Publications

Found 4 results
Filters: Author is W.Q. Tian  [Clear All Filters]
2012
Y. Y. Fan, Fu, G. W., Fu, C. Z., Zan, L. S., and Tian, W. Q., A missense mutant of the PPAR-γgene associated with carcass and meat quality traits in Chinese cattle breeds, vol. 11, pp. 3781-3788, 2012.
Albrecht E, Teuscher F, Ender K and Wegner J (2006). Growth- and breed-related changes of marbling characteristics in cattle. J. Anim. Sci. 84: 1067-1075. http://dx.doi.org/10.2527/jas.2006-345   Berger J and Moller DE (2002). The mechanisms of action of PPARs. Annu. Rev. Med. 53: 409-435. http://dx.doi.org/10.1146/annurev.med.53.082901.104018 PMid:11818483   Choudhary V, Kumar P, Bhattacharya TK, Bhushan B, et al. (2007). DNA polymorphism of insulin-like growth factor-binding protein-3 gene and its association with birth weight and body weight in cattle. J. Anim. Breed. Genet. 124: 29-34. http://dx.doi.org/10.1111/j.1439-0388.2007.00626.x PMid:17302958   Escher P and Wahli W (2000). Peroxisome proliferator-activated receptors: insight into multiple cellular functions. Mutat. Res. 448: 121-138. http://dx.doi.org/10.1016/S0027-5107(99)00231-6   Evans RM, Barish GD and Wang YX (2004). PPARs and the complex journey to obesity. Nat. Med. 10: 355-361. http://dx.doi.org/10.1038/nm1025 PMid:15057233   Fajas L, Debril MB and Auwerx J (2001). Peroxisome proliferator-activated receptor-gamma: from adipogenesis to carcinogenesis. J. Mol. Endocrinol. 27: 1-9. http://dx.doi.org/10.1677/jme.0.0270001 PMid:11463572   Forman BM, Chen J and Evans RM (1997). Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta. Proc. Natl. Acad. Sci. U. S. A. 94: 4312-4317. http://dx.doi.org/10.1073/pnas.94.9.4312 PMid:9113986 PMCid:20719   Issemann I and Green S (1990). Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347: 645-650. http://dx.doi.org/10.1038/347645a0 PMid:2129546   Judge M, Aberle E, Forrest J and Hedrick H (1989). Principles of Meat Science. 2nd edn. Kendall/Hunt Publishing Co., Dubuque.   Kliewer SA, Lenhard JM, Willson TM, Patel I, et al. (1995). A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell 83: 813-819. http://dx.doi.org/10.1016/0092-8674(95)90194-9   Kliewer SA, Lehmann JM and Willson TM (1999). Orphan nuclear receptors: shifting endocrinology into reverse. Science 284: 757-760. http://dx.doi.org/10.1126/science.284.5415.757 PMid:10221899   Liu YF, Zan LS, Li K, Zhao SP, et al. (2010). A novel polymorphism of GDF5 gene and its association with body measurement traits in Bos taurus and Bos indicus breeds. Mol. Biol. Rep. 37: 429-434. http://dx.doi.org/10.1007/s11033-009-9604-5 PMid:19590978   Matsusue K, Peters J and Gonzalez F (2004). PPARβ/δ potentiates PPAR-γ-stimulated adipocyte differentiation. FASEB J. 18: 1477-1479. PMid:15247146   Meirhaeghe A, Fajas L, Gouilleux F, Cottel D, et al. (2003). A functional polymorphism in a STAT5B site of the human PPAR-γ3 gene promoter affects height and lipid metabolism in a French population. Arterioscler. Thromb. Vasc. Biol. 23: 289-294. http://dx.doi.org/10.1161/01.ATV.0000051382.28752.FE PMid:12588773   Rosenson RS (2007). Effects of peroxisome proliferator-activated receptors on lipoprotein metabolism and glucose control in type 2 diabetes mellitus. Am. J. Cardiol. 99: 96B-104B. http://dx.doi.org/10.1016/j.amjcard.2006.11.010 PMid:17307062   Sambrook J and Russell D (2002). Molecular Cloning: A Laboratory Manual. 3nd. Science Press, Beijing.   