Publications

Found 74 results
Filters: Author is L. Zhang  [Clear All Filters]
2014
H. Zhang, Zhou, W. C., Li, X., Meng, W. B., Zhang, L., Zhu, X. L., Zhu, K. X., Bai, Z. T., Yan, J., Liu, T., Xu, X. C., and Li, Y. M., 5-Azacytidine suppresses the proliferation of pancreatic cancer cells by inhibiting the Wnt/β-catenin signaling pathway, vol. 13, pp. 5064-5072, 2014.
Q. J. Chao, Li, Y. D., Geng, X. X., Zhang, L., Dai, X., Zhang, X., Li, J., and Zhang, H. J., Complete mitochondrial genome sequence of Marmota himalayana (Rodentia: Sciuridae) and phylogenetic analysis within Rodentia, vol. 13, pp. 2739-2751, 2014.
X. Tang, Zou, D., Zhang, L., Yang, C., and Jiang, T., Difference between ferritin genes overexpressing in transgenic tobacco, vol. 13, pp. 3176-3185, 2014.
L. Zhang, Ying, S. J., An, W. J., Lian, H., Zhou, G. B., and Han, Z. Y., Effects of dietary betaine supplementation subjected to heat stress on milk performances and physiology indices in dairy cow, vol. 13, pp. 7577-7586, 2014.
L. Zhang, Sun, J., Zhang, J. Q., Yang, M., Bai, G., and Ma, X. L., Expression and significance of molecular biomarkers in esophageal carcinoma in different nationalities patients in Xinjiang, vol. 13, pp. 5413-5425, 2014.
X. P. Qiu, Zhang, L., Zeng, F. Y., Wen, Y., Li, C., Qiu, L. X., Cheng, D. X., and Wu, X. X., Genetic diversity of HLA-DRB1 alleles in the Tujia population of Wufeng, Hubei Province, China, vol. 13, pp. 4756-4765, 2014.
L. Zhang, Li, G., He, G. C., Zhu, L. L., Qin, R., and Jing, S. L., Isolation, characterization, and cross-transferability of microsatellite markers from the whitebacked planthopper (Sogatella furcifera), vol. 13, pp. 6248-6252, 2014.
Y. G. Wang, Zhang, L., Ji, X. H., Yan, J. F., Liu, Y. T., Lv, X. X., and Feng, H., Mapping of quantitative trait loci for the bolting trait in Brassica rapa under vernalizing conditions, vol. 13, pp. 3927-3939, 2014.
C. G. Xu, Hao, Y. Q., Zhang, L., Hao, R. X., Liu, X. L., and Huang, Z. Y., Molecular cloning and immune response analysis of putative variable lipoproteins from Mycoplasma mycoides subsp capri, vol. 13, pp. 1527-1539, 2014.
L. Zhang, Ma, W., Li, Y., Wu, J., and Shi, G. Y., Pharmacogenetics of DNA repair gene polymorphisms in non-small-cell lung carcinoma patients on platinum-based chemotherapy, vol. 13, pp. 228-236, 2014.
J. Li, Zhang, L., Xie, N. Z., Deng, B., Lv, L. X., and Zheng, L. Q., Relationship between the cholesterol ester transfer protein TaqIB polymorphism and the lipid-lowering effect of atorvastatin in patients with coronary atherosclerotic heart disease, vol. 13, pp. 2140-2148, 2014.
L. Xi, Fan, E., Zhao, Y., Li, Y., Zhang, Y., and Zhang, L., Role of aluminum adjuvant in producing an allergic rhinitis animal model, vol. 13, pp. 5173-5181, 2014.
L. Zhang, Hao, C. Q., Miao, L., and Dou, X. G., Role of Th1/Th2 cytokines in serum on the pathogenesis of chronic hepatitis C and the outcome of interferon therapy, vol. 13, pp. 9747-9755, 2014.
X. F. Lin, Han, Y. Q., Li, H. L., Zhao, Y. P., Fei, X. J., Sheng, J. X., Lu, H. H., Liu, S., and Zhang, L., SAHA attenuates sevoflurane-induced learning and memory impairments in fetal mice, vol. 13, pp. 10769-10778, 2014.
J. G. Ai, Zhao, F., Gao, Z. M., Dai, W., Zhang, L., Chen, H. B., and Zhou, J. G., Treatment of seawater immersion-complicated open-knee joint fracture, vol. 13, pp. 5523-5533, 2014.
2013
L. Zhang, Zhang, H. G., and Li, X. F., Analysis of genetic diversity in Larix gmelinii (Pinaceae) with RAPD and ISSR markers, vol. 12. pp. 196-207, 2013.
