Publications

Found 7 results
Filters: Author is C. Adoligbe  [Clear All Filters]
2011
J. A. Ujan, Zan, L. S., Ujan, S. A., Adoligbe, C., and Wang, H. B., Back fat thickness and meat tenderness are associated with a 526 T→A mutation in the exon 1 promoter region of the MyF-5 gene in Chinese Bos taurus, vol. 10, pp. 3070-3079, 2011.
Adoligbe C, Zan LS, Wang HB and Ujjan JA (2011). A novel polymorphism of GDF10 gene and its association with body measurement traits in cattle. Genet. Mol. Res. 10: 988-995. http://dx.doi.org/10.4238/vol10-2gmr989 PMid:21710448 Bhuiyan MSA, Kim NK, Cho YM, Yoon D, et al. (2009). Identification of SNPs in MYOD gene family and their associations with carcass traits in cattle. Livest. Sci. 126: 292-297. http://dx.doi.org/10.1016/j.livsci.2009.05.019 Carmo FMS, Guimarães SEF, Lopes PS, Pires AV, et al. (2005). Association of MYF5 gene allelic variants with production traits in pigs. Genet. Mol. Biol. 28: 363-369. http://dx.doi.org/10.1590/S1415-47572005000300004 Casas E, Shackelford SD, Keele JW, Stone RT, et al. (2000). Quantitative trait loci affecting growth and carcass composition of cattle segregating alternate forms of myostatin. J. Anim. Sci. 78: 560-569. PMid:10764062 Chung ER and Kim WT (2005). Association of SNP marker in IGF-I and MYF5 candidate genes with growth traits in Korean cattle. Asian-Aust. J. Anim. Sci. 18: 1061-1065. Cieslak D, Kapelanksi W, Blicharski T and Pierzchala M (2000). Restriction fragment length polymorphism in myogenin and MYF-3 genes and their influence on lean meat content in pigs. J. Anim. Breed. Genet. 117: 43-55. http://dx.doi.org/10.1046/j.1439-0388.2000.00209.x Dario C, Selvaggi M, Carnicella D and Bufano G (2009). STAT5A/AvaI polymorphism in Podolica bulls and its effect on growth performance traits. Livest. Sci. 123: 83-87. http://dx.doi.org/10.1016/j.livsci.2008.10.011 Davis GP, Hetzel DJS, Corbet NJ, Scacheri S, et al. (1998). The Mapping of Quantitative Trait Loci for Birth Weight in a Tropical Beef Herd. Proceedings 6th World Congress of Genetics Applied to Livestock Productions, Amidale, 441-444. Humpolícek P, Urban T and Tvrdon Z (2007). Relation of porcinemyogenin gene PCR/RFLP MspI and reproduction traits of the Czech Large White sows. Livest. Sci. 110: 288-291. http://dx.doi.org/10.1016/j.livsci.2007.02.015 Khatib H, Zaitoun I, Wiebelhaus-Finger J, Chang YM, et al. (2007). The association of bovine PPARGC1A and OPN genes with milk composition in two independent Holstein cattle populations. J. Dairy Sci. 90: 2966-2970. http://dx.doi.org/10.3168/jds.2006-812 PMid:17517737 Komar AA (2007). Silent SNPs: impact on gene function and phenotype. Pharmacogenomics 8: 1075-1080. http://dx.doi.org/10.2217/14622416.8.8.1075 PMid:17716239 Kunhareang S, Zhou H and Hickford JG (2009). Allelic variation in the porcine MYF5 gene detected by PCR-SSCP. Mol. Biotechnol. 41: 208-212. http://dx.doi.org/10.1007/s12033-008-9122-z PMid:19021001 Kurland CG (1991). Codon bias and gene expression. FEBS Lett. 285: 165-169. http://dx.doi.org/10.1016/0014-5793(91)80797-7 Li C, Basarab J, Snelling WM, Benkel B, et al. (2002a). Identical by Descent Haplotype Sharing analysis: Application in Fine Mapping of QTLs for Birth Weight in Commercial Lines of Bos taurus. Proceedings of 7th World Congress of Genetics Applied Livestock Production, Montpellier, 481-484. Li C, Basarab J, Snelling WM, Benkel B, et al. (2002b). The identification of common haplotypes on bovine chromosome 5 within commercial lines of Bos taurus and their associations with growth traits. J. Anim. Sci. 80: 1187-1194. PMid:12019605 Li C, Basarab J, Snelling WM, Benkel B, et al. (2004). Assessment of positional candidate genes Myf5 and igf1 for growth on bovine chromosome 5 in commercial lines of Bos taurus. J. Anim. Sci. 82: 1-7. Maak S, Neumann K and Swalve HH (2006). Identification and analysis of putative regulatory sequences for the MYF5/ MYF6 locus in different vertebrate