Publications

Found 13 results
Filters: Author is L. Gao  [Clear All Filters]
2013
C. - P. Liu, Jiang, J. - A., Wang, T., Liu, X. - M., Gao, L., Zhu, R. - R., Shen, Y., Wu, M., Xu, T., and Zhang, X. - G., CTLA-4 and CD86 genetic variants and haplotypes in patients with rheumatoid arthritis in southeastern China, vol. 12, pp. 1373-1382, 2013.
Abdallah AM, Renzoni EA, Anevlavis S, Lagan AL, et al. (2006). A polymorphism in the promoter region of the CD86 (B7.2) gene is associated with systemic sclerosis. Int. J. Immunogenet. 33: 155-161. http://dx.doi.org/10.1111/j.1744-313X.2006.00580.x PMid:16712644   Almasi S, Erfani N, Mojtahedi Z, Rajaee A, et al. (2006). Association of CTLA-4 gene promoter polymorphisms with systemic sclerosis in Iranian population. Genes Immun. 7: 401-406. http://dx.doi.org/10.1038/sj.gene.6364313 PMid:16775619   Arnett FC, Edworthy SM, Bloch DA, McShane DJ, et al. (1988). The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 31: 315-324. http://dx.doi.org/10.1002/art.1780310302 PMid:3358796   Catalan D, Aravena O, Sabugo F, Wurmann P, et al. (2010). B cells from rheumatoid arthritis patients show important alterations in the expression of CD86 and FcgammaRIIb, which are modulated by anti-tumor necrosis factor therapy. Arthritis Res. Ther. 12: R68. http://dx.doi.org/10.1186/ar2985 PMid:20398308 PMCid:2888223   Chang JC, Liu CA, Chuang H, Ou CY, et al. (2004). Gender-limited association of cytotoxic T-lymphocyte antigen-4 (CTLA-4) polymorphism with cord blood IgE levels. Pediatr. Allergy Immunol. 15: 506-512. http://dx.doi.org/10.1111/j.1399-3038.2004.00161.x PMid:15610363   Fox D (2005). Etiology and Pathogenesis of Rheumatoid Arthritis. In: Arthritis and Allied Conditions (Koopman W, ed.). Lippincott Williams & Wilkins, Philadephia, 1089-1115.   Haimila K, Einarsdottir E, de Kauwe A, Koskinen LL, et al. (2009). The shared CTLA4-ICOS risk locus in celiac disease, IgA deficiency and common variable immunodeficiency. Genes Immun. 10: 151-161. http://dx.doi.org/10.1038/gene.2008.89 PMid:19020530   Howson JM, Walker NM, Smyth DJ and Todd JA (2009). Analysis of 19 genes for association with type I diabetes in the Type I Diabetes Genetics Consortium families. Genes Immun. 10 (Suppl 1): S74-S84. http://dx.doi.org/10.1038/gene.2009.96 PMid:19956106 PMCid:2810493   Jones AL, Holliday EG, Mowry BJ, McLean DE, et al. (2009). CTLA-4 single-nucleotide polymorphisms in a Caucasian population with schizophrenia. Brain Behav. Immun. 23: 347-350. http://dx.doi.org/10.1016/j.bbi.2008.09.008 PMid:18848621   Kouki T, Gardine CA, Yanagawa T and Degroot LJ (2002). Relation of three polymorphisms of the CTLA-4 gene in patients with Graves' disease. J. Endocrinol. Invest. 25: 208-213. PMid:11936461   Kusztal M, Kościelska-Kasprzak K, Drulis-Fajdasz D, Magott-Procelewska M, et al. (2010). The influence of CTLA-4 gene polymorphism on long-term kidney allograft function in Caucasian recipients. Transpl. Immunol. 23: 121-124. http://dx.doi.org/10.1016/j.trim.2010.05.002 PMid:20470888   Landi D, Moreno V, Guino E, Vodicka P, et al. (2011). Polymorphisms affecting micro-RNA regulation and associated with the risk of dietary-related cancers: a review from the literature and new evidence for a functional role of rs17281995 (CD86) and rs1051690 (INSR), previously associated with colorectal cancer. Mutat. Res. 717: 109-115. http://dx.doi.org/10.1016/j.mrfmmm.2010.10.002 PMid:20971123   Liang YL, Wu H, Li PQ, Xie XD, et al. (2011). Signal transducer and activator of transcription 4 gene polymorphisms associated with rheumatoid arthritis in Northwestern Chinese Han population. Life Sci. 89: 171-175. http://dx.doi.org/10.1016/j.lfs.2011.05.012 PMid:21683716   Ligers A, Teleshova N, Masterman T, Huang WX, et al. (2001). CTLA-4 gene expression is influenced by promoter and exon 1 polymorphisms. Genes Immun. 