Bucci G, Vendramin GG, Lelli L and Vicario F (1997). Assessing the genetic divergence of Pinus leucodermis Ant. endangered populations: use of molecular markers for conservation purposes. Theor. Appl. Genet. 95: 1138-1146. http://dx.doi.org/10.1007/s001220050674   Changtragoon S (1995). Inheritance of isozyme phenotypes of Pinus merkusii. J. Trop. For. Sci. 8: 167-177.   Goto S, Thakur RC and Ishii K (1998). Determination of genetic stability in long-term micropropagated shoots of Pinus thunbergii Parl. using RAPD markers. Plant Cell Rep. 18: 193-197. http://dx.doi.org/10.1007/s002990050555   Labra M, Grassi F, Sgorbati S and Ferrari C (2006). Distribution of genetic variability in southern populations of Scots pine (Pinus sylvestris L.) from the Alps to the Pennines. Flora Morph. Distrib. Func. Ecol. Plants 201: 468-476. http://dx.doi.org/10.1016/j.flora.2005.10.004   Larionova AI, Iakhneva NV and Abaimov AP (2004). Genetic diversity and differentiation of Gmelin larch Larix gmelinii populations from Evenkia (Central Siberia). Genetika 40: 1370-1377. PMid:15575504   Lee SW, Ledig FT and Johnson DR (2002). Genetic variation at allozyme and RAPD markers in Pinus longaeva (Pinaceae) of the White Mountains, California. Am. J. Bot. 89: 566-577. http://dx.doi.org/10.3732/ajb.89.4.566 PMid:21665657   Li W (2004). Study on genetic diversity of Pinus sibirica du tour with ISSR-PCR. Northeast For. Univ.   Liu GF, Dong JX, Jiang Y, Lu YF, et al. (2005). Analysis of genetic relationship in 12 species of Section Strobus with ISSR markers. J. For. Res. 16: 213-215. http://dx.doi.org/10.1007/BF02856817   Majourhat K, Jabbar A, Hafidi A and Martínez-Gomez P (2008). Molecular characterization and genetic relationships among most common identified morphotypes of critically endangered rare Moroccan species Argania spinosa (Sapotaceae) using RAPD and SSR markers. Ann. For. Sci. 65: 805. http://dx.doi.org/10.1051/forest:2008069   Messaoud C, Afif M, Boulila A, Rejeb MN, et al. (2007). Genetic variation of Tunisian Myrtus communis L. (Myrtaceae) populations assessed by isozymes and RAPDs. Ann. For. Sci. 64: 845-853. http://dx.doi.org/10.1051/forest:2007061   Na D, Yang C and Jiang J (2006). Analysis on the genetic diversity of Larix gmelinii provenance by using ISSR markers. For. Sci. Tech. 31: 1-4.   Nei M and Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273. http://dx.doi.org/10.1073/pnas.76.10.5269 PMid:291943 PMCid:413122   Oreshkova NV, Larionova AY, Milyutin LI and Abaimov AP (2006). Genetic diversity structure and differentiation of Gmelin Larch (Larix gmelinii (Rupr.) Rupr.) populations from Central Evenkia and Eastern Zabaikalje. Eurasian J. For. Res. 9-1: 1-8.   Porebski S, Bailey LG and Baum BR (1997). Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol. Biol. Rep. 15: 8-15. http://dx.doi.org/10.1007/BF02772108   Raymond PG and Ledig FT (1982). Genetic diversity and population structure in pitch pine (Pinus rigida mill.). Evolution 36: 387-402. http://dx.doi.org/10.2307/2408058   Shahraji TR, Kazempour MN and Adbesh Z (2009). Genetic (RAPD) diversity in loblolly pine unknown provenance plantation in Iran. Indian J. Hortic. 66: 35-38.   Wang MB and Gao FQ (2009). Genetic variation in Chinese pine (Pinus tabulaeformis), a woody species endemic to China. Biochem. Genet. 47: 154-164. http://dx.doi.org/10.1007/s10528-009-9225-7 PMid:19169805   Xue X, Wang Y, Korpelainen H and Li C (2007). Genetic diversity of Picea asperata populations based on RAPDs. Plant Biol. 9: 101-108. http://dx.doi.org/10.1055/s-2006-924455 PMid:17006797   Yang CP, Jiang J, Tang SS, Li JY, et al. (2002). The provenance test of 21-year Old Larix gmelinii at Maoershan area. J. Northeast For. Univ. 30: 6.   Yeh FC, Yang R and Boyle T (1999). POPGENE, Version 1.31, Microsoft Window-Based Freeware for Population Genetic Analysis. Centre for International Forestry Research, University of Alberta and Tim Boyle. Available at [http://www.ualberta.ca/~fyeh/popgene.pdf]. Accessed August 30, 1999.   Zemanová E, Jirku M, Mauricio IL, Miles MA, et al. (2004). Genetic polymorphism within the Leishmania donovani complex: correlation with geographic origin. Am. J. Trop. Med. Hyg. 70: 613-617. PMid:15211001   Zhang HG, Wang H, Xiao Y and Zhang CF (2002). Population genetic diversity of Picea koraiensis with allozyme techniques. J. Northeast For. Univ. 30: 21-25.
C. H. Dong, Song, X. M., Zhang, L., Jiang, J. F., Zhou, J. P., and Jiang, Y. Q., New insights into the prolactin-RsaI (PRL-RsaI) locus in Chinese Holstein cows and its effect on milk performance traits, vol. 12, pp. 5766-5773, 2013.
X. M. Song, Zhang, L., Jiang, J. F., Shi, F. X., and Jiang, Y. Q., An SduI polymorphism at intron 20 of the Chinese Holstein cow STAT4 gene and its effect on milk performance traits, vol. 12, pp. 1593-1602, 2013.
2012
Z. W. Liu, Liu, J. L., An, Y., Zhang, L., and Wang, Y. M., Association between Ser311Cys polymorphism in the dopamine D2 receptor gene and schizophrenia risk: a meta-analysis in Asian populations, vol. 11, pp. 261-270, 2012.