species. Gene 379: 141-147. http://dx.doi.org/10.1016/j.gene.2006.05.007 PMid:16820272 McIlveen H and Buchanan J (2001). The impact of sensory factors on beef purchase and consumption. Nutr. Food Sci. 31: 286-292. http://dx.doi.org/10.1108/00346650110409119 Nei M and Roychoudhury AK (1974). Sampling variances of heterozygosity and genetic distance. Genetics 76: 379-390. PMid:4822472    PMCid:1213072 Nei M and Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273. http://dx.doi.org/10.1073/pnas.76.10.5269 Robakowska-Hyzorek D, Oprzadek J, Zelazowska B, Olbromski R, et al. (2010). Effect of the g.-723G- T polymorphism in the bovine myogenic factor 5 (Myf5) gene promoter region on gene transcript level in the longissimus dorsi muscle and on meat traits of polish holstein-friesian cattle. Biochem. Genet. 48: 450-464. http://dx.doi.org/10.1007/s10528-009-9328-1 PMid:20127165 Sambrook J and Russell DW (2002). Translated by Huang, P.T. Molecular Cloning A Laboratory Manual. 3rd edn. Science Press, Beijing. Shah JH, Maguire DJ, Munce TB and Cotterill A (2008). Alanine in HI: a silent mutation cries out! Adv. Exp. Med. Biol. 614: 145-150. http://dx.doi.org/10.1007/978-0-387-74911-2_17 PMid:18290324 Shin SC and Chung ER (2007). Association of SNP marker in the leptin gene with carcass and meat quality traits in Korean cattle. Asian Australas. J. Anim. Sci. 20: 1-6. Stone RT, Keele JW, Shackelford SD, Kappes SM, et al. (1999). A primary screen of the bovine genome for quantitative trait loci affecting carcass and growth traits. J. Anim. Sci. 77: 1379-1384. PMid:10375215 te Pas MF, Soumillion A, Hardes FL, Verburg FJ, et al. (1999). Influences of myogenin genotypes on birth weight, growth rate, carcass weight, backfat thickness and lean weight of pigs. J. Anim. Sci. 77: 2352-2356. PMid:10492439 van Wijk HJ, Arts DJ, Matthews JO, Webster M, et al. (2005). Genetic parameters for carcass composition and pork quality estimated in a commercial production chain. J. Anim. Sci. 83: 324-333. PMid:15644503 Venza M, Visalli M, Venza I, Torino C, et al. (2009). Altered binding of MYF-5 to FOXE1 promoter in non-syndromic and CHARGE-associated cleft palate. J. Oral Pathol. Med. 38: 18-23. http://dx.doi.org/10.1111/j.1600-0714.2008.00726.x Verner J, Humpolicek P and Knoll A (2007). Impact of MYOD family genes on pork traits in Large White and Landrace pigs. J. Anim. Breed. Genet. 124: 81-85. http://dx.doi.org/10.1111/j.1439-0388.2007.00639.x PMid:17488358 Wei S, Linsen Z, Ujan JA, Wang H, et al. (2011). Novel polymorphism of the bovine fat mass and obesity-associated (FTO) gene are relted to backfat thickness and longissimus muscle area in five Chinese native cattle breeds. Afr. J. Biotechnol. 10: 2820-2824. Wheeler TL, Koohmaraie M, Cundiff LV and Dikeman ME (1994). Effects of cooking and shearing methodology on variation in Warner-Bratzler shear force values in beef. J. Anim. Sci. 72: 2325-2330. PMid:8002450 Wyszynska-Koko J, Pierzchala M, Flisikowski K, Kamyczek M, et al. (2006). Polymorphisms in coding and regulatory regions of the porcine MYF6 and MYOG genes and expression of the MYF6 gene in m. longissimus dorsi versus productive traits in pigs. J. Appl. Genet. 47: 131-138. http://dx.doi.org/10.1007/BF03194612 PMid:16682754 Zhang RF, Chen H, Lei CZ, Zhang CL, et al. (2007). Association between polymorphisms of MSTN and MYF5 genes and growth traits in three Chinese cattle breeds. Asian Australas. J. Anim. Sci. 20: 1798-1804. Zhong X, Zan LS, Wang HB and Liu YF (2010). Polymorphic CA microsatellites in the third exon of the bovine BMP4 gene. Genet. Mol. Res. 9: 868-874. http://dx.doi.org/10.4238/vol9-2gmr732 PMid:20467979
J. A. Ujan, Zan, L. S., Wang, H. B., Ujan, S. A., Adoligbe, C., Wang, H. C., and Biao, S. F., Lack of an association between a single nucleotide polymorphism in the bovine myogenic determination 1 (MyoD1) gene and meat quality traits in indigenous Chinese cattle breeds, vol. 10, pp. 2213-2222, 2011.