2: 145-152. http://dx.doi.org/10.1038/sj.gene.6363752 PMid:11426323   Liu MF, Kohsaka H, Sakurai H, Azuma M, et al. (1996). The presence of costimulatory molecules CD86 and CD28 in rheumatoid arthritis synovium. Arthritis Rheum. 39: 110-114. http://dx.doi.org/10.1002/art.1780390115 PMid:8546719   Liu Y, Liang WB, Gao LB, Pan XM, et al. (2010). CTLA4 and CD86 gene polymorphisms and susceptibility to chronic obstructive pulmonary disease. Hum. Immunol. 71: 1141-1146. http://dx.doi.org/10.1016/j.humimm.2010.08.007 PMid:20732370   Magistrelli G, Jeannin P, Herbault N, Benoit De CA, et al. (1999). A soluble form of CTLA-4 generated by alternative splicing is expressed by nonstimulated human T cells. Eur. J. Immunol. 29: 3596-3602. http://dx.doi.org/10.1002/(SICI)1521-4141(199911)29:11<3596::AID-IMMU3596>3.0.CO;2-Y   Marin LA, Moya-Quiles MR, Miras M, Muro M, et al. (2005). Evaluation of CD86 gene polymorphism at +1057 position in liver transplant recipients. Transpl. Immunol. 15: 69-74. http://dx.doi.org/10.1016/j.trim.2005.04.003 PMid:16223675   Matsushita M, Tsuchiya N, Oka T, Yamane A, et al. (2000). New polymorphisms of human CD80 and CD86: lack of association with rheumatoid arthritis and systemic lupus erythematosus. Genes Immun. 1: 428-434. http://dx.doi.org/10.1038/sj.gene.6363704 PMid:11196673   Maurer M, Loserth S, Kolb-Maurer A, Ponath A, et al. (2002). A polymorphism in the human cytotoxic T-lymphocyte antigen 4 (CTLA4) gene (exon 1 +49) alters T-cell activation. Immunogenetics 54: 1-8. http://dx.doi.org/10.1007/s00251-002-0429-9 PMid:11976786   Orozco G, Rueda B and Martin J (2006). Genetic basis of rheumatoid arthritis. Biomed. Pharmacother. 60: 656-662. http://dx.doi.org/10.1016/j.biopha.2006.09.003 PMid:17055211   Pawlak E, Karabon L, Wlodarska-Polinska I, Jedynak A, et al. (2010). Influence of CTLA-4/CD28/ICOS gene polymorphisms on the susceptibility to cervical squamous cell carcinoma and stage of differentiation in the Polish population. Hum. Immunol. 71: 195-200. http://dx.doi.org/10.1016/j.humimm.2009.11.006 PMid:19913589   Plant D, Flynn E, Mbarek H, Dieude P, et al. (2010). Investigation of potential non-HLA rheumatoid arthritis susceptibility loci in a European cohort increases the evidence for nine markers. Ann. Rheum. Dis. 69: 1548-1553. http://dx.doi.org/10.1136/ard.2009.121020 PMid:20498205 PMCid:2938898   Rai E and Wakeland EK (2011). Genetic predisposition to autoimmunity - what have we learned? Semin. Immunol. 23: 67-83. http://dx.doi.org/10.1016/j.smim.2011.01.015 PMid:21288738   Scalapino KJ and Daikh DI (2008). CTLA-4: a key regulatory point in the control of autoimmune disease. Immunol. Rev. 223: 143-155. http://dx.doi.org/10.1111/j.1600-065X.2008.00639.x PMid:18613834   Sharpe AH and Freeman GJ (2002). The B7-CD28 superfamily. Nat. Rev. Immunol. 2: 116-126. http://dx.doi.org/10.1038/nri727 PMid:11910893   Sole X, Guino E, Valls J, Iniesta R, et al. (2006). SNPStats: a web tool for the analysis of association studies. Bioinformatics 22: 1928-1929. http://dx.doi.org/10.1093/bioinformatics/btl268 PMid:16720584   Su TH, Chang TY, Lee YJ, Chen CK, et al. (2007). CTLA-4 gene and susceptibility to human papillomavirus-16- associated cervical squamous cell carcinoma in Taiwanese women. Carcinogenesis 28: 1237-1240. http://dx.doi.org/10.1093/carcin/bgm043 PMid:17341658   Tivol EA, Borriello F, Schweitzer AN, Lynch WP, et al. (1995). Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3: 541-547. http://dx.doi.org/10.1016/1074-7613(95)90125-6   Wang XB, Zhao X, Giscombe R and Lefvert AK (2002). A CTLA-4 gene polymorphism at position -318 in the promoter region affects the expression of protein. Genes Immun. 3: 233-234. http://dx.doi.org/10.1038/sj.gene.6363869 PMid:12058260   Yadav D and Sarvetnick N (2007). B7-2 regulates survival, phenotype, and function of APCs. J. Immunol. 178: 6236- 6241. PMid:17475851   Zaletel K, Krhin B, Gaberscek S and Hojker S (2006). Thyroid autoantibody production is influenced by exon 1 and promoter CTLA-4 polymorphisms in patients with Hashimoto's thyroiditis. Int. J. Immunogenet. 33: 87-91. http://dx.doi.org/10.1111/j.1744-313X.2006.00574.x PMid:16611252
2011
M. Xue, Zan, L. S., Gao, L., and Wang, H. B., A novel polymorphism of the myogenin gene is associated with body measurement traits in native Chinese breeds, vol. 10, pp. 2721-2728, 2011.
Anton I, Fésüs L and Zsolnai A (2002). Simultaneous identification of two MspI polymorphisms of the porcine myogenin gene in Hungarian breeds. J. Anim. Breed. Genet. 119: 280-283. http://dx.doi.org/10.1046/j.1439-0388.2002.00343.x Bhuiyan MSA, Kim NK, Cho YM, Yoon D, et al. (2009). Identification of SNPs in MyoD gene family and their associations with carcass traits in cattle. Livest. Sci. 126: 292-297. http://dx.doi.org/10.1016/j.livsci.2009.05.019 Braun T, Buschhausen-Denker G, Bober E, Tannich E, et al. (1989). A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10T1/2 fibroblasts. EMBO J. 8: 701-709. PMid:2721498    PMCid:400865 Buckingham M, Bajard L, Chang T, Daubas P, et al. (2003). The formation of skeletal muscle: from somite to limb. J. Anat. 202: 59-68. http://dx.doi.org/10.1046/j.1469-7580.2003.00139.x PMid:12587921    PMCid:1571050 Casas E, Keele JW, Shackelford SD, Koohmaraie M, et al. (2004). Identification of quantitative trait loci for growth and carcass composition in cattle. Anim. Genet. 35: 2-6. http://dx.doi.org/10.1046/j.1365-2052.2003.01067.x PMid:14731222 Davis RL, Weintraub H and Lassar AB (1987). Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51: 987-1000. http://dx.doi.org/10.1016/0092-8674(87)90585-X Gilbert RP, Bailey DR and Shannon NH (1993). Linear body measurements of cattle before and after 20 years of selection for postweaning gain when fed two different diets. J. Anim. Sci. 71: 1712-1720. PMid:8349499 Hasty P, Bradley A, Morris JH, Edmondson DG, et al. (1993). Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature 364: 501-506. http://dx.doi.org/10.1038/364501a0 PMid:8393145 Kapelanski W, Grajewska S, Kuryl J, Bocian M, et al. (2005). Polymorphism in coding and non-coding regions of the MyoD gene family and meat quality in pigs. Folia Biol. 53: 45-49. http://dx.doi.org/10.3409/173491605775789506 Komar AA (2007). Silent SNPs: impact on gene function and phenotype. Pharmacogenomics 8: 1075-1080. http://dx.doi.org/10.2217/14622416.8.8.1075 PMid:17716239 Liu YF, Zan LS, Li K, Zhao SP, et al. (2010). A novel polymorphism of GDF5 gene and its association with body measurement traits in Bos taurus and Bos indicus breeds. Mol. Biol. Rep. 37: 429-434. http://dx.doi.org/10.1007/s11033-009-9604-5 PMid:19590978 Mendez EA, Ernst CW and Rothschild MF (1997). Rapid communication: a novel DNA polymorphism of the porcine myogenin (MyoG) gene. J. Anim. Sci. 75: 1984. PMid:9222859 Mullenbach R, Lagoda PJ and Welter C (1989). An efficient salt-chloroform extraction of DNA from blood and tissues. Trends Genet. 