Schoonjans K, Staels B and Auwerx J (1996). The peroxisome proliferator activated receptors (PPARS) and their effects on lipid metabolism and adipocyte differentiation. Biochim. Biophys. Acta 1302: 93-109. http://dx.doi.org/10.1016/0005-2760(96)00066-5   Spiegelman BM (1998). PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 47: 507-514. http://dx.doi.org/10.2337/diabetes.47.4.507 PMid:9568680   Spiegelman BM and Flier JS (1996). Adipogenesis and obesity: rounding out the big picture. Cell 87: 377-389. http://dx.doi.org/10.1016/S0092-8674(00)81359-8   Sun HS, Anderson LL, Yu TP, Kim KS, et al. (2002). Neonatal Meishan pigs show POU1F1 genotype effects on plasma GH and PRL concentration. Anim. Reprod. Sci. 69: 223-237. http://dx.doi.org/10.1016/S0378-4320(01)00177-4   Tontonoz P, Hu E and Spiegelman BM (1994). Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 79: 1147-1156. http://dx.doi.org/10.1016/0092-8674(94)90006-X   Walczak R and Tontonoz P (2002). PPARadigms and PPARadoxes: expanding roles for PPARgamma in the control of lipid metabolism. J. Lipid Res. 43: 177-186. PMid:11861659   Wang J, Shaner N, Mittal B, Zhou Q, et al. (2005). Dynamics of Z-band based proteins in developing skeletal muscle cells. Cell Motil. Cytoskeleton 61: 34-48. http://dx.doi.org/10.1002/cm.20063 PMid:15810059 PMCid:1993831   Yen CJ, Beamer BA, Negri C, Silver K, et al. (1997). Molecular scanning of the human peroxisome proliferator activated receptor gamma (hPPAR gamma) gene in diabetic Caucasians: identification of a Pro12Ala PPAR gamma 2 missense mutation. Biochem. Biophys. Res. Commun. 241: 270-274. http://dx.doi.org/10.1006/bbrc.1997.7798 PMid:9425261   Zhong X, Zan LS, Wang HB and Liu YF (2010). Polymorphic CA microsatellites in the third exon of the bovine BMP4 gene. Genet. Mol. Res. 9: 868-874. http://dx.doi.org/10.4238/vol9-2gmr732 PMid:20467979
2011
W. Q. Tian, Wang, H. C., Song, F. B., Zan, L. S., Wang, H., Wang, H. B., Xin, Y. P., and Ujan, J. A., Association between a single nucleotide polymorphism in the bovine chemerin gene and carcass traits in Qinchuan cattle, vol. 10, pp. 2833-2840, 2011.
Bozaoglu K, Bolton K, McMillan J, Zimmet P, et al. (2007). Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology 148: 4687-4694. http://dx.doi.org/10.1210/en.2007-0175 PMid:17640997 Gantz I, Konda Y, Yang YK, Miller DE, et al. (1996). Molecular cloning of a novel receptor (CMKLR1) with homology to the chemotactic factor receptors. Cytogenet. Cell Genet. 74: 286-290. http://dx.doi.org/10.1159/000134436 Goralski KB, McCarthy TC, Hanniman EA, Zabel BA, et al. (2007). Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J. Biol. Chem. 282: 28175-28188. http://dx.doi.org/10.1074/jbc.M700793200 PMid:17635925 Lan XY, Pan CY, Chen H, Zhang CL, et al. (2007). An AluI PCR-RFLP detecting a silent allele at the goat POU1F1 locus and its association with production traits. Small Ruminant Res. 73: 8-12. http://dx.doi.org/10.1016/j.smallrumres.2006.10.009 Martensson UE, Fenyo EM, Olde B and Owman C (2006). Characterization of the human chemerin receptor - ChemR23/ CMKLR1 - as co-receptor for human and simian immunodeficiency virus infection, and identification of virus-binding receptor domains. Virology 355: 6-17. http://dx.doi.org/10.1016/j.virol.2006.07.010 PMid:16904155 Meder W, Wendland M, Busmann A, Kutzleb C, et al. (2003). Characterization of human circulating TIG2 as a ligand for the orphan receptor ChemR23. FEBS Lett. 555: 495-499. http://dx.doi.org/10.1016/S0014-5793(03)01312-7 Methner A, Hermey G, Schinke B and Hermans-Borgmeyer I (1997). A novel G protein-coupled receptor with homology to neuropeptide and chemoattractant receptors expressed during bone development. Biochem. Biophys. Res. Commun. 