Publications

Found 10 results
Filters: Author is H.F. Wang  [Clear All Filters]
2016
L. Y. Wang, Zhang, P., Wang, H. F., Qin, Z. W., Wei, K. B., Lv, X. A., Wang, L. Y., Zhang, P., Wang, H. F., Qin, Z. W., Wei, K. B., and Lv, X. A., Association of vitamin D receptor gene polymorphisms with end-stage renal disease and the development of high-turnover renal osteodystrophy in a Chinese population, vol. 15, p. -, 2016.
L. Y. Wang, Zhang, P., Wang, H. F., Qin, Z. W., Wei, K. B., Lv, X. A., Wang, L. Y., Zhang, P., Wang, H. F., Qin, Z. W., Wei, K. B., and Lv, X. A., Association of vitamin D receptor gene polymorphisms with end-stage renal disease and the development of high-turnover renal osteodystrophy in a Chinese population, vol. 15, p. -, 2016.
X. Wang, Zhang, F. X., Wang, Z. M., Wang, Q., Wang, H. F., Ren, Y., Tai, D. P., Liang, H., Liu, D. J., Wang, X., Zhang, F. X., Wang, Z. M., Wang, Q., Wang, H. F., Ren, Y., Tai, D. P., Liang, H., and Liu, D. J., Histone H3K9 acetylation influences growth characteristics of goat adipose-derived stem cells in vitro, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS Research supported by a High Yield Transgenic Cashmere Goats Breeding grant (#2014ZX08008-002). REFERENCES Ahmadi N, Razavi S, Kazemi M, Oryan S, et al (2012). Stability of neural differentiation in human adipose derived stem cells by two induction protocols. Tissue Cell 44: 87-94. http://dx.doi.org/10.1016/j.tice.2011.11.006 Ali A, Bluteau O, Messaoudi K, Palazzo A, et al (2013). Thrombocytopenia induced by the histone deacetylase inhibitor abexinostat involves p53-dependent and -independent mechanisms. Cell Death Dis. 4: e738. http://dx.doi.org/10.1038/cddis.2013.260 Baltus GA, Kowalski MP, Tutter AV, Kadam S, et al (2009). A positive regulatory role for the mSin3A-HDAC complex in pluripotency through Nanog and Sox2. J. Biol. Chem. 284: 6998-7006. http://dx.doi.org/10.1074/jbc.M807670200 Collas P, et al (2010). Programming differentiation potential in mesenchymal stem cells. Epigenetics 5: 476-482. http://dx.doi.org/10.4161/epi.5.6.12517 Culmes M, Eckstein HH, Burgkart R, Nüssler AK, et al (2013). Endothelial differentiation of adipose-derived mesenchymal stem cells is improved by epigenetic modifying drug BIX-01294. Eur. J. Cell Biol. 92: 70-79. http://dx.doi.org/10.1016/j.ejcb.2012.11.001 Dudakovic A, Camilleri ET, Lewallen EA, McGee-Lawrence ME, et al (2015). Histone deacetylase inhibition destabilizes the multi-potent state of uncommitted adipose-derived mesenchymal stromal cells. J. Cell. Physiol. 230: 52-62. http://dx.doi.org/10.1002/jcp.24680 Fan QD, Wu G, Liu ZR, et al (2014). Dynamics of posttranslational modifications of p53. Comput. Math. Methods Med. 2014: 245610. http://dx.doi.org/10.1155/2014/245610 Ge W, Liu Y, Chen T, Zhang X, et al (2014). The epigenetic promotion of osteogenic differentiation of human adipose-derived stem cells by the genetic and chemical blockade of histone demethylase LSD1. Biomaterials 35: 6015-6025. http://dx.doi.org/10.1016/j.biomaterials.2014.04.055 Huang Y, Liang P, Liu D, Huang J, et al (2014). Telomere regulation in pluripotent stem cells. Protein Cell 5: 194-202. http://dx.doi.org/10.1007/s13238-014-0028-1 Kwon MJ, Kang SJ, Park YI, Yang YH, et al (2015). Hepatic differentiation of human adipose tissue-derived mesenchymal stem cells and adverse effects of arsanilic acid and acetaminophen during in vitro hepatic developmental stage. Cell Biol. Toxicol. 31: 149-159. http://dx.doi.org/10.1007/s10565-015-9300-2 Lagutina I, Fulka H, Lazzari G, Galli C, et al (2013). Interspecies somatic cell nuclear transfer: advancements and problems. Cell. Reprogram. 15: 374-384. http://dx.doi.org/10.1089/cell.2013.0036 Latella L, Palacios D, Forcales S, Puri PL, et al (2012). Epigenetic control of reprogramming and cellular differentiation. Comp. Funct. Genomics 2012: 538639. http://dx.doi.org/10.1155/2012/538639 Lee K, Kim H, Kim JM, Kim JR, et al (2011). Systemic transplantation of human adipose-derived stem cells stimulates bone repair by promoting osteoblast and osteoclast function. J. Cell. Mol. Med. 15: 2082-2094. http://dx.doi.org/10.1111/j.1582-4934.2010.01230.x Leu S, Lin YC, Yuen CM, Yen CH, et al (2010). Adipose-derived mesenchymal stem cells markedly attenuate brain infarct size and improve neurological function in rats. J. Transl. Med. 8: 63. http://dx.doi.org/10.1186/1479-5876-8-63 Lin T, Chao C, Saito S, Mazur SJ, et al (2005). p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat. Cell Biol. 7: 165-171. http://dx.doi.org/10.1038/ncb1211 Long CR, Westhusin ME, Golding MC, et al (2014). Reshaping the transcriptional frontier: epigenetics and somatic cell nuclear transfer. Mol. Reprod. Dev. 81: 183-193. http://dx.doi.org/10.1002/mrd.22271 Makarova AV, Burgers PM, et al (2015). Eukaryotic DNA polymerase ζ. DNA Repair (Amst.) 29: 47-55. http://dx.doi.org/10.1016/j.dnarep.2015.02.012 Mejlvang J, Feng Y, Alabert C, Neelsen KJ, et al (2014). New histone supply regulates replication fork speed and PCNA unloading. J. Cell Biol. 204: 29-43. http://dx.doi.org/10.1083/jcb.201305017 Ogura A, Inoue K, Wakayama T, et al (2013). Recent advancements in cloning by somatic cell nuclear transfer. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368: 20110329. http://dx.doi.org/10.1098/rstb.2011.0329 Oh ET, Park MT, Choi BH, Ro S, et al (2012). Novel histone deacetylase inhibitor CG200745 induces clonogenic cell death by modulating acetylation of p53 in cancer cells. Invest. New Drugs 30: 435-442. http://dx.doi.org/10.1007/s10637-010-9568-2 Oh HJ, Park JE, Kim MJ, Hong SG, et al (2011). Recloned dogs derived from adipose stem cells of a transgenic cloned beagle. Theriogenology 75: 1221-1231. http://dx.doi.org/10.1016/j.theriogenology.2010.11.035 Oh HJ, Park JE, Park EJ, Kim MJ, et al (2014). Analysis of cell growth and gene expression of porcine adipose tissue-derived mesenchymal stem cells as nuclear donor cell. Dev. Growth Differ. 56: 595-604. http://dx.doi.org/10.1111/dgd.12159 Peterson DR, Mok HO, Au DW, et al (2015). Modulation of telomerase activity in fish muscle by biological and environmental factors. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 178: 51-59. Ren Y, Wu H, Zhou X, Wen J, et al (2012). Isolation, expansion, and differentiation of goat adipose-derived stem cells. Res. Vet. Sci. 93: 404-411. http://dx.doi.org/10.1016/j.rvsc.2011.08.014 Rinaldi L, Benitah SA, et al (2015). Epigenetic regulation of adult stem cell function. FEBS J. 282: 1589-1604. http://dx.doi.org/10.1111/febs.12946 Rizzino A, et al (2013). Concise review: The Sox2-Oct4 connection: critical players in a much larger interdependent network integrated at multiple levels. Stem Cells 31: 1033-1039. http://dx.doi.org/10.1002/stem.1352 Rodriguez J, Boucher F, Lequeux C, Josset-Lamaugarny A, et al (2015). Intradermal injection of human adipose-derived stem cells accelerates skin wound healing in nude mice. Stem Cell Res. Ther. 6: 241. http://dx.doi.org/10.1186/s13287-015-0238-3 Saunders A, Faiola F, Wang J, et al (2013). Concise review: pursuing self-renewal and pluripotency with the stem cell factor Nanog. Stem Cells 31: 1227-1236. http://dx.doi.org/10.1002/stem.1384 Teven CM, Liu X, Hu N, Tang N, et al (2011). Epigenetic regulation of mesenchymal stem cells: a focus on osteogenic and adipogenic differentiation. Stem Cells Int. 2011: 201371. http://dx.doi.org/10.4061/2011/201371 Wang S, Hu C, Zhu J, et al (2007). Transcriptional silencing of a novel hTERT reporter locus during in vitro differentiation of mouse embryonic stem cells. Mol. Biol. Cell 18: 669-677. http://dx.doi.org/10.1091/mbc.E06-09-0840 Wang Z, Oron E, Nelson B, Razis S, et al (2012). Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells. Cell Stem Cell 10: 440-454. http://dx.doi.org/10.1016/j.stem.2012.02.016 Wankhade UD, Shen M, Kolhe R, Fulzele S, et al (2016). Advances in adipose-derived stem cells isolation, characterization, and application in regenerative tissue engineering. Stem Cells Int. 2016: 3206807. http://dx.doi.org/10.1155/2016/3206807 Yang H, Yan B, Liao D, Huang S, et al (2015). Acetylation of HDAC1 and degradation of SIRT1 form a positive feedback loop to regulate p53 acetylation during heat-shock stress. Cell Death Dis. 6: e1747. http://dx.doi.org/10.1038/cddis.2015.106 Yannarelli G, Pacienza N, Cuniberti L, Medin J, et al (2013). Brief report: The potential role of epigenetics on multipotent cell differentiation capacity of mesenchymal stromal cells. Stem Cells 31: 215-220. http://dx.doi.org/10.1002/stem.1262 Yoon DS, Choi Y, Jang Y, Lee M, et al (2014). SIRT1 directly regulates SOX2 to maintain self-renewal and multipotency in bone marrow-derived mesenchymal stem cells. Stem Cells 32: 3219-3231. http://dx.doi.org/10.1002/stem.1811 Zhang C, Qu S, Wei X, Feng Y, et al (2016). HSP25 down-regulation enhanced p53 acetylation by dissociation of SIRT1 from p53 in doxorubicin-induced H9c2 cell apoptosis. Cell Stress Chaperones 21: 251-260. http://dx.doi.org/10.1007/s12192-015-0655-3 Zhang Q, Ramlee MK, Brunmeir R, Villanueva CJ, et al (2012). Dynamic and distinct histone modifications modulate the expression of key adipogenesis regulatory genes. Cell Cycle 11: 4310-4322. http://dx.doi.org/10.4161/cc.22224 Zhang S, Cui W, et al (2014). Sox2, a key factor in the regulation of pluripotency and neural differentiation. World J. Stem Cells 6: 305-311. http://dx.doi.org/10.4252/wjsc.v6.i3.305 Zhang Y, Zhang A, Shen C, Zhang B, et al (2014). E2F1 acts as a negative feedback regulator of c-Myc‑induced hTERT transcription during tumorigenesis. Oncol. Rep. 32: 1273-1280. Zhu Y, Song X, Han F, Li Y, et al (2015). Alteration of histone acetylation pattern during long-term serum-free culture conditions of human fetal placental mesenchymal stem cells. PLoS One 10: e0117068. http://dx.doi.org/10.1371/journal.pone.0117068