5: 391. PMid:2623762 Olson EN (1990). MyoD family: a paradigm for development? Genes Dev. 4: 1454-1461. http://dx.doi.org/10.1101/gad.4.9.1454 Pas MF and Visscher AH (1994). Genetic regulation of meat production by embryonic muscle formation - a review. J. Anim. Breed. Genet. 111: 404-412. http://dx.doi.org/10.1111/j.1439-0388.1994.tb00477.x PMid:21395789 Qu L, Li X, Wu G and Yang N (2005). Efficient and sensitive method of DNA silver staining in polyacrylamide gels. Electrophoresis 26: 99-101. http://dx.doi.org/10.1002/elps.200406177 PMid:15624131 Rehfeldt C, Fiedler I, Dietl G and Ender K (2000). Myogenesis and postnatal skeletal muscle cell growth as influenced by selection. Livest. Prod. Sci. 66: 177-188. http://dx.doi.org/10.1016/S0301-6226(00)00225-6 Shah JH, Maguire DJ, Munce TB and Cotterill A (2008). Alanine in HI: a silent mutation cries out! Adv. Exp. Med. Biol. 614: 145-150. http://dx.doi.org/10.1007/978-0-387-74911-2_17 PMid:18290324 Soumillion A, Erkens JH, Lenstra JA, Rettenberger G, et al. (1997). Genetic variation in the porcine myogenin gene locus. Mamm. Genome 8: 564-568. http://dx.doi.org/10.1007/s003359900504 PMid:9250861 Stickland NC and Handel SE (1986). The numbers and types of muscle fibres in large and small breeds of pigs. J. Anat. 147: 181-189. PMid:2961720    PMCid:1261556 te Pas MF, Soumillion A, Harders FL, Verburg FJ, et al. (1999). Influences of myogenin genotypes on birth weight, growth rate, carcass weight, backfat thickness, and lean weight of pigs. J. Anim. Sci. 77: 2352-2356. PMid:10492439 te Pas MF, Verburg FJ, Gerritsen CL and de Greef KH (2000). Messenger ribonucleic acid expression of the MyoD gene family in muscle tissue at slaughter in relation to selection for porcine growth rate. J. Anim. Sci. 78: 69-77. PMid:10682804 Verner J, Humpolicek P and Knoll A (2007). Impact of MyoD family genes on pork traits in Large White and Landrace pigs. J. Anim. Breed. Genet. 124: 81-85. http://dx.doi.org/10.1111/j.1439-0388.2007.00639.x PMid:17488358 Weintraub H, Tapscott SJ, Davis RL, Thayer MJ, et al. (1989). Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc. Natl. Acad. Sci. U. S. A. 86: 5434-5438. http://dx.doi.org/10.1073/pnas.86.14.5434 Weintraub H, Davis R, Tapscott S, Thayer M, et al. (1991). The MyoD gene family: nodal point during specification of the muscle cell lineage. Science 251: 761-766. http://dx.doi.org/10.1126/science.1846704 PMid:1846704 Wright WE, Sassoon DA and Lin VK (1989). Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell 56: 607-617. http://dx.doi.org/10.1016/0092-8674(89)90583-7 Wyszynska-Koko J, Pierzchala M, Flisikowski K, Kamyczek M, et al. (2006). Polymorphisms in coding and regulatory regions of the porcine MYF6 and MYOG genes and expression of the MYF6 gene in m. longissimus dorsi versus productive traits in pigs. J. Appl. Genet. 47: 131-138. http://dx.doi.org/10.1007/BF03194612 PMid:16682754 Zhang C, Wang Y, Chen H, Lan X, et al. (2007). Enhance the efficiency of single-strand conformation polymorphism analysis by short polyacrylamide gel and modified silver staining. Anal. Biochem. 365: 286-287. http://dx.doi.org/10.1016/j.ab.2007.03.023 PMid:17449006
L. Gao, Zan, L. S., Wang, H. B., Hao, R. J., and Zhong, X., Polymorphism of somatostatin gene and its association with growth traits in Chinese cattle, vol. 10, pp. 703-711, 2011.