233: 336-342. http://dx.doi.org/10.1006/bbrc.1997.6455 PMid:9144535 Mullenbach R, Lagoda PJ and Welter C (1989). An efficient salt-chloroform extraction of DNA from blood and tissues. Trends Genet. 5: 391. PMid:2623762 Mussig K, Staiger H, Machicao F, Thamer C, et al. (2009). RARRES2, encoding the novel adipokine chemerin, is a genetic determinant of disproportionate regional body fat distribution: a comparative magnetic resonance imaging study. Metabolism 58: 519-524. http://dx.doi.org/10.1016/j.metabol.2008.11.011 PMid:19303973 Nagpal S, Patel S, Jacobe H, DiSepio D, et al. (1997). Tazarotene-induced gene 2 (TIG2), a novel retinoid-responsive gene in skin. J. Invest. Dermatol. 109: 91-95. http://dx.doi.org/10.1111/1523-1747.ep12276660 PMid:9204961 Nei M and Roychoudhury AK (1974). Sampling variances of heterozygosity and genetic distance. Genetics 76: 379-390. PMid:4822472 PMCid:1213072 Nei M and Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273. http://dx.doi.org/10.1073/pnas.76.10.5269 Owman C, Nilsson C and Lolait SJ (1996). Cloning of cDNA encoding a putative chemoattractant receptor. Genomics 37: 187-194. http://dx.doi.org/10.1006/geno.1996.0541 PMid:8921391 Roh SG, Song SH, Choi KC, Katoh K, et al. (2007). Chemerin - a new adipokine that modulates adipogenesis via its own receptor. Biochem. Biophys. Res. Commun. 362: 1013-1018. http://dx.doi.org/10.1016/j.bbrc.2007.08.104 PMid:17767914 Samson M, Edinger AL, Stordeur P, Rucker J, et al. (1998). ChemR23, a putative chemoattractant receptor, is expressed in monocyte-derived dendritic cells and macrophages and is a coreceptor for SIV and some primary HIV-1 strains. Eur. J. Immunol. 28: 1689-1700. http://dx.doi.org/10.1002/(SICI)1521-4141(199805)28:05<1689::AID-IMMU1689>3.0.CO;2-I Sell H and Eckel J (2009). Chemotactic cytokines, obesity and type 2 diabetes: in vivo and in vitro evidence for a possible causal correlation? Proc. Nutr. Soc. 68: 378-384. http://dx.doi.org/10.1017/S0029665109990218 PMid:19698204 Song SH, Fukui K, Nakajima K, Kozakai T, et al. (2010). Cloning, expression analysis, and regulatory mechanisms of bovine chemerin and chemerin receptor. Domest. Anim. Endocrinol. 39: 97-105. http://dx.doi.org/10.1016/j.domaniend.2010.02.007 PMid:20399065 Takahashi M, Takahashi Y, Takahashi K, Zolotaryov FN, et al. (2008). Chemerin enhances insulin signaling and potentiates insulin-stimulated glucose uptake in 3T3-L1 adipocytes. FEBS Lett. 582: 573-578. http://dx.doi.org/10.1016/j.febslet.2008.01.023 PMid:18242188 Wittamer V, Franssen JD, Vulcano M, Mirjolet JF, et al. (2003). Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J. Exp. Med. 198: 977-985. http://dx.doi.org/10.1084/jem.20030382 PMid:14530373 PMCid:2194212 Wittamer V, Bondue B, Guillabert A, Vassart G, et al. (2005). Neutrophil-mediated maturation of chemerin: a link between innate and adaptive immunity. J. Immunol. 175: 487-493. PMid:15972683 Zabel BA, Allen SJ, Kulig P, Allen JA, et al. (2005). Chemerin activation by serine proteases of the coagulation, fibrinolytic, and inflammatory cascades. J. Biol. Chem. 280: 34661-34666. http://dx.doi.org/10.1074/jbc.M504868200 PMid:16096270 Zhang C, Wang Y, Chen H, Lan X, et al. (2007). Enhance the efficiency of single-strand conformation polymorphism analysis by short polyacrylamide gel and modified silver staining. Anal. Biochem. 365: 286-287. http://dx.doi.org/10.1016/j.ab.2007.03.023 PMid:17449006