X. Wang, Zhang, F. X., Wang, Z. M., Wang, Q., Wang, H. F., Ren, Y., Tai, D. P., Liang, H., Liu, D. J., Wang, X., Zhang, F. X., Wang, Z. M., Wang, Q., Wang, H. F., Ren, Y., Tai, D. P., Liang, H., and Liu, D. J., Histone H3K9 acetylation influences growth characteristics of goat adipose-derived stem cells in vitro, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS Research supported by a High Yield Transgenic Cashmere Goats Breeding grant (#2014ZX08008-002). REFERENCES Ahmadi N, Razavi S, Kazemi M, Oryan S, et al (2012). Stability of neural differentiation in human adipose derived stem cells by two induction protocols. Tissue Cell 44: 87-94. http://dx.doi.org/10.1016/j.tice.2011.11.006 Ali A, Bluteau O, Messaoudi K, Palazzo A, et al (2013). Thrombocytopenia induced by the histone deacetylase inhibitor abexinostat involves p53-dependent and -independent mechanisms. Cell Death Dis. 4: e738. http://dx.doi.org/10.1038/cddis.2013.260 Baltus GA, Kowalski MP, Tutter AV, Kadam S, et al (2009). A positive regulatory role for the mSin3A-HDAC complex in pluripotency through Nanog and Sox2. J. Biol. Chem. 284: 6998-7006. http://dx.doi.org/10.1074/jbc.M807670200 Collas P, et al (2010). Programming differentiation potential in mesenchymal stem cells. Epigenetics 5: 476-482. http://dx.doi.org/10.4161/epi.5.6.12517 Culmes M, Eckstein HH, Burgkart R, Nüssler AK, et al (2013). Endothelial differentiation of adipose-derived mesenchymal stem cells is improved by epigenetic modifying drug BIX-01294. Eur. J. Cell Biol. 92: 70-79. http://dx.doi.org/10.1016/j.ejcb.2012.11.001 Dudakovic A, Camilleri ET, Lewallen EA, McGee-Lawrence ME, et al (2015). Histone deacetylase inhibition destabilizes the multi-potent state of uncommitted adipose-derived mesenchymal stromal cells. J. Cell. Physiol. 230: 52-62. http://dx.doi.org/10.1002/jcp.24680 Fan QD, Wu G, Liu ZR, et al (2014). Dynamics of posttranslational modifications of p53. Comput. Math. Methods Med. 2014: 245610. http://dx.doi.org/10.1155/2014/245610 Ge W, Liu Y, Chen T, Zhang X, et al (2014). The epigenetic promotion of osteogenic differentiation of human adipose-derived stem cells by the genetic and chemical blockade of histone demethylase LSD1. Biomaterials 35: 6015-6025. http://dx.doi.org/10.1016/j.biomaterials.2014.04.055 Huang Y, Liang P, Liu D, Huang J, et al (2014). Telomere regulation in pluripotent stem cells. Protein Cell 5: 194-202. http://dx.doi.org/10.1007/s13238-014-0028-1 Kwon MJ, Kang SJ, Park YI, Yang YH, et al (2015). Hepatic differentiation of human adipose tissue-derived mesenchymal stem cells and adverse effects of arsanilic acid and acetaminophen during in vitro hepatic developmental stage. Cell Biol. Toxicol. 31: 149-159. http://dx.doi.org/10.1007/s10565-015-9300-2 Lagutina I, Fulka H, Lazzari G, Galli C, et al (2013). Interspecies somatic cell nuclear transfer: advancements and problems. Cell. Reprogram. 15: 374-384. http://dx.doi.org/10.1089/cell.2013.0036 Latella L, Palacios D, Forcales S, Puri PL, et al (2012). Epigenetic control of reprogramming and cellular differentiation. Comp. Funct. Genomics 2012: 538639. http://dx.doi.org/10.1155/2012/538639 Lee K, Kim H, Kim JM, Kim JR, et al (2011). Systemic transplantation of human adipose-derived stem cells stimulates bone repair by promoting osteoblast and osteoclast function. J. Cell. Mol. Med. 15: 2082-2094. http://dx.doi.org/10.1111/j.1582-4934.2010.01230.x Leu S, Lin YC, Yuen CM, Yen CH, et al (2010). Adipose-derived mesenchymal stem cells markedly attenuate brain infarct size and improve neurological function in rats. J. Transl. Med. 8: 63. http://dx.doi.org/10.1186/1479-5876-8-63 Lin T, Chao C, Saito S, Mazur SJ, et al (2005). p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat. Cell Biol. 7: 165-171. http://dx.doi.org/10.1038/ncb1211 Long CR, Westhusin ME, Golding MC, et al (2014). Reshaping the transcriptional frontier: epigenetics and somatic cell nuclear transfer. Mol. Reprod. Dev. 81: 183-193. http://dx.doi.org/10.1002/mrd.22271 Makarova AV, Burgers PM, et al (2015). Eukaryotic DNA polymerase ζ. DNA Repair (Amst.) 29: 47-55. http://dx.doi.org/10.1016/j.dnarep.2015.02.012 Mejlvang J, Feng Y, Alabert C, Neelsen KJ, et al (2014). New histone supply regulates replication fork speed and PCNA unloading. J. Cell Biol. 204: 29-43. http://dx.doi.org/10.1083/jcb.201305017 Ogura A, Inoue K, Wakayama T, et al (2013). Recent advancements in cloning by somatic cell nuclear transfer. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368: 20110329. http://dx.doi.org/10.1098/rstb.2011.0329 Oh ET, Park MT, Choi BH, Ro S, et al (2012). Novel histone deacetylase inhibitor CG200745 induces clonogenic cell death by modulating acetylation of p53 in cancer cells. Invest. New Drugs 30: 435-442. http://dx.doi.org/10.1007/s10637-010-9568-2 Oh HJ, Park JE, Kim MJ, Hong SG, et al (2011). Recloned dogs derived from adipose stem cells of a transgenic cloned beagle. Theriogenology 75: 1221-1231. http://dx.doi.org/10.1016/j.theriogenology.2010.11.035 Oh HJ, Park JE, Park EJ, Kim MJ, et al (2014). Analysis of cell growth and gene expression of porcine adipose tissue-derived mesenchymal stem cells as nuclear donor cell. Dev. Growth Differ. 56: 595-604. http://dx.doi.org/10.1111/dgd.12159 Peterson DR, Mok HO, Au DW, et al (2015). Modulation of telomerase activity in fish muscle by biological and environmental factors. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 178: 51-59. Ren Y, Wu H, Zhou X, Wen J, et al (2012). Isolation, expansion, and differentiation of goat adipose-derived stem cells. Res. Vet. Sci. 93: 404-411. http://dx.doi.org/10.1016/j.rvsc.2011.08.014 Rinaldi L, Benitah SA, et al (2015). Epigenetic regulation of adult stem cell function. FEBS J. 282: 1589-1604. http://dx.doi.org/10.1111/febs.12946 Rizzino A, et al (2013). Concise review: The Sox2-Oct4 connection: critical players in a much larger interdependent network integrated at multiple levels. Stem Cells 31: 1033-1039. http://dx.doi.org/10.1002/stem.1352 Rodriguez J, Boucher F, Lequeux C, Josset-Lamaugarny A, et al (2015). Intradermal injection of human adipose-derived stem cells accelerates skin wound healing in nude mice. Stem Cell Res. Ther. 6: 241. http://dx.doi.org/10.1186/s13287-015-0238-3 Saunders A, Faiola F, Wang J, et al (2013). Concise review: pursuing self-renewal and pluripotency with the stem cell factor Nanog. Stem Cells 31: 1227-1236. http://dx.doi.org/10.1002/stem.1384 Teven CM, Liu X, Hu N, Tang N, et al (2011). Epigenetic regulation of mesenchymal stem cells: a focus on osteogenic and adipogenic differentiation. Stem Cells Int. 2011: 201371. http://dx.doi.org/10.4061/2011/201371 Wang S, Hu C, Zhu J, et al (2007). Transcriptional silencing of a novel hTERT reporter locus during in vitro differentiation of mouse embryonic stem cells. Mol. Biol. Cell 18: 669-677. http://dx.doi.org/10.1091/mbc.E06-09-0840 Wang Z, Oron E, Nelson B, Razis S, et al (2012). Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells. Cell Stem Cell 10: 440-454. http://dx.doi.org/10.1016/j.stem.2012.02.016 Wankhade UD, Shen M, Kolhe R, Fulzele S, et al (2016). Advances in adipose-derived stem cells isolation, characterization, and application in regenerative tissue engineering. Stem Cells Int. 2016: 3206807. http://dx.doi.org/10.1155/2016/3206807 Yang H, Yan B, Liao D, Huang S, et al (2015). Acetylation of HDAC1 and degradation of SIRT1 form a positive feedback loop to regulate p53 acetylation during heat-shock stress. Cell Death Dis. 6: e1747. http://dx.doi.org/10.1038/cddis.2015.106 Yannarelli G, Pacienza N, Cuniberti L, Medin J, et al (2013). Brief report: The potential role of epigenetics on multipotent cell differentiation capacity of mesenchymal stromal cells. Stem Cells 31: 215-220. http://dx.doi.org/10.1002/stem.1262 Yoon DS, Choi Y, Jang Y, Lee M, et al (2014). SIRT1 directly regulates SOX2 to maintain self-renewal and multipotency in bone marrow-derived mesenchymal stem cells. Stem Cells 32: 3219-3231. http://dx.doi.org/10.1002/stem.1811 Zhang C, Qu S, Wei X, Feng Y, et al (2016). HSP25 down-regulation enhanced p53 acetylation by dissociation of SIRT1 from p53 in doxorubicin-induced H9c2 cell apoptosis. Cell Stress Chaperones 21: 251-260. http://dx.doi.org/10.1007/s12192-015-0655-3 Zhang Q, Ramlee MK, Brunmeir R, Villanueva CJ, et al (2012). Dynamic and distinct histone modifications modulate the expression of key adipogenesis regulatory genes. Cell Cycle 11: 4310-4322. http://dx.doi.org/10.4161/cc.22224 Zhang S, Cui W, et al (2014). Sox2, a key factor in the regulation of pluripotency and neural differentiation. World J. Stem Cells 6: 305-311. http://dx.doi.org/10.4252/wjsc.v6.i3.305 Zhang Y, Zhang A, Shen C, Zhang B, et al (2014). E2F1 acts as a negative feedback regulator of c-Myc‑induced hTERT transcription during tumorigenesis. Oncol. Rep. 32: 1273-1280. Zhu Y, Song X, Han F, Li Y, et al (2015). Alteration of histone acetylation pattern during long-term serum-free culture conditions of human fetal placental mesenchymal stem cells. PLoS One 10: e0117068. http://dx.doi.org/10.1371/journal.pone.0117068