Andrews PC, Pollock HG, Elliott WM, Youson JH, et al. (1988). Isolation and characterization of a variant somatostatin-14 and two related somatostatins of 34 and 37 residues from lamprey (Petromyzon marinus). J. Biol. Chem. 263: 15809-15814. PMid:2902094 Bruno JF, Xu Y, Song J and Berelowitz M (1992). Molecular cloning and functional expression of a brain-specific somatostatin receptor. Proc. Natl. Acad. Sci. U. S. A. 89: 11151-11155. doi:10.1073/pnas.89.23.11151 Butler AA and Le Roith D (2001). Control of growth by the somatropic axis: growth hormone and the insulin-like growth factors have related and independent roles. Annu. Rev. Physiol. 63: 141-164. doi:10.1146/annurev.physiol.63.1.141 PMid:11181952 Byun SO, Fang Q, Zhou H and Hickford JG (2008). Rapid genotyping of the ovine ADRB3 gene by polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP). Mol. Cell Probes 22: 69-70. doi:10.1016/j.mcp.2007.08.005 PMid:17936579 Canosa LF, Chang JP and Peter RE (2007). Neuroendocrine control of growth hormone in fish. Gen. Comp. Endocrinol. 151: 1-26. doi:10.1016/j.ygcen.2006.12.010 PMid:17286975 Devos N, Deflorian G, Biemar F, Bortolussi M, et al. (2002). Differential expression of two somatostatin genes during zebrafish embryonic development. Mech. Dev. 115: 133-137. doi:10.1016/S0925-4773(02)00082-5 Heaton MP, Harhay GP, Bennett GL, Stone RT, et al. (2002). Selection and use of SNP markers for animal identification and paternity analysis in U.S. beef cattle. Mamm. Genome 13: 272-281. doi:10.1007/s00335-001-2146-3 PMid:12016516 Kang TC, Park SK, Do SG, Suh JG, et al. (2000). The over-expression of somatostatin in the gerbil entorhinal cortex induced by seizure. Brain Res. 882: 55-61. doi:10.1016/S0006-8993(00)02824-9 Kubota A, Yamada Y, Kagimoto S, Shimatsu A, et al. (1994). Identification of somatostatin receptor subtypes and an implication for the efficacy of somatostatin analogue SMS 201-995 in treatment of human endocrine tumors. J. Clin. Invest. 93: 1321-1325. doi:10.1172/JCI117090 PMid:8132773    PMCid:294095 Lan XY, Pan CY, Chen H, Zhang CL, et al. (2007). An AluI PCR-RFLP detecting a silent allele at the goat POU1F1 locus and its association with production traits. Small Ruminant Res. 73: 8-12. doi:10.1016/j.smallrumres.2006.10.009 Liu Y, Lu D, Zhang Y, Li S, et al. (2010). The evolution of somatostatin in vertebrates. Gene 463: 21-28. doi:10.1016/j.gene.2010.04.016 PMid:20472043 Patel YC (1999). Somatostatin and its receptor family. Front. Neuroendocrinol. 20: 157-198. doi:10.1006/frne.1999.0183 PMid:10433861 Planas JV, Mendez E, Baños N, Capilla E, et al. (2000). Fish insulin, IGF-I and IGF-II receptors: a phylogenetic approach. Am. Zool. 40: 223-233. doi:10.1668/0003-1569(2000)040[0223:FIIIAI]2.0.CO;2 Qu L, Li X, Wu G and Yang N (2005). Efficient and sensitive method of DNA silver staining in polyacrylamide gels. Electrophoresis 26: 99-101. doi:10.1002/elps.200406177 PMid:15624131 Reichlin S (1983). Somatostatin. N. Engl. J. Med. 309: 1495-1501, 1556-1563. doi:10.1056/NEJM198312153092406 PMid:6139753 Tostivint H, Lihrmann I and Vaudry H (2008). New insight into the molecular evolution of the somatostatin family. Mol. Cell Endocrinol. 286: 5-17. doi:10.1016/j.mce.2008.02.029 PMid:18406049 Very NM and Sheridan MA (2002). The role of somatostatins in the regulation of growth in fish. Fish Physiol. Biochem. 27: 217-226. doi:10.1023/B:FISH.0000032727.75493.e8 Werner FA, Durstewitz G, Habermann FA, Thaller G, et al. (2004). Detection and characterization of SNPs useful for identity control and parentage testing in major European dairy breeds. Anim. Genet. 35: 44-49. doi:10.1046/j.1365-2052.2003.01071.x PMid:14731229 Yamada Y, Stoffel M, Espinosa R III, Xiang KS, et al. (1993). Human somatostatin receptor genes: localization to human chromosomes 14, 17, and 22 and identification of simple tandem repeat polymorphisms. Genomics 15: 449-452. doi:10.1006/geno.1993.1088 PMid:8449518
2010
L. Gao, Wang, L., Yun, H., Su, L., and Su, X., Association of the PPARγ2 gene Pro12Ala variant with primary hypertension and metabolic lipid disorders in Han Chinese of Inner Mongolia, vol. 9, pp. 1312-1320, 2010.
