15: 19-21.   Li DH, Mao LH, Yang JS and Liu JG (2005). Breeding process and utilization of excellent maize inbred line 478. J. Laiyang Agric. Coll. 22: 159-164. http://dx.doi.org/10.1007/s10595-005-0075-7   Li XH, Yuan LX, Li XH and Zhang SH (2003). Heterotic grouping of 70 maize inbred lines by SSR markers. Sci. Agric. Sinica 36: 622-627.   Li Y, Wang Y, Wei M and Li X (2009). QTL identification of grain protein concentration and its genetic correlation with starch concentration and grain weight using two populations in maize (Zea mays L.). J. Genet. 88: 61-66. http://dx.doi.org/10.1007/s12041-009-0008-z PMid:19417545   Lu BL, Zhao WY and Liu RZ (2004). The influence and contribution of the hybrids crossed by Mo17 deriving self inbred lines to the production of China. J. Maize Sci. 12: 127-128.   Lu Y, Yan J, Guimaraes CT, Taba S, et al. (2009). Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theor. Appl. Genet. 120: 93-115. http://dx.doi.org/10.1007/s00122-009-1162-7 PMid:19823800   Menkir A, Kling JG, Badu-Apraku B and Ingelbrecht I (2005). Molecular marker-based genetic diversity assessment of striga-resistant maize inbred lines. Theor. Appl. Genet. 110: 1145-1153. http://dx.doi.org/10.1007/s00122-005-1946-3 PMid:15750826   Ning JL, Gao HM, Qu G and Yu B (2002). Utilization of inbred lines of Ludahonggu group in corn breeding and production in China. Rain Fed. Crops 22: 63-65.   Qu G, Xu WW, Chen DY and Li FZ (2002). Selection and application of superior maize inbred line Dan340. J. Maize Sci. 10: 30-33.   Schrag TA, Mohring J, Melchinger AE, Kusterer B, et al. (2010). Prediction of hybrid performance in maize using molecular markers and joint analyses of hybrids and parental inbreds. Theor. Appl. Genet. 120: 451-461. http://dx.doi.org/10.1007/s00122-009-1208-x PMid:19916002   Sivasankar S and Oaks A (1995). Regulation of nitrate reductase during early seedling growth (a role for asparagine and glutamine). Plant Physiol. 107: 1225-1231. PMid:12228428 PMCid:157256   Stevens R (2008). Prospects for using marker-assisted breeding to improve maize production in Africa. J. Sci. Food Agric. 88: 745-755. http://dx.doi.org/10.1002/jsfa.3154   Stöhr C and Ullrich WR (1997). A succinate-oxidising nitrate reductase is located at the plasma membrane of plant roots. Planta 203: 129-132. http://dx.doi.org/10.1007/s00050173   Szalma SJ, Hostert BM, Ledeaux JR, Stuber CW, et al. (2007). QTL mapping with near-isogenic lines in maize. Theor. Appl. Genet. 114: 1211-1228. http://dx.doi.org/10.1007/s00122-007-0512-6 PMid:17308934   Taramino G and Tingey S (1996). Simple sequence repeats for germplasm analysis and mapping in maize. Genome 39: 277-287. http://dx.doi.org/10.1139/g96-038 PMid:8984002   Wang CL, Cheng FF, Sun ZH, Tang JH, et al. (2008). Genetic analysis of photoperiod sensitivity in a tropical by temperate maize recombinant inbred population using molecular markers. Theor. Appl. Genet. 117: 1129-1139. http://dx.doi.org/10.1007/s00122-008-0851-y PMid:18677461   Wang YB, Wang ZH, Wang YP and Zhang X (1997). The analysis of heterotic group and improve of Chinese maize germplasm. Acta Agric. Boreali-Sinica 13: 74-80.   Xu SX, Liu J and Liu GS (2004). The use of SSRs for predicting the hybrid yield and yield heterosis in 15 key inbred lines of Chinese maize. Hereditas 141: 207-215. http://dx.doi.org/10.1111/j.1601-5223.2004.01865.x PMid:15703037   Xu YR, Liu XE, Sun FM and Jiao RH (2006). The application of Mo17 and derived in Chinese. J. Jilin Agric. Sci. 31: 26-28.   Yan JB, Tang H, Huang YQ, Shi YG, et al. (2003). Genomic analysis of plant height in maize through molecular marker. Sci. Agric. Sinica 10: 1069-1075.   Zeng SX, Ren R and Liu XZ (1996). The important position of huangzaosi in maize breeding and production in China. J. Maize Sci. 4: 1-6.   Zhang SH (2005). Maize Production and Research in China: Advancement and Challenges, p. 3. In: Proceedings of the Ninth Asia Regional Maize Workshop, September 5-9, Beijing.   Zhang JH, Zhang JY, Yang XH, Jin H, et al. (2007). A study on genetic relationship of main maize inbred lines in Yunnan by SSR markers. J. Maize Sci. 15: 30-35.   Zhuang QS (2003). Chinese Wheat Improvement and Pedigree Analysis. Agricultural Publishing House, Beijing.