Y. J. Chen, Wang, H. F., Liang, M., Zou, R. C., Tang, Z. R., Wang, J. S., Chen, Y. J., Wang, H. F., Liang, M., Zou, R. C., Tang, Z. R., and Wang, J. S., Upregulation of miR-3658 in bladder cancer and tumor progression, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS Research supported by the National Natural Science Foundation of China (#81260374, #81460384), the Yunnan Provincial Department of Education Fund (#2014Z072), the Joint Project of Science and Technology, Department of Yunnan and Kunming Medical University (#2014FA015, #2014FZ031), the Project of Yunnan Provincial Health Department (#2014NS081), and the Project of Yunnan Provincial Science and Technology (#2015FB196). REFERENCES Andrew AS, Hu T, Gu J, Gui J, et al (2012). HSD3B and gene-gene interactions in a pathway-based analysis of genetic susceptibility to bladder cancer. PLoS One 7: e51301. http://dx.doi.org/10.1371/journal.pone.0051301 Calin GA, Croce CM, et al (2006). MicroRNA signatures in human cancers. Nat. Rev. Cancer 6: 857-866. http://dx.doi.org/10.1038/nrc1997 Calin GA, Sevignani C, Dumitru CD, Hyslop T, et al (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl. Acad. Sci. USA 101: 2999-3004. http://dx.doi.org/10.1073/pnas.0307323101 Cambier S, Sylvester RJ, Collette L, Gontero P, et al (2016). EORTC nomograms and risk groups for predicting recurrence, progression, and disease-specific and overall survival in non-muscle-invasive stage Ta-T1 urothelial bladder cancer patients treated with 1-3 years of maintenance Bacillus Calmette-Guerin. Eur. Urol. 69: 60-69. http://dx.doi.org/10.1016/j.eururo.2015.06.045 Catto JW, Alcaraz A, Bjartell AS, De Vere White R, et al (2011). MicroRNA in prostate, bladder, and kidney cancer: a systematic review. Eur. Urol. 59: 671-681. http://dx.doi.org/10.1016/j.eururo.2011.01.044 Cipollini M, Landi S, Gemignani F, et al (2014). MicroRNA binding site polymorphisms as biomarkers in cancer management and research. Pharm. Genomics Pers. Med. 7: 173-191. Drayton RM, Peter S, Myers K, Miah S, et al (2014). MicroRNA-99a and 100 mediated upregulation of FOXA1 in bladder cancer. Oncotarget 5: 6375-6386. http://dx.doi.org/10.18632/oncotarget.2221 Fan MQ, Huang CB, Gu Y, Xiao Y, et al (2013). Decrease expression of microRNA-20a promotes cancer cell proliferation and predicts poor survival of hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 32: 21. http://dx.doi.org/10.1186/1756-9966-32-21 Feng Y, Liu J, Kang Y, He Y, et al (2014). miR-19a acts as an oncogenic microRNA and is up-regulated in bladder cancer. J. Exp. Clin. Cancer Res. 33: 67. http://dx.doi.org/10.1186/s13046-014-0067-8 Han Y, Chen J, Zhao X, Liang C, et al (2011). MicroRNA expression signatures of bladder cancer revealed by deep sequencing. PLoS One 6: e18286. http://dx.doi.org/10.1371/journal.pone.0018286 Han Y, Liu Y, Zhang H, Wang T, et al (2013). Hsa-miR-125b suppresses bladder cancer development by down-regulating oncogene SIRT7 and oncogenic long noncoding RNA MALAT1. FEBS Lett. 587: 3875-3882. http://dx.doi.org/10.1016/j.febslet.2013.10.023 Hao M, Zang M, Wendlandt E, Xu Y, et al (2015). Low serum miR-19a expression as a novel poor prognostic indicator in multiple myeloma. Int. J. Cancer 136: 1835-1844. http://dx.doi.org/10.1002/ijc.29199 Hede K, et al (2005). Studies define role of microRNA in cancer. J. Natl. Cancer Inst. 97: 1114-1115. http://dx.doi.org/10.1093/jnci/dji260 Herr HW, et al (1999). The value of a second transurethral resection in evaluating patients with bladder tumors. J. Urol. 162: 74-76. http://dx.doi.org/10.1097/00005392-199907000-00018 Hisataki T, Miyao N, Masumori N, Takahashi A, et al (2000). Risk factors for the development of bladder cancer after upper tract urothelial cancer. Urology 55: 663-667. http://dx.doi.org/10.1016/S0090-4295(99)00563-4 Inoguchi S, Seki N, Chiyomaru T, Ishihara T, et al (2014). Tumour-suppressive microRNA-24-1 inhibits cancer cell proliferation through targeting FOXM1 in bladder cancer. FEBS Lett. 588: 3170-3179. http://dx.doi.org/10.1016/j.febslet.2014.06.058 Kaufman DS, Shipley WU, Feldman AS, et al (2009). Bladder cancer. Lancet 374: 239-249. http://dx.doi.org/10.1016/S0140-6736(09)60491-8 Liu J, Wang H, Wang Y, Li Z, et al (2016). Repression of the miR-93-enhanced sensitivity of bladder carcinoma to chemotherapy involves the regulation of LASS2. Onco Targets Ther. 9: 1813-1822. Livak KJ, Schmittgen TD, et al (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408. http://dx.doi.org/10.1006/meth.2001.1262 Mehta N, Rathore RS, Pillai BS, Sam MP, et al (2015). Intrinsic tumour factors affecting recurrence in non muscle invasive bladder cancer: a hospital based study from India. Asian Pac. J. Cancer Prev. 16: 2675-2677. http://dx.doi.org/10.7314/APJCP.2015.16.7.2675 Mei F, You J, Liu B, Zhang M, et al (2015). LASS2/TMSG1 inhibits growth and invasion of breast cancer cell in vitro through regulation of vacuolar ATPase activity. Tumour Biol. 36: 