Ahmed W, Ziouzenkova O, Brown J, Devchand P, et al. (2007). PPARs and their metabolic modulation: new mechanisms for transcriptional regulation? J. Intern. Med. 262: 184-198. http://dx.doi.org/10.1111/j.1365-2796.2007.01825.x PMid:17645586   Buzzetti R, Petrone A, Caiazzo AM, Alemanno I, et al. (2005). PPAR-gamma2 Pro12Ala variant is associated with greater insulin sensitivity in childhood obesity. Pediatr. Res. 57: 138-140. http://dx.doi.org/10.1203/01.PDR.0000147728.62185.21 PMid:15531738   Douglas JA, Erdos MR, Watanabe RM, Braun A, et al. (2001). The peroxisome proliferator-activated receptor-gamma2 Pro12A1a variant: association with type 2 diabetes and trait differences. Diabetes 50: 886-890. http://dx.doi.org/10.2337/diabetes.50.4.886 PMid:11289057   Ereqat S, Nasereddin A, Azmi K, Abdeen Z, et al. (2009). Impact of the Pro12Ala polymorphism of the PPAR-gamma 2 gene on metabolic and clinical characteristics in the Palestinian type 2 diabetic patients. PPAR Res. 2009: 874126. http://dx.doi.org/10.1155/2009/874126 PMid:19859551 PMCid:2766506   Gouni-Berthold I, Giannakidou E, Muller-Wieland D, Faust M, et al. (2005). Peroxisome proliferator-activated receptor-gamma2 Pro12Ala and endothelial nitric oxide synthase-4a/b gene polymorphisms are not associated with hypertension in diabetes mellitus type 2. J. Hypertens. 23: 301-308. http://dx.doi.org/10.1097/00004872-200502000-00012 PMid:15662218   Greene ME, Blumberg B, McBride OW, Yi HF, et al. (1995). Isolation of the human peroxisome proliferator activated receptor gamma cDNA: expression in hematopoietic cells and chromosomal mapping. Gene Expr. 4: 281-299. PMid:7787419   Hasstedt SJ, Ren QF, Teng K and Elbein SC (2001). Effect of the peroxisome proliferator-activated receptor-gamma 2 pro(12)ala variant on obesity, glucose homeostasis, and blood pressure in members of familial type 2 diabetic kindreds. J. Clin. Endocrinol. Metab. 86: 536-541. http://dx.doi.org/10.1210/jc.86.2.536 PMid:11158005   He W (2009). PPARgamma2 polymorphism and human health. PPAR. Res. 2009: 849538. http://dx.doi.org/10.1155/2009/849538 PMid:19390629 PMCid:2669649   Horiki M, Ikegami H, Fujisawa T, Kawabata Y, et al. (2004). Association of Pro12Ala polymorphism of PPARgamma gene with insulin resistance and related diseases. Diabetes Res. Clin. Pract. 66 (Suppl 1): S63-S67. http://dx.doi.org/10.1016/j.diabres.2003.09.023 PMid:15563983   Mirzaei H, Akrami SM, Golmohammadi T, Doosti M, et al. (2009). Polymorphism of Pro12Ala in the peroxisome proliferator-activated receptor gamma2 gene in Iranian diabetic and obese subjects. Metab. Syndr. Relat. Disord. 7: 453-458. http://dx.doi.org/10.1089/met.2008.0099 PMid:19558269   Ostgren CJ, Lindblad U, Melander O, Melander A, et al. (2003). Peroxisome proliferator-activated receptor-gammaPro12Ala polymorphism and the association with blood pressure in type 2 diabetes: Skaraborg Hypertension and Diabetes Project. J. Hypertens. 21: 1657-1662.   Pinterova D, Cerna M, Kolostova K, Novota P, et al. (2004). The frequency of alleles of the Pro12Ala polymorphism in PPARgamma2 is different between healthy controls and patients with type 2 diabetes. Folia Biol. 50: 153-156.   