Publications

Found 2 results
Filters: Author is R.V. Ventura  [Clear All Filters]
2016
M. H. A. Santana, Freua, M. C., Do, D. N., Ventura, R. V., Kadarmideen, H. N., and Ferraz, J. B. S., Systems genetics and genome-wide association approaches for analysis of feed intake, feed efficiency, and performance in beef cattle, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSThe contributions of Núcleo de Criadores de Nelore do Norte do Paraná, Luciano Borges (Rancho da Matinha), and Eduardo Penteado Cardoso (Fazenda Mundo Novo) are gratefully acknowledged. We would like to thank Dr. Zhong Wang for help with the gwas.lasso package. Research supported in part by São Paulo Research Foundation (FAPESP, #2012/02039-9, #2013/26902-0, #2014/14121-7, #2013/20571-2, and #2014/07566-2) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, #473249/2013-8 and #442345/2014-3). REFERENCESAlexandre PA, Kogelman LJA, Santana MHA, Passarelli D, et al (2015). Liver transcriptomic networks reveal main biological processes associated with feed efficiency in beef cattle. BMC Genomics 16: 1073. http://dx.doi.org/10.1186/s12864-015-2292-8 Anderson RV, Rasby RJ, Klopfenstein TJ and RT Clark. (2005). An evaluation of production and economic efficiency of two beef systems from calving to slaughter. J. Anim. Sci. 83: W 694-704. Chen Y, Gondro C, Quinn K, Herd RM, et al (2011). Global gene expression profiling reveals genes expressed differentially in cattle with high and low residual feed intake. Anim. Genet. 42: 475-490. http://dx.doi.org/10.1111/j.1365-2052.2011.02182.x Das K, Li J, Wang Z, Tong C, et al (2011). A dynamic model for genome-wide association studies. Hum. Genet. 129: 629-639. http://dx.doi.org/10.1007/s00439-011-0960-6 Do DN, Ostersen T, Strathe AB, Mark T, et al (2014). Genome-wide association and systems genetic analyses of residual feed intake, daily feed consumption, backfat and weight gain in pigs. BMC Genet. 15: 27. http://dx.doi.org/10.1186/1471-2156-15-27 Do DN, Janss LLG, Jensen J, Kadarmideen HN, et al (2015). SNP annotation-based whole genomic prediction and selection: an application to feed efficiency and its component traits in pigs. J. Anim. Sci. 93: 2056-2063. http://dx.doi.org/10.2527/jas.2014-8640 Gantz I, Fong TM, et al (2003). The melanocortin system. Am. J. Physiol. Endocrinol. Metab. 284: E468-E474. http://dx.doi.org/10.1152/ajpendo.00434.2002 Gomes RC, Silva SL, Carvalho ME, Rezende FM, et al (2013). Protein synthesis and degradation gene SNPs related to feed intake, feed efficiency, growth, and ultrasound carcass traits in Nellore cattle. Genet. Mol. Res. 12: 2923-2936. http://dx.doi.org/10.4238/2013.August.12.8 Havlík P, Valin H, Herrero M, Obersteiner M, et al (2014). Climate change mitigation through livestock system transitions. Proc. Natl. Acad. Sci. USA 111: 3709-3714. http://dx.doi.org/10.1073/pnas.1308044111 Hoti F, Sillanpää MJ, et al (2006). Bayesian mapping of genotype x expression interactions in quantitative and qualitative traits. Heredity (Edinb) 97: 4-18. http://dx.doi.org/10.1038/sj.hdy.6800817 Huang W, Sherman BT, Lempicki RA, et al (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4: 44-57. http://dx.doi.org/10.1038/nprot.2008.211 Ji JD, Lee WJ, Kong KA, Woo JH, et al (2010). Association of STAT4 polymorphism with rheumatoid arthritis and systemic lupus erythematosus: a meta-analysis. Mol. Biol. Rep. 37: 141-147. http://dx.doi.org/10.1007/s11033-009-9553-z Kadarmideen HN, von Rohr P, Janss LLG, et al (2006). From genetical genomics to systems genetics: potential applications in quantitative genomics and animal breeding. Mamm. Genome 17: 548-564. http://dx.doi.org/10.1007/s00335-005-0169-x Kies AK, Gerrits WJ, Schrama JW, Heetkamp MJ, et al (2005). Mineral absorption and excretion as affected by microbial phytase, and their effect on energy metabolism in young piglets. J. Nutr. 135: 