2831-2844. http://dx.doi.org/10.1007/s13277-014-2910-0 Meiri E, Levy A, Benjamin H, Ben-David M, et al (2010). Discovery of microRNAs and other small RNAs in solid tumors. Nucleic Acids Res. 38: 6234-6246. http://dx.doi.org/10.1093/nar/gkq376 Meister G, et al (2007). miRNAs get an early start on translational silencing. Cell 131: 25-28. http://dx.doi.org/10.1016/j.cell.2007.09.021 Miyamoto H, Zheng Y, Izumi K, et al (2012). Nuclear hormone receptor signals as new therapeutic targets for urothelial carcinoma. Curr. Cancer Drug Targets 12: 14-22. http://dx.doi.org/10.2174/156800912798888965 Philippe L, Alsaleh G, Suffert G, Meyer A, et al (2012). TLR2 expression is regulated by microRNA miR-19 in rheumatoid fibroblast-like synoviocytes. J. Immunol. 188: 454-461. http://dx.doi.org/10.4049/jimmunol.1102348 Reynolds CP, Maurer BJ, Kolesnick RN, et al (2004). Ceramide synthesis and metabolism as a target for cancer therapy. Cancer Lett. 206: 169-180. http://dx.doi.org/10.1016/j.canlet.2003.08.034 Sanguedolce F, Cormio A, Bufo P, Carrieri G, et al (2015). Molecular markers in bladder cancer: Novel research frontiers. Crit. Rev. Clin. Lab. Sci. 52: 242-255. http://dx.doi.org/10.3109/10408363.2015.1033610 Simard J, Ricketts ML, Gingras S, Soucy P, et al (2005). Molecular biology of the 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase gene family. Endocr. Rev. 26: 525-582. http://dx.doi.org/10.1210/er.2002-0050 Su J, You JF, Wang JL, Cui XL, et al (2008). [Overexpression of human tumor metastasis-related gene TMSG-1 suppresses cell proliferation and invasion of a highly metastatic prostate cancer cell line PC-3M-1E8 in vitro.]. Zhonghua Zhong Liu Za Zhi 30: 404-407. Sylvester RJ, van der Meijden AP, Oosterlinck W, Witjes JA, et al (2006). Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials. Eur. Urol. 49: 466-5, discussion 475-477. http://dx.doi.org/10.1016/j.eururo.2005.12.031 Tang N, Jin J, Deng Y, Ke RH, et al (2010). [LASS2 interacts with V-ATPase and inhibits cell growth of hepatocellular carcinoma]. Sheng Li Xue Bao 62: 196-202. Torre LA, Bray F, Siegel RL, Ferlay J, et al (2015). Global cancer statistics, 2012. CA Cancer J. Clin. 65: 87-108. http://dx.doi.org/10.3322/caac.21262 Wang G, Kwan BC, Lai FM, Chow KM, et al (2010). Expression of microRNAs in the urinary sediment of patients with IgA nephropathy. Dis. Markers 28: 79-86. http://dx.doi.org/10.1155/2010/396328 Wang H, Wang J, Zuo Y, Ding M, et al (2012). Expression and prognostic significance of a new tumor metastasis suppressor gene LASS2 in human bladder carcinoma. Med. Oncol. 29: 1921-1927. http://dx.doi.org/10.1007/s12032-011-0026-6 Wang H, Zhang W, Zuo Y, Ding M, et al (2015). miR-9 promotes cell proliferation and inhibits apoptosis by targeting LASS2 in bladder cancer. Tumour Biol. 36: 9631-9640. http://dx.doi.org/10.1007/s13277-015-3713-7 Wang T, Yuan J, Feng N, Li Y, et al (2014). Hsa-miR-1 downregulates long non-coding RNA urothelial cancer associated 1 in bladder cancer. Tumour Biol. 35: 10075-10084. http://dx.doi.org/10.1007/s13277-014-2321-2 Wang Z, Wang J, Yang Y, Hao B, et al (2013). Loss of has-miR-337-3p expression is associated with lymph node metastasis of human gastric cancer. J. Exp. Clin. Cancer Res. 32: 76. http://dx.doi.org/10.1186/1756-9966-32-76 Yamada Y, Enokida H, Kojima S, Kawakami K, et al (2011). MiR-96 and miR-183 detection in urine serve as potential tumor markers of urothelial carcinoma: correlation with stage and grade, and comparison with urinary cytology. Cancer Sci. 102: 522-529. http://dx.doi.org/10.1111/j.1349-7006.2010.01816.x Yoshino H, Seki N, Itesako T, Chiyomaru T, et al (2013). Aberrant expression of microRNAs in bladder cancer. Nat. Rev. Urol. 10: 396-404. http://dx.doi.org/10.1038/nrurol.2013.113 Yu S, Lu Z, Liu C, Meng Y, et al (2010). miRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer. Cancer Res. 70: 6015-6025. http://dx.doi.org/10.1158/0008-5472.CAN-09-4531 Zhang DQ, Zhou CK, Jiang XW, Chen J, et al (2014a). Increased expression of miR-222 is associated with poor prognosis in bladder cancer. World J. Surg. Oncol. 12: 241. http://dx.doi.org/10.1186/1477-7819-12-241 Zhang H, Qi F, Cao Y, Chen M, et al (2014b). Down-regulated microRNA-101 in bladder transitional cell carcinoma is associated with poor prognosis. Med. Sci. Monit. 20: 812-817. http://dx.doi.org/10.12659/MSM.890300 Zhang QH, Sun HM, Zheng RZ, Li YC, et al (2013). Meta-analysis of microRNA-183 family expression in human cancer studies comparing cancer tissues with noncancerous tissues. Gene 527: 26-32. http://dx.doi.org/10.1016/j.gene.2013.06.006 Zhao Q, Wang H, Yang M, Yang D, et al (2013). Expression of a tumor-associated gene, LASS2, in the human bladder carcinoma cell lines BIU-87, T24, EJ and EJ-M3. Exp. Ther. Med. 5: 942-946.
