Publications

Found 12 results
Filters: Author is S.W. Zhu  [Clear All Filters]
2011
Z. X. Chu, Ma, Q., Lin, Y. X., Tang, X. L., Zhou, Y. Q., Zhu, S. W., Fan, J., and Cheng, B. J., Genome-wide identification, classification, and analysis of two-component signal system genes in maize, vol. 10, pp. 3316-3330, 2011.
Aoyama T and Oka A (2003). Cytokinin signal transduction in plant cells. J. Plant Res. 116: 221-231. http://dx.doi.org/10.1007/s10265-003-0094-6 PMid:12836044   Asakura Y, Hagino T, Ohta Y, Aoki K, et al. (2003). Molecular characterization of His-Asp phosphorelay signaling factors in maize leaves: implications of the signal divergence by cytokinin-inducible response regulators in the cytosol and the nuclei. Plant Mol. Biol. 52: 331-341. http://dx.doi.org/10.1023/A:1023971315108 PMid:12856940   Bailey TL, Williams N, Misleh C and Li WW (2006). MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res. 34: W369-W373. http://dx.doi.org/10.1093/nar/gkl198 PMid:16845028 PMCid:1538909   Brandstatter I and Kieber JJ (1998). Two genes with similarity to bacterial response regulators are rapidly and specifically induced by cytokinin in Arabidopsis. Plant Cell 10: 1009-1019. PMid:9634588 PMCid:144033   D'Agostino IB and Kieber JJ (1999). Phosphorelay signal transduction: the emerging family of plant response regulators. Trends Biochem. Sci. 24: 452-456. http://dx.doi.org/10.1016/S0968-0004(99)01465-6   D'Agostino IB, Deruere J and Kieber JJ (2000). Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiol. 124: 1706-1717. http://dx.doi.org/10.1104/pp.124.4.1706 PMid:11115887 PMCid:59868   Du L, Jiao F, Chu J, Jin G, et al. (2007). The two-component signal system in rice (Oryza sativa L.): a genome-wide study of cytokinin signal perception and transduction. Genomics 89: 697-707. http://dx.doi.org/10.1016/j.ygeno.2007.02.001 PMid:17408920   Forde BG (2002). Local and long-range signaling pathways regulating plant responses to nitrate. Annu. Rev. Plant Biol. 53: 203-224. http://dx.doi.org/10.1146/annurev.arplant.53.100301.135256 PMid:12221973   Grefen C and Harter K (2004). Plant two-component systems: principles, functions, complexity and cross talk. Planta 219: 733-742. http://dx.doi.org/10.1007/s00425-004-1316-4 PMid:15232695   Gu Z, Cavalcanti A, Chen FC, Bouman P, et al. (2002). Extent of gene duplication in the genomes of Drosophila, nematode, and yeast. Mol. Biol. Evol. 19: 256-262. http://dx.doi.org/10.1093/oxfordjournals.molbev.a004079 PMid:11861885   Hass C, Lohrmann J, Albrecht V, Sweere U, et al. (2004). The response regulator 2 mediates ethylene signalling and hormone signal integration in Arabidopsis. EMBO J. 23: 3290-3302. http://dx.doi.org/10.1038/sj.emboj.7600337 PMid:15282545 PMCid:514511   Hutchison CE and Kieber JJ (2002). Cytokinin signaling in Arabidopsis. Plant Cell 14: S47-S59. PMid:12045269 PMCid:151247   Hwang I and Sheen J (2001). Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413: 383-389. http://dx.doi.org/10.1038/35096500 PMid:11574878   Hwang I, Chen HC and Sheen J (2002). Two-component signal transduction pathways in Arabidopsis. Plant Physiol. 129: 500-515. http://dx.doi.org/10.1104/pp.005504 PMid:12068096 PMCid:161668   Ildoo H, Huei-Chi C and Jen S (2002). Two-component signal transduction pathways in Arabidopsis. Plant Physiol. 129: 500-515. http://dx.doi.org/10.1104/pp.005504 PMid:12068096 PMCid:161668   Inoue T, Higuchi M, Hashimoto Y, Seki M, et al. (2001). Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 409: 1060-1063. http://dx.doi.org/10.1038/35059117 PMid:11234017   Lohrmann J, Buchholz G, Keitel C, Sweere U, et al. (1999). Differential expression and nuclear localization of response regulator-like proteins from Arabidopsis thaliana. Plant Biol. 1: 495-505. http://dx.doi.org/10.1111/j.1438-8677.1999.tb00775.x   Lohrmann J, Sweere U, Zabaleta E, Baurle I, et al. (2001). The response regulator ARR2: a pollen-specific transcription factor involved in the expression of nuclear genes for components of mitochondrial complex I in Arabidopsis. Mol. Genet. Genomics 265: 2-13. http://dx.doi.org/10.1007/s004380000400 PMid:11370868   Mahonen AP, Bonke M, Kauppinen L, Riikonen M, et al. (2000). A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes Dev. 14: 2938-2943. http://dx.doi.org/10.1101/gad.189200 PMid:11114883 PMCid:317089   Martín AC, del Pozo JC, Iglesias J, Rubio V, et al. (2000). Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis. Plant J. 24: 559-567. http://dx.doi.org/10.1046/j.1365-313x.2000.00893.x PMid:11123795   Mason MG, Mathews DE, Argyros DA, Maxwell BB, et al. (2005). Multiple type-B response regulators mediate cytokinin signal transduction in Arabidopsis. Plant Cell 17: 3007-3018. http://dx.doi.org/10.1105/tpc.105.035451 PMid:16227453 PMCid:1276026   Mok DW and Mok MC (2001). Cytokinin metabolism and action. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 89-118. http://dx.doi.org/10.1146/annurev.arplant.52.1.89 PMid:11337393   Pischke MS, Jones LG, Otsuga D, Fernandez DE, et al. (2002). An Arabidopsis histidine kinase is essential for megagametogenesis. Proc. Natl. Acad. Sci. U. S. A. 99: 15800-15805. http://dx.doi.org/10.1073/pnas.232580499 PMid:12426401 PMCid:137796   Riechmann JL, Heard J, Martin G, Reuber L, et al. (2000). Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290: 2105-2110. http://dx.doi.org/10.1126/science.290.5499.2105 PMid:11118137   Riefler M, Novak O, Strnad M and Schmulling T (2006). Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18: 40-54. http://dx.doi.org/10.1105/tpc.105.037796 PMid:16361392 PMCid:1323483   Romanov GA, Kieber JJ and Schmulling T (2002). A rapid cytokinin response assay in Arabidopsis indicates a role for phospholipase D in cytokinin signalling. FEBS Lett. 515: 39-43. http://dx.doi.org/10.1016/S0014-5793(02)02415-8   Sakai H, Aoyama T and Oka A (2000). Arabidopsis ARR1 and ARR2 response regulators operate as transcriptional activators. Plant J. 24: 703-711. http://dx.doi.org/10.1046/j.1365-313x.2000.00909.x PMid:11135105   Schaller GE, Mathews DE, Gribskov M and Walker JC (2002). Two-Component Signalling Elements and Histidyl-Aspartyl Phosphorelays. In: The Arabidopsis book American Society of Plant Biologists (Somerville C and Meyerowitz E, eds.). DOI/10.1199/tab.0086, Available at [http:/www.aspb.org/publications/Arabidopsis]. Accessed...... Schnable PS, Ware D, Fulton RS, Stein JC, et al. (2009). The B73 maize genome: complexity, diversity, and dynamics. Science 326: 1112-1115.   Stock AM, Robinson VL and Goudreau PN (2000). Two-component signal transduction. Annu. Rev. Biochem. 69: 183-215. http://dx.doi.org/10.1146/annurev.biochem.69.1.183 PMid:10966457   Suzuki T, Miwa K, Ishikawa K, Yamada H, et al. (2001). The Arabidopsis sensor His-kinase, AHk4, can respond to cytokinins. Plant Cell Physiol. 42: 107-113. http://dx.doi.org/10.1093/pcp/pce037 PMid:11230563   Thomason P and Kay R (2000). Eukaryotic signal transduction via histidine-aspartate phosphorelay. J. Cell Sci. 113: 3141-3150. PMid:10954413   Thompson JD, Higgins DG and Gibson TJ (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. http://dx.doi.org/10.1093/nar/22.22.4673 PMid:7984417 PMCid:308517   To JP, Haberer G, Ferreira FJ, Deruere J, et al. (2004). Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell 16: 658-671. http://dx.doi.org/10.1105/tpc.018978 PMid:14973166 PMCid:385279   Ueguchi C, Koizumi H, Suzuki T and Mizuno T (2001). Novel family of sensor histidine kinase genes in Arabidopsis thaliana. Plant Cell Physiol. 42: 231-235. http://dx.doi.org/10.1093/pcp/pce015 PMid:11230578   Urao T, Yakubov B, Yamaguchi-Shinozaki K and Shinozaki K (1998). Stress-responsive expression of genes for two-component response regulator-like proteins in Arabidopsis thaliana. FEBS Lett. 427: 175-178. http://dx.doi.org/10.1016/S0014-5793(98)00418-9   West AH and Stock AM (2001). Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem. Sci. 26: 369-376. http://dx.doi.org/10.1016/S0968-0004(01)01852-7   Yamada S and Shiro Y (2008). Structural basis of the signal transduction in the two-component system. Adv. Exp. Med. Biol. 631: 22-39. http://dx.doi.org/10.1007/978-0-387-78885-2_3 PMid:18792680   Yang S, Zhang X, Yue JX, Tian D, et al. (2008). Recent duplications dominate NBS-encoding gene expansion in two woody species. Mol. Genet. Genomics 280: 187-198. http://dx.doi.org/10.1007/s00438-008-0355-0 PMid:18563445   Yonekura-Sakakibara K, Kojima M, Yamaya T and Sakakibara H (2004). Molecular characterization of cytokinin-responsive histidine kinases in maize. Differential ligand preferences and response to cis-zeatin. Plant Physiol. 134: 1654-1661. http://dx.doi.org/10.1104/pp.103.037176 PMid:15064375 PMCid:419839
X. Y. Li, Zhang, J. L., and Zhu, S. W., Improved thermostable α-amylase activity of Bacillus amyloliquefaciens by low-energy ion implantation, vol. 10, pp. 2181-2189, 2011.