1131-1138. Kindt ASD, Navarro P, Semple CA, Haley CS, et al (2013). The genomic signature of trait-associated variants. BMC Genomics 14: 108. http://dx.doi.org/10.1186/1471-2164-14-108 Koufariotis L, Chen YP, Bolormaa S, Hayes BJ, et al (2014). Regulatory and coding genome regions are enriched for trait associated variants in dairy and beef cattle. BMC Genomics 15: 436. http://dx.doi.org/10.1186/1471-2164-15-436 Li J, Das K, Fu G, Li R, et al (2011). The Bayesian lasso for genome-wide association studies. Bioinformatics 27: 516-523. http://dx.doi.org/10.1093/bioinformatics/btq688 Lkhagvadorj S, Qu L, Cai W, Couture OP, et al (2010). Gene expression profiling of the short-term adaptive response to acute caloric restriction in liver and adipose tissues of pigs differing in feed efficiency. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298: R494-R507. http://dx.doi.org/10.1152/ajpregu.00632.2009 McBride BW, Kelly JM, et al (1990). Energy cost of absorption and metabolism in the ruminant gastrointestinal tract and liver: a review. J. Anim. Sci. 68: 2997-3010. http://dx.doi.org/10.2527/1990.6892997x Moore SS, Mujibi FD, Sherman EL, et al (2009). Molecular basis for residual feed intake in beef cattle. J. Anim. Sci. 87 (Suppl): E41-E47. http://dx.doi.org/10.2527/jas.2008-1418 Nkrumah JD, Basarab JA, Wang Z, Li C, et al (2007). Genetic and phenotypic relationships of feed intake and measures of efficiency with growth and carcass merit of beef cattle. J. Anim. Sci. 85: 2711-2720. http://dx.doi.org/10.2527/jas.2006-767 Richardson EC, Herd RM, et al (2004). Biological basis for variation in residual feed intake in beef cattle. 2. Synthesis of results following divergent selection. Aust. J. Exp. Agric. 44: 431-440. http://dx.doi.org/10.1071/EA02221 Richardson EC, Herd RM, Archer JA, Arthur PF, et al (2004). Metabolic differences in Angus steers divergently selected for residual feed intake. Aust. J. Exp. Agric. 44: 441-452. http://dx.doi.org/10.1071/EA02219 Rincon G, Farber EA, Farber CR, Nkrumah JD, et al (2009). Polymorphisms in the STAT6 gene and their association with carcass traits in feedlot cattle. Anim. Genet. 40: 878-882. http://dx.doi.org/10.1111/j.1365-2052.2009.01934.x Rolf MM, Taylor JF, Schnabel RD, McKay SD, et al (2012). Genome-wide association analysis for feed efficiency in Angus cattle. Anim. Genet. 43: 367-374. http://dx.doi.org/10.1111/j.1365-2052.2011.02273.x Santana MHA, Rossi PJuniorAlmeidaR, Cucco DC, et al (2012). Feed efficiency and its correlations with carcass traits measured by ultrasound in Nellore bulls. Livest. Sci. 145: 252-257. http://dx.doi.org/10.1016/j.livsci.2012.02.012 Santana MHA, Utsunomiya YT, Neves HHR, Gomes RC, et al (2014). Genome-wide association analysis of feed intake and residual feed intake in Nellore cattle. BMC Genet. 15: 21. http://dx.doi.org/10.1186/1471-2156-15-21 Sargolzaei M, Chesnais JP, Schenkel FS, et al (2014). A new approach for efficient genotype imputation using information from relatives. BMC Genomics 15: 478. http://dx.doi.org/10.1186/1471-2164-15-478 Serão NV, González-Peña D, Beever JE, Faulkner DB, et al (2013). Single nucleotide polymorphisms and haplotypes associated with feed efficiency in beef cattle. BMC Genet. 14: 94. http://dx.doi.org/10.1186/1471-2156-14-94 Villa-Angulo R, Matukumalli LK, Gill CA, Choi J, et al (2009). High-resolution haplotype block structure in the cattle genome. BMC Genet. 10: 19. http://dx.doi.org/10.1186/1471-2156-10-19 Yang J, Manolio TA, Pasquale LR, Boerwinkle E, et al (2011). Genome partitioning of genetic variation for complex traits using common SNPs. Nat. Genet. 43: 519-525. http://dx.doi.org/10.1038/ng.823 Zhang F, Huang J, Li Q, Ju Z, et al (2010). Novel single nucleotide polymorphisms (SNPs) of the bovine STAT4 gene and their associations with production traits in Chinese Holstein cattle. Afr. J. Biotechnol. 9: 4003-4008.