Y. J. Chen, Wang, H. F., Liang, M., Zou, R. C., Tang, Z. R., Wang, J. S., Chen, Y. J., Wang, H. F., Liang, M., Zou, R. C., Tang, Z. R., and Wang, J. S., Upregulation of miR-3658 in bladder cancer and tumor progression, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS Research supported by the National Natural Science Foundation of China (#81260374, #81460384), the Yunnan Provincial Department of Education Fund (#2014Z072), the Joint Project of Science and Technology, Department of Yunnan and Kunming Medical University (#2014FA015, #2014FZ031), the Project of Yunnan Provincial Health Department (#2014NS081), and the Project of Yunnan Provincial Science and Technology (#2015FB196). REFERENCES Andrew AS, Hu T, Gu J, Gui J, et al (2012). HSD3B and gene-gene interactions in a pathway-based analysis of genetic susceptibility to bladder cancer. PLoS One 7: e51301. http://dx.doi.org/10.1371/journal.pone.0051301 Calin GA, Croce CM, et al (2006). MicroRNA signatures in human cancers. Nat. Rev. Cancer 6: 857-866. http://dx.doi.org/10.1038/nrc1997 Calin GA, Sevignani C, Dumitru CD, Hyslop T, et al (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl. Acad. Sci. USA 101: 2999-3004. http://dx.doi.org/10.1073/pnas.0307323101 Cambier S, Sylvester RJ, Collette L, Gontero P, et al (2016). EORTC nomograms and risk groups for predicting recurrence, progression, and disease-specific and overall survival in non-muscle-invasive stage Ta-T1 urothelial bladder cancer patients treated with 1-3 years of maintenance Bacillus Calmette-Guerin. Eur. Urol. 69: 60-69. http://dx.doi.org/10.1016/j.eururo.2015.06.045 Catto JW, Alcaraz A, Bjartell AS, De Vere White R, et al (2011). MicroRNA in prostate, bladder, and kidney cancer: a systematic review. Eur. Urol. 59: 671-681. http://dx.doi.org/10.1016/j.eururo.2011.01.044 Cipollini M, Landi S, Gemignani F, et al (2014). MicroRNA binding site polymorphisms as biomarkers in cancer management and research. Pharm. Genomics Pers. Med. 7: 173-191. Drayton RM, Peter S, Myers K, Miah S, et al (2014). MicroRNA-99a and 100 mediated upregulation of FOXA1 in bladder cancer. Oncotarget 5: 6375-6386. http://dx.doi.org/10.18632/oncotarget.2221 Fan MQ, Huang CB, Gu Y, Xiao Y, et al (2013). Decrease expression of microRNA-20a promotes cancer cell proliferation and predicts poor survival of hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 32: 21. http://dx.doi.org/10.1186/1756-9966-32-21 Feng Y, Liu J, Kang Y, He Y, et al (2014). miR-19a acts as an oncogenic microRNA and is up-regulated in bladder cancer. J. Exp. Clin. Cancer Res. 33: 67. http://dx.doi.org/10.1186/s13046-014-0067-8 Han Y, Chen J, Zhao X, Liang C, et al (2011). MicroRNA expression signatures of bladder cancer revealed by deep sequencing. PLoS One 6: e18286. http://dx.doi.org/10.1371/journal.pone.0018286 Han Y, Liu Y, Zhang H, Wang T, et al (2013). Hsa-miR-125b suppresses bladder cancer development by down-regulating oncogene SIRT7 and oncogenic long noncoding RNA MALAT1. FEBS Lett. 587: 3875-3882. http://dx.doi.org/10.1016/j.febslet.2013.10.023 Hao M, Zang M, Wendlandt E, Xu Y, et al (2015). Low serum miR-19a expression as a novel poor prognostic indicator in multiple myeloma. Int. J. Cancer 136: 1835-1844. http://dx.doi.org/10.1002/ijc.29199 Hede K, et al (2005). Studies define role of microRNA in cancer. J. Natl. Cancer Inst. 97: 1114-1115. http://dx.doi.org/10.1093/jnci/dji260 Herr HW, et al (1999). The value of a second transurethral resection in evaluating patients with bladder tumors. J. Urol. 162: 74-76. http://dx.doi.org/10.1097/00005392-199907000-00018 Hisataki T, Miyao N, Masumori N, Takahashi A, et al (2000). Risk factors for the development of bladder cancer after upper tract urothelial cancer. Urology 55: 663-667. http://dx.doi.org/10.1016/S0090-4295(99)00563-4 Inoguchi S, Seki N, Chiyomaru T, Ishihara T, et al (2014). Tumour-suppressive microRNA-24-1 inhibits cancer cell proliferation through targeting FOXM1 in bladder cancer. FEBS Lett. 588: 3170-3179. http://dx.doi.org/10.1016/j.febslet.2014.06.058 Kaufman DS, Shipley WU, Feldman AS, et al (2009). Bladder cancer. Lancet 374: 239-249. http://dx.doi.org/10.1016/S0140-6736(09)60491-8 Liu J, Wang H, Wang Y, Li Z, et al (2016). Repression of the miR-93-enhanced sensitivity of bladder carcinoma to chemotherapy involves the regulation of LASS2. Onco Targets Ther. 9: 1813-1822. Livak KJ, Schmittgen TD, et al (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408. http://dx.doi.org/10.1006/meth.2001.1262 Mehta N, Rathore RS, Pillai BS, Sam MP, et al (2015). Intrinsic tumour factors affecting recurrence in non muscle invasive bladder cancer: a hospital based study from India. Asian Pac. J. Cancer Prev. 16: 2675-2677. http://dx.doi.org/10.7314/APJCP.2015.16.7.2675 Mei F, You J, Liu B, Zhang M, et al (2015). LASS2/TMSG1 inhibits growth and invasion of breast cancer