Andreasen NC, Arndt S, Alliger R, Miller D, et al. (1995). Symptoms of schizophrenia. Methods, meanings, and mechanisms. Arch. Gen. Psychiatry 52: 341-351. http://dx.doi.org/10.1001/archpsyc.1995.03950170015003 PMid:7726714 Arinami T, Itokawa M, Enguchi H, Tagaya H, et al. (1994). Association of dopamine D2 receptor molecular variant with schizophrenia. Lancet 343: 703-704. http://dx.doi.org/10.1016/S0140-6736(94)91581-4 Arinami T, Itokawa M, Aoki J, Shibuya H, et al. (1996). Further association study on dopamine D2 receptor variant S311C in schizophrenia and affective disorders. Am. J. Med. Genet. 67: 133-138. http://dx.doi.org/10.1002/(SICI)1096-8628(19960409)67:2<133::AID-AJMG2>3.0.CO;2-T Chen CH, Chien SH and Hwu HG (1996). No association of dopamine D2 receptor molecular variant Cys311 and schizophrenia in Chinese patients. Am. J. Med. Genet. 67: 418-420. http://dx.doi.org/10.1002/(SICI)1096-8628(19960726)67:4<418::AID-AJMG19>3.0.CO;2-M Fan H, Zhang F, Xu Y, Huang X, et al. (2010). An association study of DRD2 gene polymorphisms with schizophrenia in a Chinese Han population. Neurosci. Lett. 477: 53-56. http://dx.doi.org/10.1016/j.neulet.2009.11.017 PMid:19913597 Fatemi SH and Folsom TD (2009). The neurodevelopmental hypothesis of schizophrenia, revisited. Schizophr. Bull 35: 528-548. http://dx.doi.org/10.1093/schbul/sbn187 PMid:19223657    PMCid:2669580 Fujiwara Y, Yamaguchi K, Tanaka Y, Tomita H, et al. (1997). Polymorphism of dopamine receptors and transporter genes in neuropsychiatric diseases. Eur. Neurol. 38 (Suppl 1): 6-10. http://dx.doi.org/10.1159/000113436 PMid:9276194 Glatt SJ, Faraone SV and Tsuang MT (2003). Meta-analysis identifies an association between the dopamine D2 receptor gene and schizophrenia. Mol. Psychiatry 8: 911-915. http://dx.doi.org/10.1038/sj.mp.4001321 PMid:14593428 Gupta M, Chauhan C, Bhatnagar P, Gupta S, et al. (2009). Genetic susceptibility to schizophrenia: role of dopaminergic pathway gene polymorphisms. Pharmacogenomics 10: 277-291. http://dx.doi.org/10.2217/14622416.10.2.277 PMid:19207030 Harano M (1997). Ser-311-Cys polymorphism of the dopamine D2 receptor gene and schizophrenia - an analysis of schizophrenic patients in Fukuoka. Kurume Med. J. 44: 201-208. http://dx.doi.org/10.2739/kurumemedj.44.201 PMid:9339651 Hattori M, Nanko S, Dai XY, Fukuda R, et al. (1994). Mismatch PCR RFLP detection of DRD2 Ser311Cys polymorphism and schizophrenia. Biochem. Biophys. Res. Commun. 202: 757-763. http://dx.doi.org/10.1006/bbrc.1994.1995 PMid:7914079 Higgins JP and Thompson SG (2002). Quantifying heterogeneity in a meta-analysis. Stat. Med. 21: 1539-1558. http://dx.doi.org/10.1002/sim.1186 PMid:12111919 Himei A, Koh J, Sakai J, Inada Y, et al. (2002). The influence on the schizophrenic symptoms by the DRD2Ser/Cys311 and -141C Ins/Del polymorphisms. Psychiatry Clin. Neurosci. 56: 97-102. http://dx.doi.org/10.1046/j.1440-1819.2002.00935.x PMid:11929577 Hori H, Ohmori O, Shinkai T, Kojima H, et al. (2001). Association analysis between two functional dopamine D2 receptor gene polymorphisms and schizophrenia. Am. J. Med. Genet. 105: 176-178. http://dx.doi.org/10.1002/ajmg.1196 PMid:11304833 Itokawa M, Arinami T, Futamura N, Hamaguchi H, et al. (1993). A structural polymorphism of human dopamine D2 receptor, D2(Ser311→Cys). Biochem. Biophys. Res. Commun. 196: 1369-1375. http://dx.doi.org/10.1006/bbrc.1993.2404 PMid:7902708 Jönsson EG, Sillen A, Vares M, Ekholm B, et al. (2003). Dopamine D2 receptor gene Ser311Cys variant and schizophrenia: association study and meta-analysis. Am. J. Med. Genet. B Neuropsychiatr. Genet. 119B: 28-34. http://dx.doi.org/10.1002/ajmg.b.20004 PMid:12707934 Kaneshima M, Higa T, Nakamoto H and Nagamine M (1997). An association study between the Cys311 variant of dopamine D2 receptor gene and schizophrenia in the Okinawan population. Psychiatry Clin. Neurosci. 51: 379-381. http://dx.doi.org/10.1111/j.1440-1819.1997.tb02603.x PMid:9472122 McGrath J, Saha S, Chant D and Welham J (2008). Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol. Rev. 30: 67-76. http://dx.doi.org/10.1093/epirev/mxn001 PMid:18480098 Morimoto K, Miyatake R, Nakamura M, Watanabe T, et al. (2002). Delusional disorder: molecular genetic evidence for dopamine psychosis. Neuropsychopharmacology 26: 794-801. http://dx.doi.org/10.1016/S0893-133X(01)00421-3 Nanko S, Hattori M, Dai XY, Fukuda R, et al. (1994). DRD2 Ser311/Cys311 polymorphism in schizophrenia. Lancet 343: 1044. http://dx.doi.org/10.1016/S0140-6736(94)90167-8 Ohara K, Nakamura Y, Xie DW, Ishigaki T, et al. (1996). Polymorphisms of dopamine D2-like (D2, D3, and D4) receptors in schizophrenia. Biol. Psychiatry 40: 1209-1217. http://dx.doi.org/10.1016/0006-3223(95)00673-7 Peters JL, Sutton AJ, Jones DR, Abrams KR, et al. (2006). Comparison of two methods to detect publication bias in meta-analysis. JAMA 295: 676-680. http://dx.doi.org/10.1001/jama.295.6.676 PMid:16467236 Sawa A and Snyder SH (2002). Schizophrenia: diverse approaches to a complex disease. Science 296: 692-695. http://dx.doi.org/10.1126/science.1070532 PMid:11976442 Seeman P (2010). Dopamine D2 receptors as treatment targets in schizophrenia. Clin. Schizophr. Relat. Psychoses 4: 56-73. http://dx.doi.org/10.3371/CSRP.4.1.5 Tanaka T, Igarashi S, Onodera O, Tanaka H, et al. (1996). Lack of association between dopamine D2 receptor gene Cys311 variant and schizophrenia. Am. J. Med. Genet. 67: 208-211. http://dx.doi.org/10.1002/(SICI)1096-8628(19960409)67:2<208::AID-AJMG12>3.0.CO;2-N Viechtbauer W (2007). Confidence intervals for the amount of heterogeneity in meta-analysis. Stat. Med. 26: 37-52. http://dx.doi.org/10.1002/sim.2514 PMid:16463355 Zhang Y, Bertolino A, Fazio L, Blasi G, et al. (2007). Polymorphisms in human dopamine D2 receptor gene affect gene expression, splicing, and neuronal activity during working memory. Proc. Natl. Acad. Sci. U. S. A. 104: 20552- 20557. http://dx.doi.org/10.1073/pnas.0707106104 PMid:18077373    PMCid:2154469 Zintzaras E and Ioannidis JP (2005). Heterogeneity testing in meta-analysis of genome searches. Genet. Epidemiol. 28: 123-137. http://dx.doi.org/10.1002/gepi.20048 PMid:15593093
L. Zhang, Li, D. Y., Liu, Y. P., Wang, Y., Zhao, X. L., and Zhu, Q., Genetic effect of the prolactin receptor gene on egg production traits in chickens, vol. 11, pp. 4307-4315, 2012.