Asghari SM,Khajeh K,Ranjbar B,Sajedi RH,et al. (2004). Comparative studies on trifluoroethanol (TFE) state of a thermophilic alpha-amylase and its mesophilic counterpart: limited proteolysis, conformational analysis, aggregation and reactivation of the enzymes. Int. J. Biol. Macromol. 34: 173-179. http://dx.doi.org/10.1016/j.ijbiomac.2004.03.006 PMid:15225989 Azad MA, Bae JH, Kim JS, Lim JK, et al. (2009). Isolation and characterization of a novel thermostable alpha-amylase from Korean pine seeds. N. Biotechnol. 26: 143-149. http://dx.doi.org/10.1016/j.nbt.2009.09.006 PMid:19772955 Declerck N, Machius M, Wiegand G, Huber R, et al. (2000). Probing structural determinants specifying high thermostability in Bacillus licheniformis alpha-amylase. J. Mol. Biol. 301: 1041-1057. http://dx.doi.org/10.1006/jmbi.2000.4025 PMid:10966804 Dong Y,Liu Y,Chen Y,Niu D,et al. (2008). Purification and characterization of thermostable amylases from two bacterial species. Wei Sheng Wu Xue Bao 48: 169-175. PMid:18437997 Du BB, Hao S, Li YM, Yue LL, et al. (2006). Expression of a thermostable a-amylase mutant into Escherichia coli and Pichia pastoris. Wei Sheng Wu Xue Bao 46: 827-830. PMid:17172038 Fielden MR, Matthews JB, Fertuck KC, Halgren RG, et al. (2002). In silico approaches to mechanistic and predictive toxicology: an introduction to bioinformatics for toxicologists. Crit. Rev. Toxicol. 32: 67-112. http://dx.doi.org/10.1080/20024091064183 PMid:11951993 Fondy BR, Geiger DR and Servaites JC (1989). Photosynthesis, carbohydrate metabolism, and export in Beta vulgaris L. and Phaseolus vulgaris L. during square and sinusoidal light regimes. Plant Physiol. 89: 396-402. http://dx.doi.org/10.1104/pp.89.2.396 PMid:16666555    PMCid:1055853 Hoj PB,Hartman DJ,Morrice NA,Doan DN,et al. (1989). Purification of (1→3)-beta-glucan endohydrolase isoenzyme II from germinated barley and determination of its primary structure from a cDNA clone. Plant Mol. Biol. 13: 31-42. http://dx.doi.org/10.1007/BF00027333 Igarashi K, Hatada Y, Hagihara H, Saeki K, et al. (1998). Enzymatic properties of a novel liquefying alpha-amylase from an alkaliphilic Bacillus isolate and entire nucleotide and amino acid sequences. Appl. Environ. Microbiol. 64: 3282- 3289. PMid:9726872    PMCid:106722 Khemakhem B, Ali MB, Aghajari N, Juy M, et al. (2009). Engineering of the alpha-amylase from Geobacillus stearothermophilus US100 for detergent incorporation. Biotechnol. Bioeng. 102: 380-389. http://dx.doi.org/10.1002/bit.22083 PMid:18951544 Kiefer J, Egenolf R and Ikpeme S (2002). Heavy ion-induced DNA double-strand breaks in yeast. Radiat. Res. 157: 141- 148. http://dx.doi.org/10.1667/0033-7587(2002)157[0141:HIIDDS]2.0.CO;2 Kim YW, Choi JH, Kim JW, Park C, et al. (2003). Directed evolution of Thermus maltogenic amylase toward enhanced thermal resistance. Appl. Environ. Microbiol. 69: 4866-4874. http://dx.doi.org/10.1128/AEM.69.8.4866-4874.2003 PMid:12902281    PMCid:169122 Li M, Wu YJ, Yu ZL, Sheng GP, et al. (2009). Enhanced nitrogen and phosphorus removal from eutrophic lake water by Ipomoea aquatica with low-energy ion implantation. Water Res. 43: 1247-1256. http://dx.doi.org/10.1016/j.watres.2008.12.013 PMid:19147171 Liu J, Li Q, Yu Y and Fang X (2003). Spectroscopic and electrochemical studies of DNA breakage induced by dopamine and copper ion. Anal. Sci. 19: 1099-1102. http://dx.doi.org/10.2116/analsci.19.1099 PMid:12945659 Machius M, Wiegand G and Huber R (1995). Crystal structure of calcium-depleted Bacillus licheniformis alpha-amylase at 2.2 A resolution. J. Mol. Biol. 246: 545-559. http://dx.doi.org/10.1006/jmbi.1994.0106 PMid:7877175 Mollania N,Khajeh K,Hosseinkhani S and Dabirmanesh B (2010). Purification and characterization of a thermostable phytate resistant alpha-amylase from Geobacillus sp. LH8. Int. J. Biol. Macromol. 46: 27-36. http://dx.doi.org/10.1016/j.ijbiomac.2009.10.010 PMid:19874846 Nordhoff E, Cramer R, Karas M, Hillenkamp F, et al. (1993). Ion stability of nucleic acids in infrared matrix-assisted laser desorption/ionization mass spectrometry. Nucleic Acids Res. 21: 3347-3357. http://dx.doi.org/10.1093/nar/21.15.3347 PMid:7688451    PMCid:331430 Okita TW, Greenberg E, Kuhn DN and Preiss J (1979). Subcellular localization of the starch degradative and biosynthetic enzymes of spinach leaves. Plant Physiol. 64: 187-192. http://dx.doi.org/10.1104/pp.64.2.187 PMid:16660929    PMCid:543051 Sandstrom BE, Granstrom M and Marklund SL (1994). New roles for quin2: powerful transition-metal ion chelator that inhibits copper-, but potentiates iron-driven, Fenton-type reactions. Free Radic. Biol. Med. 16: 177-185. http://dx.doi.org/10.1016/0891-5849(94)90141-4 Shareghi B, Arabi M and Zargham M (2007). Denaturation of Bacillus amyloliquefaciens alpha-amylase with urea. Pak. J. Biol. Sci. 10: 3154-3157. http://dx.doi.org/10.3923/pjbs.2007.3154.3157 Tee BL and Kaletunc G (2009). Immobilization of a thermostable alpha-amylase by covalent binding to an alginate matrix increases high temperature usability. Biotechnol. Prog. 25: 436-445. http://dx.doi.org/10.1002/btpr.117 PMid:19353735 Xie C,Yao J,Pan R,Wu L,et al. (2003). Mutagenesis of ion beam implantation and identification of two newrifampicin resistance determining sites in rpoB gene in Escherichia coli. Wei Sheng Wu Xue Bao 43: 732-739. PMid:16276894 Yamate N and Yamazaki T (1999). Is the difference in alpha-amylase activity in the strains of Drosophila melanogaster with different allozymes due to transcriptional or posttranscriptional control? Biochem. Genet. 37: 345-356. http://dx.doi.org/10.1023/A:1018715528413 PMid:10690430