cell in vitro through regulation of vacuolar ATPase activity. Tumour Biol. 36: 2831-2844. http://dx.doi.org/10.1007/s13277-014-2910-0 Meiri E, Levy A, Benjamin H, Ben-David M, et al (2010). Discovery of microRNAs and other small RNAs in solid tumors. Nucleic Acids Res. 38: 6234-6246. http://dx.doi.org/10.1093/nar/gkq376 Meister G, et al (2007). miRNAs get an early start on translational silencing. Cell 131: 25-28. http://dx.doi.org/10.1016/j.cell.2007.09.021 Miyamoto H, Zheng Y, Izumi K, et al (2012). Nuclear hormone receptor signals as new therapeutic targets for urothelial carcinoma. Curr. Cancer Drug Targets 12: 14-22. http://dx.doi.org/10.2174/156800912798888965 Philippe L, Alsaleh G, Suffert G, Meyer A, et al (2012). TLR2 expression is regulated by microRNA miR-19 in rheumatoid fibroblast-like synoviocytes. J. Immunol. 188: 454-461. http://dx.doi.org/10.4049/jimmunol.1102348 Reynolds CP, Maurer BJ, Kolesnick RN, et al (2004). Ceramide synthesis and metabolism as a target for cancer therapy. Cancer Lett. 206: 169-180. http://dx.doi.org/10.1016/j.canlet.2003.08.034 Sanguedolce F, Cormio A, Bufo P, Carrieri G, et al (2015). Molecular markers in bladder cancer: Novel research frontiers. Crit. Rev. Clin. Lab. Sci. 52: 242-255. http://dx.doi.org/10.3109/10408363.2015.1033610 Simard J, Ricketts ML, Gingras S, Soucy P, et al (2005). Molecular biology of the 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase gene family. Endocr. Rev. 26: 525-582. http://dx.doi.org/10.1210/er.2002-0050 Su J, You JF, Wang JL, Cui XL, et al (2008). [Overexpression of human tumor metastasis-related gene TMSG-1 suppresses cell proliferation and invasion of a highly metastatic prostate cancer cell line PC-3M-1E8 in vitro.]. Zhonghua Zhong Liu Za Zhi 30: 404-407. Sylvester RJ, van der Meijden AP, Oosterlinck W, Witjes JA, et al (2006). Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials. Eur. Urol. 49: 466-5, discussion 475-477. http://dx.doi.org/10.1016/j.eururo.2005.12.031 Tang N, Jin J, Deng Y, Ke RH, et al (2010). [LASS2 interacts with V-ATPase and inhibits cell growth of hepatocellular carcinoma]. Sheng Li Xue Bao 62: 196-202. Torre LA, Bray F, Siegel RL, Ferlay J, et al (2015). Global cancer statistics, 2012. CA Cancer J. Clin. 65: 87-108. http://dx.doi.org/10.3322/caac.21262 Wang G, Kwan BC, Lai FM, Chow KM, et al (2010). Expression of microRNAs in the urinary sediment of patients with IgA nephropathy. Dis. Markers 28: 79-86. http://dx.doi.org/10.1155/2010/396328 Wang H, Wang J, Zuo Y, Ding M, et al (2012). Expression and prognostic significance of a new tumor metastasis suppressor gene LASS2 in human bladder carcinoma. Med. Oncol. 29: 1921-1927. http://dx.doi.org/10.1007/s12032-011-0026-6 Wang H, Zhang W, Zuo Y, Ding M, et al (2015). miR-9 promotes cell proliferation and inhibits apoptosis by targeting LASS2 in bladder cancer. Tumour Biol. 36: 9631-9640. http://dx.doi.org/10.1007/s13277-015-3713-7 Wang T, Yuan J, Feng N, Li Y, et al (2014). Hsa-miR-1 downregulates long non-coding RNA urothelial cancer associated 1 in bladder cancer. Tumour Biol. 35: 10075-10084. http://dx.doi.org/10.1007/s13277-014-2321-2 Wang Z, Wang J, Yang Y, Hao B, et al (2013). Loss of has-miR-337-3p expression is associated with lymph node metastasis of human gastric cancer. J. Exp. Clin. Cancer Res. 32: 76. http://dx.doi.org/10.1186/1756-9966-32-76 Yamada Y, Enokida H, Kojima S, Kawakami K, et al (2011). MiR-96 and miR-183 detection in urine serve as potential tumor markers of urothelial carcinoma: correlation with stage and grade, and comparison with urinary cytology. Cancer Sci. 102: 522-529. http://dx.doi.org/10.1111/j.1349-7006.2010.01816.x Yoshino H, Seki N, Itesako T, Chiyomaru T, et al (2013). Aberrant expression of microRNAs in bladder cancer. Nat. Rev. Urol. 10: 396-404. http://dx.doi.org/10.1038/nrurol.2013.113 Yu S, Lu Z, Liu C, Meng Y, et al (2010). miRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer. Cancer Res. 70: 6015-6025. http://dx.doi.org/10.1158/0008-5472.CAN-09-4531 Zhang DQ, Zhou CK, Jiang XW, Chen J, et al (2014a). Increased expression of miR-222 is associated with poor prognosis in bladder cancer. World J. Surg. Oncol. 12: 241. http://dx.doi.org/10.1186/1477-7819-12-241 Zhang H, Qi F, Cao Y, Chen M, et al (2014b). Down-regulated microRNA-101 in bladder transitional cell carcinoma is associated with poor prognosis. Med. Sci. Monit. 20: 812-817. http://dx.doi.org/10.12659/MSM.890300 Zhang QH, Sun HM, Zheng RZ, Li YC, et al (2013). Meta-analysis of microRNA-183 family expression in human cancer studies comparing cancer tissues with noncancerous tissues. Gene 527: 26-32. http://dx.doi.org/10.1016/j.gene.2013.06.006 Zhao Q, Wang H, Yang M, Yang D, et al (2013). Expression of a tumor-associated gene, LASS2, in the human bladder carcinoma cell lines BIU-87, T24, EJ and EJ-M3. Exp. Ther. Med. 5: 942-946.