Bole-Feysot C, Goffin V, Edery M, Binart N, et al. (1998). Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr. Rev. 19: 225-268. http://dx.doi.org/10.1210/er.19.3.225 PMid:9626554   Cogburn LA, Wang X, Carre W, Rejto L, et al. (2003). Systems-wide chicken DNA microarrays, gene expression profiling, and discovery of functional genes. Poult. Sci. 82: 939-951. PMid:12817449   Dunn IC, McEwan G, Okhubo T, Sharp PJ, et al. (1998). Genetic mapping of the chicken prolactin receptor gene: a candidate gene for the control of broodiness. Br. Poult. Sci. (39 Suppl): S23-S24. http://dx.doi.org/10.1080/00071669888160 PMid:10188027   Elkins PA, Christinger HW, Sandowski Y, Sakal E, et al. (2000). Ternary complex between placental lactogen and the extracellular domain of the prolactin receptor. Nat. Struct. Biol. 7: 808-815. http://dx.doi.org/10.1038/79047 PMid:10966654   Emsley A (1997). Integration of classical and molecular approaches of genetic selection: egg production. Poult. Sci. 76: 1127-1130. PMid:9251140   Fleenor D, Arumugam R and Freemark M (2006). Growth hormone and prolactin receptors in adipogenesis: STAT-5 activation, suppressors of cytokine signaling, and regulation of insulin-like growth factor I. Horm. Res. 66: 101-110. http://dx.doi.org/10.1159/000093667 PMid:16735796   Huang HY, Li SF, Zhao ZH, Liang Z, et al. (2011). Association of polymorphisms for nuclear receptor coactivator 1 gene with egg production traits in the maternal line of Shaobo hens. Br. Poult. Sci. 52: 328-332. http://dx.doi.org/10.1080/00071668.2011.577057 PMid:21732878   Huang Q, Fu YX and Boerwinkle E (2003). Comparison of strategies for selecting single nucleotide polymorphisms for case/control association studies. Hum. Genet. 113: 253-257. http://dx.doi.org/10.1007/s00439-003-0965-x PMid:12811538   Kanehisa M, Goto S, Kawashima S and Nakaya A (2002). The KEGG databases at GenomeNet. Nucleic Acids Res. 30: 42-46. http://dx.doi.org/10.1093/nar/30.1.42 PMid:11752249 PMCid:99091   Kelly PA, Binart N, Lucas B, Bouchard B, et al. (2001). Implications of multiple phenotypes observed in prolactin receptor knockout mice. Front. Neuroendocrinol. 22: 140-145. http://dx.doi.org/10.1006/frne.2001.0212 PMid:11259135   Kim MH, Seo DS and Ko Y (2004). Relationship between egg productivity and insulin-like growth factor-I genotypes in Korean native Ogol chickens. Poult. Sci. 83: 1203-1208. PMid:15285513   Kmiec M and Terman A (2006). Associations between the prolactin receptor gene polymorphism and reproductive traits of boars. J. Appl. Genet. 47: 139-141. http://dx.doi.org/10.1007/BF03194613 PMid:16682755   Kuhn M, von Mering C, Campillos M, Jensen LJ, et al. (2008). STITCH: interaction networks of chemicals and proteins. Nucleic Acids Res. 36: D684-D688. http://dx.doi.org/10.1093/nar/gkm795 PMid:18084021 PMCid:2238848   Lewis PD and Gous RM (2006). Effect of final photoperiod and twenty-week body weight on sexual maturity and early egg production in broiler breeders. Poult. Sci. 85: 377-383. PMid:16553263   Linville RC, Pomp D, Johnson RK and Rothschild MF (2001). Candidate gene analysis for loci affecting litter size and ovulation rate in swine. J. Anim. Sci. 79: 60-67. PMid:11204716   Lu A, Hu X, Chen H, Dong Y, et al. (2011). Novel SNPs of the bovine PRLR gene associated with milk production traits. Biochem. Genet. 49: 177-189. http://dx.doi.org/10.1007/s10528-010-9397-1 PMid:21165768   Luo PT, Yang RQ and Yang N (2007). Estimation of genetic parameters for cumulative egg numbers in a broiler dam line by using a random regression model. Poult. Sci. 86: 30-36. PMid:17179412   Nicoll CS, Mayer GL and Russell SM (1986). Structural features of prolactins and growth hormones that can be related to their biological properties. Endocr. Rev. 7: 169-203. http://dx.doi.org/10.1210/edrv-7-2-169 PMid:3013605   Orita M, Suzuki Y, Sekiya T and Hayashi K (1989). Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5: 874-879. http://dx.doi.org/10.1016/0888-7543(89)90129-8   Ou JT, Tang SQ, Sun DX and Zhang Y (2009). Polymorphisms of three neuroendocrine-correlated genes associated with growth and reproductive traits in the chicken. Poult. Sci. 88: 722-727. http://dx.doi.org/10.3382/ps.2008-00497 PMid:19276414   Rothschild MF and Soller M (1997). Candidate gene analysis to detect genes controlling traits of economic importance in domestic livestock. Probe 8: 13-20.   Sambrook J, Fritsch E and Maniatis T (1989). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York, 931-957.   Serrano AB, Haro JGH, Hori-Oshima S, Espinosa AG, et al. (2009). Prolactin receptor (Prlr) gen polymorphism and associations with reproductive traits in pigs. J. Anim. Vet. Adv. 8: 469-475.   Sinha YN (1995). Structural variants of prolactin: occurrence and physiological significance. Endocr. Rev. 16: 354-369. PMid:7671851   Stephens JC, Schneider JA, Tanguay DA, Choi J, et al. (2001). Haplotype variation and linkage disequilibrium in 313 human genes. Science 293: 489-493. http://dx.doi.org/10.1126/science.1059431 PMid:11452081   Thompson DL Jr, Hoffman R and DePew CL (1997). Prolactin administration to seasonally anestrous mares: reproductive, metabolic, and hair-shedding responses. J. Anim. Sci. 75: 1092-1099. PMid:9110225   Xiao L-H, Chen S-Y, Zhao X-L, Zhu Q, et al. (2011). Association of cellular retinol-binding protein 2 (Crbp2) gene polymorphism with egg production in erlang mountainous chicken. J. Poult. Sci. 48: 162-167. http://dx.doi.org/10.2141/jpsa.010099   Xu HP, Shen X, Zhou M, Fang MX, et al. (2010). The genetic effects of the dopamine D1 receptor gene on chicken egg production and broodiness traits. BMC Genet. 11: 17. http://dx.doi.org/10.1186/1471-2156-11-17 PMid:20199684 PMCid:2848132   Xu HP, Zeng H, Zhang DX, Jia XL, et al. (2011). Polymorphisms associated with egg number at 300 days of age in chickens. Genet. Mol. Res. 10: 2279-2289. http://dx.doi.org/10.4238/2011.October.3.5 PMid:22002122   Zhang W, Collins A and Morton NE (2004). Does haplotype diversity predict power for association mapping of disease susceptibility? Hum. Genet. 115: 157-164. http://dx.doi.org/10.1007/s00439-004-1122-x PMid:15221450   Zhu M and Zhao S (2007). Candidate gene identification approach: progress and challenges. Int. J. Biol. Sci. 3: 420-427. http://dx.doi.org/10.7150/ijbs.3.420 PMid:17998950 PMCid:2043166
Q. Shen, Chen, Y. F., Wang, T., Wu, S. Y., Lu, X., Zhang, L., Zhang, F. Y., Jiang, W. M., Wang, G. F., and Tang, K. X., Overexpression of the cytochrome P450 monooxygenase (cyp71av1) and cytochrome P450 reductase (cpr) genes increased artemisinin content in Artemisia annua (Asteraceae), vol. 11, pp. 3298-3309, 2012.