Y. Q. Tan, Xie, C. X., Jiang, H. Y., Ye, H., Xiang, Y., Zhu, S. W., and Cheng, B. J., Molecular mapping of genes for opposite leafing in maize using simple-sequence repeat markers, vol. 10, pp. 3472-3479, 2011.
Budak H, Shearman RC, Parmaksiz I and Dweikat I (2004). Comparative analysis of seeded and vegetative biotype buffalograsses based on phylogenetic relationship using ISSRs, SSRs, RAPDs, and SRAPs. Theor. Appl. Genet. 109: 280-288. http://dx.doi.org/10.1007/s00122-004-1630-z PMid:15024466   Cai LQ, Li Z and Zhu SW (2005). Analysis on heterosis and combining ability of yield characters in opposite maize. Acta Laser Biol. Sin. 14: 95-102.   Cai LQ, Cheng BJ and Li Z (2006). Analysis on heterosis and combining ability of grain quality characters in opposite maize. Acta Laser Biol. Sin. 15: 154-160.   Cai YP, Tao HZ and Cheng BJ (1992). Transpiration and photosynthetic characteristics of opposite maize. J. Anhui Agr. Univ. 23: 474-477.   Frary A, Xu Y, Liu J, Mitchell S, et al. (2005). Development of a set of PCR-based anchor markers encompassing the tomato genome and evaluation of their usefulness for genetics and breeding experiments. Theor. Appl. Genet. 111: 291-312. http://dx.doi.org/10.1007/s00122-005-2023-7 PMid:15926074   Galinat WC (1971). Genetic investigation of a novel mutant of maize. Annu. Rev. Genet. 5: 447-478. http://dx.doi.org/10.1146/annurev.ge.05.120171.002311 PMid:16097663   Giulini A, Wang J and Jackson D (2004). Control of phyllotaxy by the cytokinin-inducible response regulator homologue ABPHYL1. Nature 430: 1031-1034. http://dx.doi.org/10.1038/nature02778 PMid:15329722   Jackson D and Hake S (1999). Control of phyllotaxy in maize by the abphyl1 gene. Development 126: 315-323. PMid:9847245   Jackson D, Veit B and Hake S (1994). Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120: 405-413.   Kosambi DD (1944). The estimation of map distances from recombination values. Ann. Eugen. 12: 172-175.   Lander ES, Green P, Abrahamson J, Barlow A, et al. (1987). MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174-181. http://dx.doi.org/10.1016/0888-7543(87)90010-3   Lincoln S, Daly M and Lander E (1992). Constructing Genetic Maps with Mapmarker/Exp 3.0. Whitehead Institute Technical Reports. 3rd ed. Whitehead Institute, Cambridge.   Liu ZW, Biyashev RM and Saghai Maroof MA (1996). Development of simple sequence repeat markers and their integration into a barley linkage map. Theor. Appl. Genet. 93: 869-876. http://dx.doi.org/10.1007/BF00224088   Liu ZX, Wang SC, Dai JR, Huang LJ, et al. (2003). Studies of genetic analysis and SSR linked marker location of gene resistance to Southern rust in inbred line P25 of maize. Yi Chuan Xue Bao 30: 706-710. PMid:14682237   Lucey MJ, McColl SM and Manning FC (1997). Method to reduce the quantity of ethidium bromide required to stain DNA in agarose gels. Biotechniques 23: 780-782. PMid:9383534   McCouch SR, Kochert G, Yu ZH, Wang ZY, et al. (1988). Molecular mapping of rice chromosomes. Theor. Appl. Genet. 76: 815-829. http://dx.doi.org/10.1007/BF00273666   Mohammadi SA, Prasanna BM, Sudan C and Singh NN (2002). A microsatellite marker based study of chromosomal regions and gene effects on yield and yield components in maize. Cell Mol. Biol. Lett. 7: 599-606. PMid:12378265   Moore CWE (1964). Distribution of Grasslands. In: Grasses and Grasslands (Barnard C, ed.). Macmillan, London, 182- 205.   Ramsay L, Macaulay M, degli IS, MacLean K, et al. (2000). A simple sequence repeat-based linkage map of barley. Genetics 156: 1997-2005. PMid:11102390 PMCid:1461369   Selvi A, Nair NV, Balasundaram N and Mohapatra T (2003). Evaluation of maize microsatellite markers for genetic diversity analysis and fingerprinting in sugarcane. Genome 46: 394-403. http://dx.doi.org/10.1139/g03-018 PMid:12834055   Simcox KD and Bennetzen JL (1993). The use of molecular markers to study Setosphaeria turcica resistance in maize. Phytopathology 83: 1326-1330. http://dx.doi.org/10.1094/Phyto-83-1326   Xie CX, Zhu SW and Cheng BJ (2002). Obtaining of SCAR markers of two dominant genes for opposite leaves and fruits trait of Zea mays. High Technol. Lett. 8: 38-41.