Bhuiyan MSA, Kim NK, Cho YM, Yoon D, et al. (2009). Identification of SNPs in MYOD gene family and their associations with carcass traits in cattle. Livest. Sci. 126: 292-297. http://dx.doi.org/10.1016/j.livsci.2009.05.019 Carmo FMS, Guimarães SEF, Lopes PS, Pires AV, et al. (2005). Association of MYF5 gene allelic variants with production traits in pigs. Genet. Mol. Biol. 28: 363-369. http://dx.doi.org/10.1590/S1415-47572005000300004 Casas E, Shackelford SD, Keele JW, Koohmaraie M, et al. (2003). Detection of quantitative trait loci for growth and carcass composition in cattle. J. Anim. Sci. 81: 2976-2983. PMid:14677852 Cieslak D, Kapelanski W, Blicharski T and Pierzchala M (2000). Restriction fragment length polymorphisms in myogenin and myf3 genes and their influence on lean meat content in pigs. J. Anim. Breed. Genet. 117: 43-55. http://dx.doi.org/10.1046/j.1439-0388.2000.00209.x Cieslak D, Kuryl J, Kapelañski W, Pierzchala M, et al. (2002). A relationship between genotypes at MYOG, MYF3 and MYF5 loci and carcass meat and fat deposition traits in pigs. Anim. Sci. Pap. Rep. 20: 77-92. Estellé J, Gil F, Vázquez JM, Latorre R, et al. (2008). A QTL genome scan for porcine muscle fiber traits reveals over dominance and epistasis. J. Anim. Sci. 86: 3290-3299. http://dx.doi.org/10.2527/jas.2008-1034 PMid:18641172 Gilbert RP, Bailey DR and Shannon NH (1993). Linear body measurements of cattle before and after 20 years of selection for postweaning gain when fed two different diets. J. Anim. Sci. 71: 1712-1720. PMid:8349499 Humpolíček P, Urban T and Tvrdoň Z (2007). Relation of porcinemyogenin gene PCR/RFLP MspI and reproduction traits of the Czech Large White sows. Livest. Sci. 110: 288-291. http://dx.doi.org/10.1016/j.livsci.2007.02.015 Kapelanski W, Grajewska S, Kuryl J, Bocian M et al. (2005). Polymorphism in coding and non coding regions of the MYOD gene family and meat quality in pigs. Fol. Biol. 53: 45-49. http://dx.doi.org/10.3409/173491605775789506 Klosowska D and Fiedler I (2003). Muscle fiber types in pigs of different genotypes in relation to meat quality. Anim. Sci. Pap. Rep. 21 (Suppl 1): 49-60. Klosowska D, Kuryl J, Cieoelak D and Elminowska-Wenda G (2001). The relationship between polymorphisms in porcine MYOG, MYF-3 and MYF-5 genes and micro-structural characteristics of longissimus muscle - a preliminary study. In: 47th Intern. Congress of Meat Sci. Technology, Kraków, 142-143. Klosowska D, Kuryl J, Elminowska-Wenda G and Kapelanski W (2004). A relationship between the PCR-RFLP polymorphism in porcine MYOG, MYOD1 and MYF5 genes and microstructural characteristics of m. longissimus lumborum in Pietrain × (Polish Large White × Polish Landrace) crosses. Czech J. Anim. Sci. 49: 99-107. Knoll A, Nebola M, Dvorak J and Cepica S (1997). Detection of a DdeI PCR RFLP within intron 1 of the porcine MYOD1 (MYF3) locus. Anim. Genet. 28: 321. PMid:9345748 Kuryl J, Kapelañski W, Cieoelak D, Pierzchala M et al. (2002). Are polymorphisms in non-coding regions of porcine MyoD genes suitable for predicting meat and fat deposition in the carcass. Anim. Sci. Pap. Rep. 20: 245-254. Liu M, Peng J, Xu DQ, Zheng R, et al. (2008). Association of MYF5 and MYOD1 gene polymorphisms and meat quality traits in Large White x Meishan F2 pig populations. Biochem. Genet. 