Abdin MZ, Israr M, Rehman RU and Jain SK (2003). Artemisinin, a novel antimalarial drug: biochemical and molecular approaches for enhanced production. Planta Med. 69: 289-299. http://dx.doi.org/10.1055/s-2003-38871 PMid:12709893   Aquil S, Husaini AM, Abdin MZ and Rather GM (2009). Overexpression of the HMG-CoA reductase gene leads to enhanced artemisinin biosynthesis in transgenic Artemisia annua plants. Planta Med. 75: 1453-1458. http://dx.doi.org/10.1055/s-0029-1185775 PMid:19551613   Arsenault PR, Vail D, Wobbe KK, Erickson K, et al. (2010). Reproductive development modulates gene expression and metabolite levels with possible feedback inhibition of artemisinin in Artemisia annua. Plant Physiol. 154: 958-968. http://dx.doi.org/10.1104/pp.110.162552 PMid:20724645 PMCid:2949044   Banyai W, Kirdmanee C, Mii M and Supaibulwatana K (2010). Overexpression of farnesyl pyrophosphate synthase (FPS) gene affected artemisinin content and growth of Artemisia annua L. Plant Cell Tiss Org. 103: 255-265. http://dx.doi.org/10.1007/s11240-010-9775-8   Bhattarai A, Ali AS, Kachur SP, Martensson A, et al. (2007). Impact of artemisinin-based combination therapy and insecticide-treated nets on malaria burden in Zanzibar. PLoS Med. 4: e309. http://dx.doi.org/10.1371/journal.pmed.0040309 PMid:17988171 PMCid:2062481   Chen DH and Ronald PC (1999). A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol. Biol. Rep. 17: 53-57. http://dx.doi.org/10.1023/A:1007585532036   Doyle JJ and Doyle JL (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11-15.   Duke MV, Paul RN, Elsohly HN, Sturtz G, et al. (1994). Localization of artemisinin and artemisitene in foliar tissues of glanded and glandless biotypes of Artemisia annua L. Int. J. Plant Sci. 155: 365-372. http://dx.doi.org/10.1086/297173   Graham IA, Besser K, Blumer S, Branigan CA, et al. (2010). The genetic map of Artemisia annua L. identifies loci affecting yield of the antimalarial drug artemisinin. Science 327: 328-331. http://dx.doi.org/10.1126/science.1182612 PMid:20075252   Han JL, Liu BY, Ye HC, Wang H, et al. (2006). Effects of overexpression of the endogenous farnesyl diphosphate synthase on the artemisinin content in Artemisia annua L. J. Integr. Plant Biol. 48: 482-487. http://dx.doi.org/10.1111/j.1744-7909.2006.00208.x   Liu B, Wang H, Du Z, Li G, et al. (2011). Metabolic engineering of artemisinin biosynthesis in Artemisia annua L. Plant Cell Rep. 30: 689-694. http://dx.doi.org/10.1007/s00299-010-0967-9 PMid:21184232   Livak KJ and Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method. Methods 25: 402-408. http://dx.doi.org/10.1006/meth.2001.1262 PMid:11846609   Maes L, Van Nieuwerburgh FC, Zhang Y, Reed DW, et al. (2011). Dissection of the phytohormonal regulation of trichome formation and biosynthesis of the antimalarial compound artemisinin in Artemisia annua plants. New Phytol. 189: 176-189. http://dx.doi.org/10.1111/j.1469-8137.2010.03466.x PMid:20874804   McCormick S, Niedermeyer J, Fry J, Barnason A, et al. (1986). Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Rep. 5: 81-84. http://dx.doi.org/10.1007/BF00269239   McNellis TW, von Arnim AG and Deng XW (1994). Overexpression of Arabidopsis COP1 results in partial suppression of light-mediated development: evidence for a light-inactivable repressor of photomorphogenesis. Plant Cell 6: 1391-1400. PMid:7994173 PMCid:160528   Murashige T and Skoog F (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15: 473-497. http://dx.doi.org/10.1111/j.1399-3054.1962.tb08052.x   Mutabingwa TK (2005). Artemisinin-based combination therapies (ACTs): best hope for malaria treatment but inaccessible to the needy! Acta Trop. 95: 305-315. http://dx.doi.org/10.1016/j.actatropica.2005.06.009 PMid:16098946   Nafis T, Akmal M, Ram M, Alam P, et al. (2011). Enhancement of artemisinin content by constitutive expression of the HMG-CoA reductase gene in high-yielding strain of Artemisia annua L. Plant Biotechnol. Rep. 5: 53-60. http://dx.doi.org/10.1007/s11816-010-0156-x   Napoli C, Lemieux C and Jorgensen R (1990). Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. Plant Cell 2: 279-289. PMid:12354959 PMCid:159885   Ohashi Y, Oka A, Ruberti I, Morelli G, et al. (2002). Entopically additive expression of GLABRA2 alters the frequency and spacing of trichome initiation. Plant J. 29: 359-369. http://dx.doi.org/10.1046/j.0960-7412.2001.01214.x PMid:11844112   Ram M, Khan MA, Jha P, Khan S, et al. (2010). HMG-CoA reductase limits artemisinin biosynthesis and accumulation in Artemisia annua L. plants. Acta Physiol. Plant. 32: 859-866. http://dx.doi.org/10.1007/s11738-010-0470-5   Ro DK, Paradise EM, Ouellet M, Fisher KJ, et al. (2006). Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440: 940-943. http://dx.doi.org/10.1038/nature04640 PMid:16612385   Stewart CN Jr and Via LE (1993). A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques 14: 748-750. PMid:8512694   Teoh KH, Polichuk DR, Reed DW, Nowak G, et al. (2006). Artemisia annua L. (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin. FEBS Lett. 580: 1411-1416. http://dx.doi.org/10.1016/j.febslet.2006.01.065 PMid:16458889   Teoh KH, Polichuk DR, Reed DW, Nowak G, et al. (2009). Molecular cloning of an aldehyde dehydrogenase implicated in artemisinin biosynthesis in Artemisia annua. Botany 87: 635-642. http://dx.doi.org/10.1139/B09-032   Yang RY, Feng LL, Yang XQ, Yin LL, et al. (2008). Quantitative transcript profiling reveals down-regulation of A sterol pathway relevant gene and overexpression of artemisinin biogenetic genes in transgenic Artemisia annua plants. Planta Med. 74: 1510-1516. http://dx.doi.org/10.1055/s-2008-1081333 PMid:18816428   Zeng QP, Zeng XM, Yin LL, Yang RY, et al. (2009). Quantification of Three Key Enzymes Involved in Artemisinin Biogenesis in Artemisia annua by Polyclonal Antisera-Based ELISA. Plant Mol. Biol. Rep. 27: 50-57. http://dx.doi.org/10.1007/s11105-008-0056-1   Zhang L, Ding R, Chai Y, Bonfill M, et al. (2004). Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures. Proc. Natl. Acad. Sci. U. S. A. 101: 6786-6791. http://dx.doi.org/10.1073/pnas.0401391101 PMid:15084741 PMCid:404123   Zhang L, Jing F, Li F, Li M, et al. (2009). Development of transgenic Artemisia annua (Chinese wormwood) plants with an enhanced content of artemisinin, an effective anti-malarial drug, by hairpin-RNA-mediated gene silencing. Biotechnol. Appl. Biochem. 52: 199-207. http://dx.doi.org/10.1042/BA20080068 PMid:18564056   Zhang Y, Teoh KH, Reed DW, Maes L, et al. (2008). The molecular cloning of artemisinic aldehyde Delta11(13) reductase and its role in glandular trichome-dependent biosynthesis of artemisinin in Artemisia annua. J. Biol. Chem. 283: 21501-21508. http://dx.doi.org/10.1074/jbc.M803090200 PMid:18495659
2011
Y. Y. Wang, Wang, Y. L., Li, H. P., Zhu, H. S., Jiang, Q. D., Zhang, L., Wang, L. F., Han, L. Q., Zhong, K., Guo, Y. J., Lu, W. F., Li, H. J., and Yang, G. Y., Leptin mRNA expression in the rat mammary gland at different activation stages, vol. 10, pp. 3657-3663, 2011.
Ahima RS and Flier JS (2000). Adipose tissue as an endocrine organ. Trends Endocrinol. Metab. 11: 327-332. http://dx.doi.org/10.1016/S1043-2760(00)00301-5   Amico JA, Thomas A, Crowley RS and Burmeister LA (1998). Concentrations of leptin in the serum of pregnant, lactating, and cycling rats and of leptin messenger ribonucleic acid in rat placental tissue. Life Sci. 63: 1387-1395. http://dx.doi.org/10.1016/S0024-3205(98)00405-6   Aoki N, Kawamura M and Matsuda T (1999). Lactation-dependent down regulation of leptin production in mouse mammary gland. Biochim. Biophys. Acta 1427: 298-306. http://dx.doi.org/10.1016/S0304-4165(99)00029-X   Baratta M, Grolli S and Tamanini C (2003). Effect of leptin in proliferating and differentiated HC11 mouse mammary cells. Regul. Pept. 113: 101-107. http://dx.doi.org/10.1016/S0167-0115(03)00006-5   Bartha T, Sayed-Ahmed A and Rudas P (2005). Expression of leptin and its receptors in various tissues of ruminants. Domest. Anim. Endocrinol. 29: 193-202. http://dx.doi.org/10.1016/j.domaniend.2005.03.010 PMid:15878255   Bonnet M, Gourdou I, Leroux C, Chilliard Y, et al. (2002). Leptin expression in the ovine mammary gland: putative sequential involvement of adipose, epithelial, and myoepithelial cells during pregnancy and lactation. J. Anim. Sci. 80: 723-728. PMid:11890408   Butte NF, Hopkinson JM, Mehta N, Moon JK, et al. (1999). Adjustments in energy expenditure and substrate utilization during late pregnancy and lactation. Am. J. Clin. Nutr. 69: 299-307. PMid:9989696   Clevenger CV and Plank TL (1997). Prolactin as an autocrine/paracrine factor in breast tissue. J. Mammary Gland. Biol. Neoplasia 2: 59-68. http://dx.doi.org/10.1023/A:1026325630359 PMid:10887520   Elias JJ, Pitelka DR and Armstrong RC (1973). Changes in fat cell morphology during lactation in the mouse. Anat. Rec. 177: 533-547. http://dx.doi.org/10.1002/ar.1091770407 PMid:4762729   Farooqi IS, Keogh JM, Kamath S, Jones S, et al. (2001). Partial leptin deficiency and human adiposity. Nature 414: 34-35. http://dx.doi.org/10.1038/35102112 PMid:11689931   Feuermann Y, Mabjeesh SJ and Shamay A (2004). Leptin affects prolactin action on milk protein and fat synthesis in the bovine mammary gland. J. Dairy Sci. 87: 2941-2946. http://dx.doi.org/10.3168/jds.S0022-0302(04)73425-6   Houseknecht KL, Baile CA, Matteri RL and Spurlock ME (1998). The biology of leptin: a review. J. Anim. Sci. 76: 1405- 1420. PMid:9621947   Hu X, Juneja SC, Maihle NJ and Cleary MP (2002). Leptin - a growth factor in normal and malignant breast cells and for normal mammary gland development. J. Natl. Cancer Inst. 94: 1704-1711. http://dx.doi.org/10.1093/jnci/94.22.1704 PMid:12441326   Jin LL, Zhang S, Burguera BG, Couce ME, et al. (2000). Leptin and leptin receptor expression in rat and mouse pituitary cells. Endocrinology 141: 333-339. http://dx.doi.org/10.1210/en.141.1.333 PMid:10614655   Lin Y and Li Q (2007). Expression and function of leptin and its receptor in mouse mammary gland. Sci. China C Life Sci. 50: 669-675. http://dx.doi.org/10.1007/s11427-007-0077-2 PMid:17879067   Malik NM, Carter ND, Murray JF, Scaramuzzi RJ, et al. (2001). Leptin requirement for conception, implantation, and gestation in the mouse. Endocrinology 142: 5198-5202. http://dx.doi.org/10.1210/en.142.12.5198 PMid:11713215   Mol JA, Lantinga-van L, I, van Garderen E and Rijnberk A (2000). Progestin-induced mammary growth hormone (GH) production. Adv. Exp. Med. Biol. 480: 71-76. http://dx.doi.org/10.1007/0-306-46832-8_8 PMid:10959411   Neville MC, McFadden TB and Forsyth I (2002). Hormonal regulation of mammary differentiation and milk secretion. J. Mammary Gland. Biol. Neoplasia 7: 49-66. http://dx.doi.org/10.1023/A:1015770423167 PMid:12160086   O'Brien SN, Welter BH and Price TM (1999). Presence of leptin in breast cell lines and breast tumors. Biochem. Biophys. Res. Commun. 