2010
F. Deng, Zhu, S. W., Wu, L. J., and Cheng, B. J., Effects of low-energy argon ion implantation on the dynamic organization of the actin cytoskeleton during maize pollen germination, vol. 9, pp. 785-796, 2010.
Cai G, Moscatelli A and Cresti M (1997). Cytoskeletal organization and pollen tube growth. Trends Plant Sci. 2: 86-91. http://dx.doi.org/10.1016/S1360-1385(96)10057-1   Camacho L and Malho R (2003). Endo/exocytosis in the pollen tube apex is differentially regulated by Ca2+ and GTPases. J. Exp. Bot. 54: 83-92. http://dx.doi.org/10.1093/jxb/erg043 PMid:12456758   Cheung AY (1995). Pollen-pistil interactions in compatible pollination. Proc. Natl. Acad. Sci U. S. A. 92: 3077-3080. http://dx.doi.org/10.1073/pnas.92.8.3077 PMid:7724518 PMCid:42107   Franklin-Tong VE (1999). Signaling and the modulation of pollen tube growth. Plant Cell 11: 727-738. PMid:10213789 PMCid:144203   Franklin-Tong VE, Hackett G and Hepler PK (1997). Ratio-imaging of Ca2+i in the self-incompatibility response in pollen tubes of Papaver rhoeas. Plant J. 12: 1375-1386. http://dx.doi.org/10.1046/j.1365-313x.1997.12061375.x   Gibbon BC, Kovar DR and Staiger CJ (1999). Latrunculin B has different effects on pollen germination and tube growth. Plant Cell 11: 2349-2363. PMid:10590163 PMCid:144132   Heslop-Harrison J, Heslop-Harrison Y, Cresti M, Tiezzi A, et al. (1986). Actin during pollen germination. J. Cell Sci. 86: 1-8.   Huang Z, Yanping J, Guoli Z, Ting L, et al. (2001). Effects of nitrogen ion implantation on Ca2+ concentration and membrane potential of pollen cell. Chin. Sci. Bull. 46: 1692-1694. http://dx.doi.org/10.1007/BF02900653   Ikeda S, Nasrallah JB, Dixit R, Preiss S, et al. (1997). An aquaporin-like gene required for the Brassica self-incompatibility response. Science 276: 1564-1566. http://dx.doi.org/10.1126/science.276.5318.1564 PMid:9171060   Lazzaro MD, Cardenas L, Bhatt AP, Justus CD, et al. (2005). Calcium gradients in conifer pollen tubes; dynamic properties differ from those seen in angiosperms. J. Exp. Bot. 56: 2619-2628. http://dx.doi.org/10.1093/jxb/eri256 PMid:16118258   Li G, Huang Q, Yang L and Qin Q (2008). Ion implantation hampers pollen tube growth and disrupts actin cytoskeleton organization in pollen tubes of Pinus thunbergii. Plasma Sci. Technol. 10: 291-293.   Li Y, Yan LF and Xu SX (1998). Distribution of F-actin and microtubes in pollen and pollen tube of Lilium davidii. Acta Bot. Sin. 40: 890-894.   Li Y, Zee SY, Liu YM, Huang BQ, et al. (2001). Circular F-actin bundles and a G-actin gradient in pollen and pollen tubes of Lilium davidii. Planta 213: 722-730. http://dx.doi.org/10.1007/s004250100543 PMid:11678276   Lu T, Cao HM and Zhang RW (1995). Observing the effect of nitrogen ion implantation in seeds of lima bean on position annihilation. Mater. Sci. Forum 175-178: 447-448. http://dx.doi.org/10.4028/www.scientific.net/MSF.175-178.447   Mascarenhas JP (1993). Molecular mechanisms of pollen tube growth and differentiation. Plant Cell 5: 1303-1314. PMid:12271030 PMCid:160363   Samaj J, Muller J, Beck M, Bohm N, et al. (2006). Vesicular trafficking, cytoskeleton and signalling in root hairs and pollen tubes. Trends Plant Sci. 11: 594-600. http://dx.doi.org/10.1016/j.tplants.2006.10.002 PMid:17092761   Staiger CJ and Franklin-Tong VE (2003). The actin cytoskeleton is a target of the self-incompatibility response in Papaver rhoeas. J. Exp. Bot. 54: 103-113. http://dx.doi.org/10.1093/jxb/erg003 PMid:12456760   Steer MW and Steer JM (1989). Pollen tube tip growth. New Phytol. 111: 323-358. http://dx.doi.org/10.1111/j.1469-8137.1989.tb00697.x   Taylor LP and Hepler PK (1997). Pollen germination and tube growth. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 461-491. http://dx.doi.org/10.1146/annurev.arplant.48.1.461 PMid:15012271   Vidali L, McKenna ST and Hepler PK (2001). Actin polymerization is essential for pollen tube growth. Mol. Biol. Cell 12: 2534-2545. PMid:11514633 PMCid:58611   Wang X, Teng Y, Wang Q, Li X, et al. (2006). Imaging of dynamic secretory vesicles in living pollen tubes of Picea meyeri using evanescent wave microscopy. Plant Physiol. 141: 1591-1603. http://dx.doi.org/10.1104/pp.106.080168 PMid:16798949 PMCid:1533916   Wei Z, Han G, Zhou G, Li Q, et al. (1996). An important mechanism of crop breeding with ultralow energy ion injection. Acta Biophys. Sin. 12: 325.   Wheeler JM, Franklin-Tong VE and Franklin FCH (2001). The molecular and genetic basis of pollen-pistil interactions. New Phytol. 151: 565-584. http://dx.doi.org/10.1046/j.0028-646x.2001.00229.x   Wu LF, Li H and Yu ZL (1999). The application of ion beam in life science. Acta Laser Biol. Sin. 4: 299-310.   Yang HY (1999). The role of calcium in the fertilization process in flowering plants. Acta Bot. Sin. 41: 1027-1035.   Yu ZL (1999). Interaction between low energy ion and the complicated organism. Plasma Sci. Technol. 1: 79-85. http://dx.doi.org/10.1088/1009-0630/1/1/012   Yu ZL (2000). Ion beam application in genetic modification. IEEE T Plasma Sci. 28: 128-132. http://dx.doi.org/10.1109/27.842882   Yu ZL and Shao CL (1994). Dose-effect of the tyrosine sample implanted by a low energy N+ ion beam. Radiant. Phys. Chem. 43: 349-351. http://dx.doi.org/10.1016/0969-806X(94)90025-6   Zhu C, Li CG and Hu SY (1991). Visualization of actin filament patterns in pollen tubes of Hosta caerulea Tratt with a non-fixation and TRITC-phalloidin method. Acta Bot. Sin. 33: 1-6.
S. W. Zhu, Fang, Z. Y., Jiang, H. Y., and Cheng, B. J., Molecular and functional analysis of the poly-β-hydroxybutyrate biosynthesis operon of Pseudomonas sp BJ-1, vol. 9, pp. 2349-2356, 2010.
Agamuthu P and Faizura PN (2005). Biodegradability of degradable plastic waste. Waste Manag. Res. 23: 95-100. http://dx.doi.org/10.1177/0734242X05051045 PMid:15864950   Anton BP, Saleh L, Benner JS, Raleigh EA, et al. (2008). RimO, a MiaB-like enzyme, methylthiolates the universally conserved Asp88 residue of ribosomal protein S12 in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 105: 1826-1831. http://dx.doi.org/10.1073/pnas.0708608105 PMid:18252828 PMCid:2538847   Chien CC, Chen CC, Choi MH, Kung SS, et al. (2007). Production of poly-beta-hydroxybutyrate (PHB) by Vibrio spp. isolated from marine environment. J. Biotechnol. 132: 259-263. http://dx.doi.org/10.1016/j.jbiotec.2007.03.002 PMid:17416432   Haywood GW, Anderson AJ, Williams DR, Dawes EA, et al. (1991). Accumulation of a poly(hydroxyalkanoate) copolymer containing primarily 3-hydroxyvalerate from simple carbohydrate substrates by Rhodococcus sp. NCIMB 40126. Int. J. Biol. Macromol. 13: 83-88. http://dx.doi.org/10.1016/0141-8130(91)90053-W   Kaneko T, Thi TH, Shi DJ and Akashi M (2006). Environmentally degradable, high-performance thermoplastics from phenolic phytomonomers. Nat. Mater. 5: 966-970. http://dx.doi.org/10.1038/nmat1778 PMid:17128261   Kichise T, Fukui T, Yoshida Y and Doi Y (1999). Biosynthesis of polyhydroxyalkanoates (PHA) by recombinant Ralstonia eutropha and effects of PHA synthase activity on in vivo PHA biosynthesis. Int. J. Biol. Macromol. 25: 69-77. http://dx.doi.org/10.1016/S0141-8130(99)00017-3   Lee TR, Lin JS, Wang SS and Shaw GC (2004). PhaQ, a new class of poly-beta-hydroxybutyrate (phb)-responsive repressor, regulates phaQ and phaP (phasin) expression in Bacillus megaterium through interaction with PHB. J. Bacteriol. 