Rodriguez-Esparragon FJ, Rodriguez-Perez JC, Macias-Reyes A and Alamo-Santana F (2003). Peroxisome proliferator-activated receptor-gamma2-Pro12Ala and endothelial nitric oxide synthase-4a/bgene polymorphisms are associated with essential hypertension. J. Hypertens. 21: 1649-1655. http://dx.doi.org/10.1097/00004872-200309000-00013 PMid:12923396   Sookoian S, Garcia SI, Porto PI, Dieuzeide G, et al. (2005). Peroxisome proliferator-activated receptor gamma and its coactivator-1 alpha may be associated with features of the metabolic syndrome in adolescents. J. Mol. Endocrinol. 35: 373-380. http://dx.doi.org/10.1677/jme.1.01837 PMid:16216916   Stefanski A, Majkowska L, Ciechanowicz A, Frankow M, et al. (2006). Association between the Pro12Ala variant of the peroxisome proliferator-activated receptor-gamma2 gene and increased 24-h diastolic blood pressure in obese patients with type II diabetes. J. Hum. Hypertens. 20: 684-692. http://dx.doi.org/10.1038/sj.jhh.1002040 PMid:16625233   Swarbrick MM, Chapman CM, McQuillan BM, Hung J, et al. (2001). A Pro12Ala polymorphism in the human peroxisome proliferator-activated receptor-gamma 2 is associated with combined hyperlipidaemia in obesity. Eur. J. Endocrinol. 144: 277-282. http://dx.doi.org/10.1530/eje.0.1440277 PMid:11248748   Tai ES, Corella D, Deurenberg-Yap M, Adiconis X, et al. (2004). Differential effects of the C1431T and Pro12Ala PPARgamma gene variants on plasma lipids and diabetes risk in an Asian population. J. Lipid Res. 45: 674-685. http://dx.doi.org/10.1194/jlr.M300363-JLR200 PMid:14729856   Tamori Y, Masugi J, Nishino N and Kasuga M (2002). Role of peroxisome proliferator-activated receptor-gamma in maintenance of the characteristics of mature 3T3-L1 adipocytes. Diabetes 51: 2045-2055. http://dx.doi.org/10.2337/diabetes.51.7.2045 PMid:12086932   Tavares V, Hirata RD, Rodrigues AC, Monte O, et al. (2005). Association between Pro12Ala polymorphism of the PPAR-gamma2 gene and insulin sensitivity in Brazilian patients with type-2 diabetes mellitus. Diabetes Obes. Metab. 7: 605-611. http://dx.doi.org/10.1111/j.1463-1326.2004.00453.x PMid:16050954   Vanden Heuvel JP (2007). The PPAR resource page. Biochim. Biophys. Acta 1771: 1108-1112. http://dx.doi.org/10.1016/j.bbalip.2007.03.007 PMid:17493868   Yliharsila H, Eriksson JG, Forsen T, Laakso M, et al. (2004). Interactions between peroxisome proliferator-activated receptor-gamma 2 gene polymorphisms and size at birth on blood pressure and the use of antihypertensive medication. J. Hypertens. 22: 1283-1287. http://dx.doi.org/10.1097/01.hjh.0000125438.28861.a4 PMid:15201543   Zietz B, Barth N, Spiegel D, Schmitz G, et al. (2002). Pro12Ala polymorphism in the peroxisome proliferator-activated receptor-gamma2 (PPARgamma2) is associated with higher levels of total cholesterol and LDL-cholesterol in male Caucasian type 2 diabetes patients. Exp. Clin. Endocrinol. Diabetes 110: 60-66. http://dx.doi.org/10.1055/s-2002-23487 PMid:11928067