259: 695-698. http://dx.doi.org/10.1006/bbrc.1999.0843 PMid:10364481   Sayed-Ahmed A, Kulcsar M, Rudas P and Bartha T (2004). Expression and localisation of leptin and leptin receptor in the mammary gland of the dry and lactating non-pregnant cow. Acta Vet. Hung. 52: 97-111. http://dx.doi.org/10.1556/AVet.52.2004.1.10 PMid:15119791   Smith-Kirwin SM, O'Connor DM, De JJ, Lancey ED, et al. (1998). Leptin expression in human mammary epithelial cells and breast milk. J. Clin. Endocrinol. Metab. 83: 1810-1813. http://dx.doi.org/10.1210/jc.83.5.1810 PMid:9589698   Smith JL and Sheffield LG (2002). Production and regulation of leptin in bovine mammary epithelial cells. Domest. Anim. Endocrinol. 22: 145-154. http://dx.doi.org/10.1016/S0739-7240(02)00121-2   Woodside B, Abizaid A and Walker C (2000). Changes in leptin levels during lactation: implications for lactational hyperphagia and anovulation. Horm. Behav. 37: 353-365. http://dx.doi.org/10.1006/hbeh.2000.1598 PMid:10860679   Zhang Y, Proenca R, Maffei M, Barone M, et al. (1994). Positional cloning of the mouse obese gene and its human homologue. Nature 372: 425-432. http://dx.doi.org/10.1038/372425a0 PMid:7984236
Y. L. Tang, Ren, W. W., Zhang, L., and Tang, K. X., Molecular cloning and characterization of a tocopherol cyclase gene from Lactuca sativa (Asteraceae), vol. 10, pp. 693-702, 2011.
Abbasi AR, Hajirezaei M, Hofius D, SonnewaldU, et al.(2007).Specific roles of alpha-andgamma-tocopherol in abiotic stress responses of transgenic tobacco. Plant Physiol. 143: 1720-1738. doi:10.1104/pp.106.094771 PMid:17293434    PMCid:1851823 Azzi A, Gysin R, Kempna P, Munteanu A, et al. (2004). Vitamin E mediates cell signaling and regulation of gene expression. Ann. N. Y. Acad. Sci. 1031: 86-95. doi:10.1196/annals.1331.009 PMid:15753136 Collin VC, Eymery F, Genty B, Rey P, et al. (2008). Vitamin E is essential for the tolerance of Arabidopsis thaliana to metal-induced oxidative stress. Plant Cell. Environ. 31: 244-257. PMid:17996014 DellaPenna D and Pogson BJ (2006). Vitamin synthesis in plants: tocopherols and carotenoids. Annu. Rev. Plant Biol. 57: 711-738. doi:10.1146/annurev.arplant.56.032604.144301 PMid:16669779 Geourjon C andDeleage G (1995).SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput. Appl. Biosci. 11: 681-684. PMid:8808585 Guo J, Liu X, Chen S, Jin Z, et al. (2006). Overexpression of VTE1 from Arabidopsis resulting in high vitamin E accumulation and salt stress tolerance increase in tobacco plant. J. Appl. Environ. Biol. 12: 468-471. Havaux M, Eymery F, Porfirova S, Rey P, et al.(2005).Vitamin E protects against photoinhibition andphotooxidative stress in Arabidopsis thaliana. Plant Cell. 17: 3451-3469. doi:10.1105/tpc.105.037036 PMid:16258032    PMCid:1315381 Kanwischer M, Porfirova S, Bergmuller E andDormann P (2005).Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. Plant Physiol. 137: 713-723. doi:10.1104/pp.104.054908 PMid:15665245    PMCid:1065371 Kumar R, Raclaru M, Schusseler T, Gruber J, et al. (2005). Characterisation of plant tocopherol cyclases and their overexpression in transgenic Brassica napus seeds. FEBS Lett. 579: 1357-1364. doi:10.1016/j.febslet.2005.01.030 PMid:15733841 Liu X, Hua X, Guo J, Qi D, et al. (2008). Enhanced tolerance to drought stress in transgenic tobacco plants overexpressing VTE1 for increased tocopherol production from Arabidopsis thaliana. Biotechnol. Lett. 30: 1275-1280. doi:10.1007/s10529-008-9672-y PMid:18317702 Munne-Bosch S, Schwarz K and Alegre L (1999). Enhanced formation of alpha-tocopherol and highly oxidized abietane diterpenes in water-stressed rosemary plants. Plant Physiol. 121: 1047-1052. doi:10.1104/pp.121.3.1047 PMid:10557254    PMCid:59469 Porfirova S, Bergmuller E, Tropf S, Lemke R, et al.(2002).Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis.Proc. Natl. Acad. Sci. U. S. A. 99: 12495-12500. doi:10.1073/pnas.182330899 PMid:12213958    PMCid:129473 Provencher LM, Miao L, Sinha N and Lucas WJ (2001). Sucrose export defective1 encodes a novel protein implicated in chloroplast-to-nucleus signaling. Plant Cell. 13: 1127-1141. PMid:11340186    PMCid:135566 Sattler SE, Cahoon EB, Coughlan SJ and DellaPenna D (2003). Characterization of tocopherol cyclases from higher plants and cyanobacteria. Evolutionary implications for tocopherol synthesis and function. Plant Physiol. 132: 2184-2195. doi:10.1104/pp.103.024257 PMid:12913173    PMCid:181302 Vidi PA, Kanwischer M, Baginsky S, Austin JR, et al. (2006). Tocopherol cyclase (VTE1) localization and vitamin E accumulation in chloroplast plastoglobule lipoprotein particles. J. Biol. Chem. 281: 11225-11234. doi:10.1074/jbc.M511939200 PMid:16414959 Yamaguchi-Shinozaki K and Shinozaki K (1994). A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell. 6: 251-264. PMid:8148648    PMCid:160431
Y. L. Tang, Ren, W. W., Zhang, L., and Tang, K. X., Molecular cloning and characterization of gene coding for γ-tocopherol methyltransferase from lettuce (Lactuca sativa), vol. 10. pp. 3204-3212, 2011.