186: 3015-3021. http://dx.doi.org/10.1128/JB.186.10.3015-3021.2004 PMid:15126462 PMCid:400616   Liu Q, Ouyang SP, Kim J and Chen GQ (2007). The impact of PHB accumulation on L-glutamate production by recombinant Corynebacterium glutamicum. J. Biotechnol. 132: 273-279. http://dx.doi.org/10.1016/j.jbiotec.2007.03.014 PMid:17555841   Matsusaki H, Abe H, Taguchi K, Fukui T, et al. (2000). Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant bacteria expressing the PHA synthase gene phaC1 from Pseudomonas sp. 61-3. Appl. Microbiol. Biotechnol. 53: 401-409. http://dx.doi.org/10.1007/s002530051633 PMid:10803895   Nikel PI, de Almeida A, Melillo EC, Galvagno MA, et al. (2006). New recombinant Escherichia coli strain tailored for the production of poly(3-hydroxybutyrate) from agroindustrial by-products. Appl. Environ. Microbiol. 72: 3949-3954. http://dx.doi.org/10.1128/AEM.00044-06 PMid:16751501 PMCid:1489613   Oeding V and Schlegel HG (1973). Beta-ketothiolase from Hydrogenomonas eutropha H16 and its significance in the regulation of poly-beta-hydroxybutyrate metabolism. Biochem. J. 134: 239-248. PMid:4198758 PMCid:1177804   Peralta-Gil M, Segura D, Guzman J, Servin-Gonzalez L, et al. (2002). Expression of the Azotobacter vinelandii poly-beta-hydroxybutyrate biosynthetic phbBAC operon is driven by two overlapping promoters and is dependent on the transcriptional activator PhbR. J. Bacteriol. 184: 5672-5677. http://dx.doi.org/10.1128/JB.184.20.5672-5677.2002 PMid:12270825 PMCid:139623   Seo MC, Shin HD and Lee YH (2003). Functional role of granule-associated genes, phaP and phaR, in poly-beta-hydroxybutyrate biosynthesis in recombinant E. coli harboring phbCAB operon. Biotechnol. Lett. 25: 1243-1249. http://dx.doi.org/10.1023/A:1025074926821 PMid:14514075   Steinbuchel A and Schlegel HG (1991). Physiology and molecular genetics of poly(beta-hydroxy-alkanoic acid) synthesis in Alcaligenes eutrophus. Mol. Microbiol. 5: 535-542. http://dx.doi.org/10.1111/j.1365-2958.1991.tb00725.x PMid:2046547   Takeda M, Kitashima K, Adachi K, Hanaoka Y, et al. (2000). Cloning and expression of the gene encoding thermostable poly(3-hydroxybutyrate) depolymerase. J. Biosci. Bioeng. 90: 416-421. PMid:16232882   Trainer MA and Charles TC (2006). The role of PHB metabolism in the symbiosis of rhizobia with legumes. Appl. Microbiol. Biotechnol. 71: 377-386. http://dx.doi.org/10.1007/s00253-006-0354-1 PMid:16703322   Uchino K and Saito T (2006). Thiolysis of poly(3-hydroxybutyrate) with polyhydroxyalkanoate synthase from Ralstonia eutropha. J. Biochem. 139: 615-621. http://dx.doi.org/10.1093/jb/mvj069 PMid:16567428   Uchino K, Saito T and Jendrossek D (2008). Poly(3-hydroxybutyrate) (PHB) depolymerase PhaZa1 is involved in mobilization of accumulated PHB in Ralstonia eutropha H16. Appl. Environ. Microbiol. 74: 1058-1063. http://dx.doi.org/10.1128/AEM.02342-07 PMid:18156336 PMCid:2258578   Wang C, Meek DJ, Panchal P, Boruvka N, et al. (2006). Isolation of poly-3-hydroxybutyrate metabolism genes from complex microbial communities by phenotypic complementation of bacterial mutants. Appl. Environ. Microbiol. 72: 384-391. http://dx.doi.org/10.1128/AEM.72.1.384-391.2006 PMid:16391068 PMCid:1352230   Yan S, Tyagi RD and Surampalli RY (2006). Polyhydroxyalkanoates (PHA) production using wastewater as carbon source and activated sludge as microorganisms. Water Sci. Technol. 53: 175-180. http://dx.doi.org/10.2166/wst.2006.193 PMid:16749455
F. Chen, Zhu, S. W., Xiang, Y., Jiang, H. Y., and Cheng, B. J., Molecular marker-assisted selection of the ae alleles in maize, vol. 9, pp. 1074-1084, 2010.