46: 720-732. http://dx.doi.org/10.1007/s10528-008-9187-1 PMid:18777094 MacNeil MD and Newman S (1994). Selection indices for Canadian beef production using specialized sire and dam lines. Can. J. Animal Sci. 74: 419-424. http://dx.doi.org/10.4141/cjas94-060 Nei M and Roychoudhury AK (1974). Sampling variances of heterozygosity and genetic distance. Genetics 76: 379-390. PMid:4822472    PMCid:1213072 Nei M and Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273. http://dx.doi.org/10.1073/pnas.76.10.5269 Noguera JL, Varona L, Gómez-Raya L, Sánchez A, et al. (2003). Estrogen receptor polymorphism in Landrace pigs and its association with litter size performance. Livest. Prod. Sci. 82: 53-59. http://dx.doi.org/10.1016/S0301-6226(03)00004-6 O’vilo C, Fernandez A, Rodriguez MC, Nieto M, et al. (2006). Association of MC4R gene variants with growth, fatness, carcass composition and meat and fat quality traits in heavy pigs. Meat Sci. 73: 42-47. http://dx.doi.org/10.1016/j.meatsci.2005.10.016 PMid:22062052 Pette D and Staron RS (1997). Mammalian skeletal muscle fiber type transitions. Int. Rev. Cytol. 170: 143-223. http://dx.doi.org/10.1016/S0074-7696(08)61622-8 Rexroad CE III, Bennett GL, Stone RT, Keele JW, et al. (2001). Comparative mapping of BTA15 and HSA11 including a region containing a QTL for meat tenderness. Mamm. Genome 12: 561-565. http://dx.doi.org/10.1007/s0033500-20028 Rudnicki MA, Schnegelsberg PN, Stead RH, Braun T, et al. (1993). MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 75: 1351-1359. http://dx.doi.org/10.1016/0092-8674(93)90621-V Sambrook J and Russell DW (2002). Translated by Huang, P. T. Molecular Cloning a Laboratory Manual. 3rd. edn. Science Press, Beijing. te Pas MF (2004). Candidate genes for meat production and meat quality: the MRF genes. Anim. Sci. Pap. Rep. 22: 115-118. te Pas MF and Visscher AH (1994). Genetic regulation of meat production by embryonic muscle formation - a review. J. Anim. Breed. Genet. 111: 404-412. http://dx.doi.org/10.1111/j.1439-0388.1994.tb00477.x PMid:21395789 te Pas MF, Devries AG and Visscher AH (1994). The MyoD gene Family and Meat Production - A Review. In: Proc. 40th Inter. Congress of Meat Sci. Technology, Hague, S-VII-08.1-6. te Pas MF, Harders FL, Soumillion A, Born L, et al. (1999a). Genetic variation at the porcine MYF-5 gene locus. Lack Of association with meat production traits. Mamm. Genome 10: 123-127. http://dx.doi.org/10.1007/s003359900956 te Pas MF, Soumillion A, Harders FL and Verburg FJ (1999b). Influences of Myogenin genotypes on birth weight, growth rate, carcass weight, backfat thickness, and lean weight of pigs. J. Anim. Sci. 77: 2352-2356. PMid:10492439 te Pas MF, Verburg FJ, Gerritsen CL and de Greef KH (2000). Messenger ribonucleic acid expression of the MyoD gene family in muscle tissue at slaughter in relation to selection for porcine growth rate. J. Anim. Sci. 78: 69-77. PMid:10682804 Van Wijk HJ, Arts DJ, Matthews JO, Webster M, et al. (2005). Genetic parameters for carcass composition and pork quality estimated in a commercial production chain 1. J. Anim. Sci. 83: 324-333. PMid:15644503 Verner J, Humpolicek P and Knoll A (2007). Impact of MYOD family genes on pork traits in Large White and Landrace pigs. J. Anim. Breed. Genet. 124: 81-85. http://dx.doi.org/10.1111/j.1439-0388.2007.00639.x PMid:17488358 Wojciech K, Salomea G, Jolanta K and Maria B (2005). Polymorphism in coding and non-coding regions of the MyoD gene family and meat quality in pigs. Fol. Biol. 53: 45-49. http://dx.doi.org/10.3409/173491605775789506 Wyszynska-Koko J, Pierzchala M, Flisikowski K, Kamyczek M, et al. (2006). Polymorphisms in coding and regulatory regions of the porcine MYF6 and MYOG genes and expression of the MYF6 gene in longissimus dorsi versus production traits in pigs. J. Appl.Genet. 47: 131-138. http://dx.doi.org/10.1007/BF03194612 PMid:16682754 Zhang C, Wang Y, Chen H, Lan X, et al. (2007). Enhance the efficiency of single-strand conformation polymorphism analysis by short polyacrylamide gel and modified silver staining. Anal. Biochem. 365: 286-287. http://dx.doi.org/10.1016/j.ab.2007.03.023 PMid:17449006
C. Adoligbe, Zan, L. S., Wang, H. B., and Ujjan, J. A., A novel polymorphism of the GDF10 gene and its association with body measurement traits in Chinese indigenous cattle, vol. 10, pp. 988-995, 2011.