Abbasi AR, Hajirezaei M, Hofius D, Sonnewald U, et al. (2007). Specific roles of α- and γ-tocopherol in abiotic stress responses of transgenic tobacco. Plant Physiol. 143: 1720-1738. http://dx.doi.org/10.1104/pp.106.094771 PMid:17293434    PMCid:1851823 Cho EA, Lee CA, Kim YS, Baek SH, et al. (2005). Expression of γ-tocopherol methyltransferase transgene improves tocopherol composition in lettuce (Latuca sativa L.). Mol. Cells 19: 16-22. PMid:15750335 Collin VC, Eymery F, Genty B, Rey P, et al. (2008). Vitamin E is essential for the tolerance of Arabidopsis thaliana to metal-induced oxidative stress. Plant Cell Environ. 31: 244-257. PMid:17996014 Geourjon C and Deléage G (1995). Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput. Appl. Biosci. 11: 681-684. PMid:8808585 Guo J, Liu X, Chen S and Jin Z (2006). Overexpression of VTE1 from Arabidopsis resulting in high vitamin E accumulation and salt stress tolerance increase in tobacco plant. J. Appl. Environ. Biol. 12: 468-471. Hare PD, Cress WA and Van Staden J (1998). Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ. 21: 535-553. http://dx.doi.org/10.1046/j.1365-3040.1998.00309.x Havaux M, Eymery F, Porfirova S, Rey P, et al. (2005). Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana. Plant Cell 17: 3451-3469. http://dx.doi.org/10.1105/tpc.105.037036 PMid:16258032    PMCid:1315381 Igamberdiev AU and Hill RD (2004). Nitrate, NO and haemoglobin in plant adaptation to hypoxia: an alternative to classic fermentation pathways. J. Exp. Bot. 55: 2473-2482. http://dx.doi.org/10.1093/jxb/erh272 PMid:15448180 Kiffin R, Bandyopadhyay U and Cuervo AM (2006). Oxidative stress and autophagy. Antioxid. Redox. Signal. 8: 152-162. http://dx.doi.org/10.1089/ars.2006.8.152 Kim YJ, Seo HY, Park TI and Baek SH (2005). Enhanced biosynthesis of α-tocopherol in transgenic soybean by introducing γ-TMT gene. J. Plant Biotechnol. 7: 203-209. Lee BK, Kim SL, Kim KH and Yu SH (2008). Seed specific expression of perilla γ-tocopherol methyltransferase gene increases α-tocopherol content in transgenic perilla (Perilla frutescens). Plant Cell Tissue Organ. Cult. 92: 47-54. http://dx.doi.org/10.1007/s11240-007-9301-9 Munne-Bosch S, Schwarz K and Alegre L (1999). Enhanced formation of alpha-tocopherol and highly oxidized abietane diterpenes in water-stressed rosemary plants. Plant Physiol. 121: 1047-1052. http://dx.doi.org/10.1104/pp.121.3.1047 PMid:10557254    PMCid:59469 Noctor G (2006). Metabolic signaling in defence and stress: the central roles of soluble redox couples. Plant Cell Environ. 29: 409-425. http://dx.doi.org/10.1111/j.1365-3040.2005.01476.x PMid:17080595 Seong ES, Ghimire BK, Goh EJ and Lim JD (2009). Overexpression of the γ-TMT gene in Codonopsis lanceolata. Biol. Plant 53: 631-636. http://dx.doi.org/10.1007/s10535-009-0115-y Van Eenennaam AL, Lincoln K, Durrett TP, Valentin HE, et al. (2003). Engineering vitamin E content: from Arabidopsis mutant to soy oil. Plant Cell 15: 3007-3019. http://dx.doi.org/10.1105/tpc.015875 PMid:14630966    PMCid:282849 Yamaguchi-Shinozaki K and Shinozaki K (1994). A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6: 251-264. PMid:8148648    PMCid:160431 Yusuf MA and Sarin NB (2007). Antioxidant value addition in human diets: genetic transformation of Brassica juncea with γ-TMT gene for increased α-tocopherol content. Transgenic Res. 16: 109-113. http://dx.doi.org/10.1007/s11248-006-9028-0 PMid:17103027 Yusuf MA, Kumar D, Rajwanshi R, Strasser RJ, et al. (2010). Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements. Biochim. Biophys. Acta 1797: 1428-1438. http://dx.doi.org/10.1016/j.bbabio.2010.02.002 PMid:20144585

Pages