Campbell MR, Brumm TJ and Glover DV (1997). Whole grain amylase analysis in maize using near-infrared transmittance spectroscopy. Cereal Chem. 74: 300-303. http://dx.doi.org/10.1094/CCHEM.1997.74.3.300   Ciurczak EW (1995). Use of near infrared spectroscopy in cereal products. Food Test. Anal. 5: 35-39.   Collard BC and Mackill DJ (2008). Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 363: 557-572. http://dx.doi.org/10.1098/rstb.2007.2170 PMid:17715053 PMCid:2610170   Fergason V (1994). Specialty Corns. CRC Press, Boca Raton. PMid:7965894   Fisher DK, Gao M, Kim KN, Boyer CD, et al. (1996). Allelic analysis of the maize amylose-extender locus suggests that independent genes encode starch-branching enzymes IIa and IIb. Plant Physiol. 110: 611-619. PMid:12226207 PMCid:157757   Francia E, Tacconi G, Crosatti C, Barabaschi D, et al. (2005). Marker assisted selection in crop plants. Plant Cell Tissue Organ Cult. 82: 317-342. http://dx.doi.org/10.1007/s11240-005-2387-z   Frisch M and Melchinger AE (2005). Selection theory for marker-assisted backcrossing. Genetics 170: 909-917. http://dx.doi.org/10.1534/genetics.104.035451 PMid:15802512 PMCid:1450430   Kim KN, Fisher DK, Gao M and Guiltinan MJ (1998). Molecular cloning and characterization of the Amylose-Extender gene encoding starch branching enzyme IIB in maize. Plant Mol. Biol. 38: 945-956. http://dx.doi.org/10.1023/A:1006057609995 PMid:9869401   Lande R and Thompson R (1990). Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124: 743-756. PMid:1968875 PMCid:1203965   Leterrier M, Holappa LD, Broglie KE and Beckles DM (2008). Cloning, characterisation and comparative analysis of a starch synthase IV gene in wheat: functional and evolutionary implications. BMC Plant Biol. 8: 98. http://dx.doi.org/10.1186/1471-2229-8-98 PMid:18826586 PMCid:2576272   Martinez C and Prodolliet J (1996). Determination of amylose in cereal and non-cereal starches by a colorimetric assay: collaborative study. Starch 48: 81-85. http://dx.doi.org/10.1002/star.19960480302   Morrison WR and Laignet B (1983). An improved colorimetric procedure for determining apparent and total amylose in cereal and other starches. J. Cereal Sci. 1: 9-20. http://dx.doi.org/10.1016/S0733-5210(83)80004-6   Nishi A, Nakamura Y, Tanaka N and Satoh H (2001). Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm. Plant Physiol. 127: 459-472. http://dx.doi.org/10.1104/pp.010127 PMid:11598221 PMCid:125082   Orman BA and Schumann RA Jr (1991). Comparison of near-infrared spectroscopy calibration methods for the prediction of protein, oil, and starch in maize grain. J. Agric. Food Chem. 39: 883-886. http://dx.doi.org/10.1021/jf00005a015   Ribaut JM and Betrán J (1999). Single large-scale marker-assisted selection (SLS-MAS). Mol. Breed. 5: 531-541. http://dx.doi.org/10.1023/A:1009631718036   Rutenberg MW and Solarek D (1984). Starch: Chemistry and Technology. 2nd edn. Academic Press, Orlando.   Saghai Maroof MA, Biyashev RM, Yang GP, Zhang Q, et al. (1994). Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. Proc. Natl. Acad. Sci. U. S. A. 91: 5466-5470. http://dx.doi.org/10.1073/pnas.91.12.5466 PMid:8202509 PMCid:44016   Seetharaman K, Tziotis A, Borras F, White PJ, et al. (2001). Thermal and functional characterization of starch from Argentinean corn. Cereal Chem. 78: 379-386. http://dx.doi.org/10.1094/CCHEM.2001.78.4.379   Smith AM, Denyer K and Martin C (1997). The synthesis of the starch granule. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 67-87. http://dx.doi.org/10.1146/annurev.arplant.48.1.67 PMid:15012257   Sun C, Sathish P, Ahlandsberg S and Jansson C (1998). The two genes encoding starch-branching enzymes IIa and IIb are differentially expressed in barley. Plant Physiol. 118: 37-49. http://dx.doi.org/10.1104/pp.118.1.37 PMid:9733524 PMCid:34872   Van Berloo R and Stam P (2001). Simultaneous marker-assisted selection for multiple traits in autogamous crops. Theor. Appl. Genet. 102: 1107-1112. http://dx.doi.org/10.1007/s001220000518   Vineyard ML, Bear RP, MacMasters MM and Deatherage WL (1958). Development of "Amylosemaize" - corn hybrids with high amylose starch. Agron. J. 50: 595-598. http://dx.doi.org/10.2134/agronj1958.00021962005000100009x   Wang YJ, White P, Pollak L and Jane J (1993). Characterization of starch structures of 17 maize endosperm mutant genotypes with Oh43 inbred line background. Cereal Chem. 70: 171-179.   Whistler RL (1958). Amylose development and progress. Chemurgic Dig. 17: 38.   Wu Y, Campbell M, Yen Y, Wicks Z III, et al. (2009). Genetic analysis of high amylose content in maize (Zea mays L.) using a triploid endosperm model. Euphytica 166: 155-164. http://dx.doi.org/10.1007/s10681-008-9798-y   Yun SH and Matheson NK (1993). Structures of the amylopectins of waxy, normal, amylose-extender, and wx:ae genotypes and of the phytoglycogen of maize. Carbohydr. Res. 243: 307-321. http://dx.doi.org/10.1016/0008-6215(93)87035-Q