Cunningham NS, Jenkins NA, Gilbert DJ, Copeland NG, et al. (1995). Growth/differentiation factor-10: a new member of the transforming growth factor-beta superfamily related to bone morphogenetic protein-3. Growth Factors 12: 99-109. doi:10.3109/08977199509028956 PMid:8679252 Galdones E and Hales BF (2008). Retinoic acid receptor gamma-induced misregulation of chondrogenesis in the murine limb bud in vitro. Toxicol. Sci. 106: 223-232. doi:10.1093/toxsci/kfn169 PMid:18703560 Gilbert RP, Bailey DR and Shannon NH (1993). Linear body measurements of cattle before and after 20 years of selection for postweaning gain when fed two different diets. J. Anim. Sci. 71: 1712-1720. PMid:8349499 Hino J, Takao M, Takeshita N, Konno Y, et al. (1996). cDNA cloning and genomic structure of human bone morphogenetic protein-3B (BMP-3b). Biochem. Biophys. Res. Commun. 223: 304-310. doi:10.1006/bbrc.1996.0889 PMid:8670277 Hino J, Matsuo H and Kangawa K (1999). Bone morphogenetic protein-3b (BMP-3b) gene expression is correlated with differentiation in rat calvarial osteoblasts. Biochem. Biophys. Res. Commun. 256: 419-424. doi:10.1006/bbrc.1999.0341 PMid:10079200 Hino J, Kangawa K, Matsuo H, Nohno T, et al. (2004). Bone morphogenetic protein-3 family members and their biological functions. Front. Biosci. 9: 1520-1529. doi:10.2741/1355 PMid:14977563 Komar AA (2007). Silent SNPs: impact on gene function and phenotype. Pharmacogenomics. 8: 1075-1080. doi:10.2217/14622416.8.8.1075 PMid:17716239 Kurland CG (1991). Codon bias and gene expression. FEBS Lett. 285: 165-169. doi:10.1016/0014-5793(91)80797-7 Liu YF, Zan LS, Li K, Zhao SP, et al. (2010). A novel polymorphism of GDF5 gene and its association with body measurement traits in Bos taurus and Bos indicus breeds. Mol. Biol. Rep. 37: 429-434. doi:10.1007/s11033-009-9604-5 PMid:19590978 Nei M and Roychoudhury AK (1974). Sampling variances of heterozygosity and genetic distance. Genetics 76: 379-390. PMid:4822472    PMCid:1213072 Nei M and Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273. doi:10.1073/pnas.76.10.5269 Sambrook J and Russell DW (2002). Molecular Cloning: A Laboratory Manual, 3rd edn. Science Press, Beijing. Shah JH, Maguire DJ, Munce TB and Cotterill A (2008). Alanine in HI: a silent mutation cries out! Adv. Exp. Med. Biol. 614: 145-150. doi:10.1007/978-0-387-74911-2_17 PMid:18290324 Takao M, Hino J, Takeshita N, Konno Y, et al. (1996). Identification of rat bone morphogenetic protein-3b (BMP-3b), a new member of BMP-3. Biochem. Biophys. Res. Commun. 219: 656-662. doi:10.1006/bbrc.1996.0289 PMid:8605043 Wozney JM, Rosen V, Celeste AJ, Mitsock LM, et al. (1988). Novel regulators of bone formation: molecular clones and activities. Science 242: 1528-1534. doi:10.1126/science.3201241 PMid:3201241 Zhang C, Wang Y, Chen H, Lan X, et al. (2007). Enhance the efficiency of single-strand conformation polymorphism analysis by short polyacrylamide gel and modified silver staining. Anal. Biochem. 365: 286-287. doi:10.1016/j.ab.2007.03.023 PMid:17449006 Zhao R, Lawler AM and Lee SJ (1999). Characterization of GDF-10 expression patterns and null mice. Dev. Biol. 212: 68-79. doi:10.1006/dbio.1999.9326 PMid:10419686 Zhong X, Zan LS, Wang HB and Liu YF (2010). Polymorphic CA microsatellites in the third exon of the bovine BMP4 gene. Genet. Mol. Res. 9: 868-874. doi:10.4238/vol9-2gmr732 PMid:20467979