Publications

Found 14 results
Filters: Author is X.L. Liu  [Clear All Filters]
2016
X. L. Liu, Ren, J. K., and Su, Y. L., Association between IL-4 gene polymorphisms, IL-4 serum levels, and ankylosing spondylitis, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.REFERENCESBanchereau J, et al (2015). Generation of human B-cell lines dependent on CD40-ligation and interleukin-4. Front. Immunol. 6: 55. http://dx.doi.org/10.3389/fimmu.2015.00055 Baysal O, Durmuş B, Ersoy Y, Altay Z, et al (2011). Relationship between psychological status and disease activity and quality of life in ankylosing spondylitis. Rheumatol. Int. 31: 795-800. http://dx.doi.org/10.1007/s00296-010-1381-x Bellini A, Marini MA, Bianchetti L, Barczyk M, et al (2012). Interleukin (IL)-4, IL-13, and IL-17A differentially affect the profibrotic and proinflammatory functions of fibrocytes from asthmatic patients. Mucosal Immunol. 5: 140-149. http://dx.doi.org/10.1038/mi.2011.60 Boonen A, Braun J, van der Horst Bruinsma IE, Huang F, et al (2010). ASAS/WHO ICF Core Sets for ankylosing spondylitis (AS): how to classify the impact of AS on functioning and health. Ann. Rheum. Dis. 69: 102-107. http://dx.doi.org/10.1136/ard.2008.104117 Burton OT, Darling AR, Zhou JS, Noval-Rivas M, et al (2013). Direct effects of IL-4 on mast cells drive their intestinal expansion and increase susceptibility to anaphylaxis in a murine model of food allergy. Mucosal Immunol. 6: 740-750. http://dx.doi.org/10.1038/mi.2012.112 Chen WH, Yin HL, Lin HS, Chen CJ, et al (2011). Symptomatic noncompressive motoromyelopathy presents as early manifestation in ankylosing spondylitis. Rheumatol. Int. 31: 945-950. http://dx.doi.org/10.1007/s00296-010-1614-z Costenbader KH, Gay S, Alarcón-Riquelme ME, Iaccarino L, et al (2012). Genes, epigenetic regulation and environmental factors: which is the most relevant in developing autoimmune diseases? Autoimmun. Rev. 11: 604-609. http://dx.doi.org/10.1016/j.autrev.2011.10.022 Dean LE, Jones GT, MacDonald AG, Downham C, et al (2014). Global prevalence of ankylosing spondylitis. Rheumatology (Oxford) 53: 650-657. http://dx.doi.org/10.1093/rheumatology/ket387 Goie The HS, Steven MM, van der Linden SM, Cats A, et al (1985). Evaluation of diagnostic criteria for ankylosing spondylitis: a comparison of the Rome, New York and modified New York criteria in patients with a positive clinical history screening test for ankylosing spondylitis. Br. J. Rheumatol. 24: 242-249. http://dx.doi.org/10.1093/rheumatology/24.3.242 Harada Y, Tanaka S, Motomura Y, Harada Y, et al (2012). The 3′ enhancer CNS2 is a critical regulator of interleukin-4-mediated humoral immunity in follicular helper T cells. Immunity 36: 188-200. http://dx.doi.org/10.1016/j.immuni.2012.02.002 Hemmerle T, Neri D, et al (2014). The antibody-based targeted delivery of interleukin-4 and 12 to the tumor neovasculature eradicates tumors in three mouse models of cancer. Int. J. Cancer 134: 467-477. http://dx.doi.org/10.1002/ijc.28359 Huang F, Gu J, Zhu P, Bao C, et al (2014). Efficacy and safety of adalimumab in Chinese adults with active ankylosing spondylitis: results of a randomised, controlled trial. Ann. Rheum. Dis. 73: 587-594. http://dx.doi.org/10.1136/annrheumdis-2012-202533 Inanir A, Yigit S, Tekcan A, Tural S, et al (2013). IL-4 and MTHFR gene polymorphism in rheumatoid arthritis and their effects. Immunol. Lett. 152: 104-108. http://dx.doi.org/10.1016/j.imlet.2013.05.004 Cortes A, Hadler J, Pointon JP, Robinson PC, International Genetics of Ankylosing Spondylitis Consortium (IGAS)Australo-Anglo-American Spondyloarthritis Consortium (TASC)Groupe Française d’Etude Génétique des Spondylarthrites (GFEGS)Nord-Trøndelag Health Study (HUNT)Spondyloarthritis Research Consortium of Canada (SPARCC)Wellcome Trust Case Control Consortium 2 (WTCCC2)et al (2013). Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat. Genet. 45: 730-738. http://dx.doi.org/10.1038/ng.2667 Jenkins SJ, Ruckerl D, Thomas GD, Hewitson JP, et al (2013). IL-4 directly signals tissue-resident macrophages to proliferate beyond homeostatic levels controlled by CSF-1. J. Exp. Med. 210: 2477-2491. http://dx.doi.org/10.1084/jem.20121999 Jin GX, Duan JZ, Guo WL, Li L, et al (2013). Association between IL-1RN gene polymorphisms and susceptibility to ankylosing spondylitis: a large Human Genome Epidemiology review and meta-analysis. Genet. Mol. Res. 12: 1720-1730. http://dx.doi.org/10.4238/2013.May.21.3 Kassimos DG, Vassilakos J, Magiorkinis G, Garyfallos A, et al (2014). Prevalence and clinical manifestations of ankylosing spondylitis in young Greek males. Clin. Rheumatol. 33: 1303-1306. http://dx.doi.org/10.1007/s10067-014-2574-6 Kobak S, et al (2012). Efficacy and safety of adalimumab in a patient with ankylosing spondylitis on peritoneal dialysis. Rheumatol. Int. 32: 1785-1787. http://dx.doi.org/10.1007/s00296-010-1457-7 Lee SH, Lee EJ, Chung SW, Song R, et al (2013). Renal involvement in ankylosing spondylitis: prevalence, pathology, response to TNF-a blocker. Rheumatol. Int. 33: 1689-1692. http://dx.doi.org/10.1007/s00296-012-2624-9 Liang HE, Reinhardt RL, Bando JK, Sullivan BM, et al (2011). Divergent expression patterns of IL-4 and IL-13 define unique functions in allergic immunity. Nat. Immunol. 13: 58-66. http://dx.doi.org/10.1038/ni.2182 Limón-Camacho L, Vargas-Rojas MI, Vázquez-Mellado J, Casasola-Vargas J, et al (2012). In vivo peripheral blood proinflammatory T cells in patients with ankylosing spondylitis. J. Rheumatol. 39: 830-835. http://dx.doi.org/10.3899/jrheum.110862 Ma B, Yang B, Guo H, Wang Y, et al (2013). The association between tumor necrosis factor alpha promoter polymorphisms and ankylosing spondylitis: a meta-analysis. Hum. Immunol. 74: 1357-1362. http://dx.doi.org/10.1016/j.humimm.2013.06.037 Noack M, Miossec P, et al (2014). Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun. Rev. 13: 668-677. http://dx.doi.org/10.1016/j.autrev.2013.12.004 Spiess C, Bevers J3rdJackmanJ, Chiang N, et al (2013). Development of a human IgG4 bispecific antibody for dual targeting of interleukin-4 (IL-4) and interleukin-13 (IL-13) cytokines. J. Biol. Chem. 288: 26583-26593. http://dx.doi.org/10.1074/jbc.M113.480483 Suzuki A, Leland P, Joshi BH, Puri RK, et al (2015). Targeting of IL-4 and IL-13 receptors for cancer therapy. Cytokine 75: 79-88. http://dx.doi.org/10.1016/j.cyto.2015.05.026 Toellner KM, et al (2014). Cognate interactions: extrafollicular IL-4 drives germinal-center reactions, a new role for an old cytokine. Eur. J. Immunol. 44: 1917-1920. http://dx.doi.org/10.1002/eji.201444825 van der Heijde D, Zack D, Wajdula J, Sridharan S, et al (2014). Rates of serious infections, opportunistic infections, inflammatory bowel disease, and malignancies in subjects receiving etanercept vs. controls from clinical trials in ankylosing spondylitis: a pooled analysis. Scand. J. Rheumatol. 43: 49-53. http://dx.doi.org/10.3109/03009742.2013.834961 Vijayanand P, Seumois G, Simpson LJ, Abdul-Wajid S, et al (2012). Interleukin-4 production by follicular helper T cells requires the conserved Il4 enhancer hypersensitivity site V. Immunity 36: 175-187. http://dx.doi.org/10.1016/j.immuni.2011.12.014 Wallis SK, Cooney LA, Endres JL, Lee MJ, et al (2011). A polymorphism in the interleukin-4 receptor affects the ability of interleukin-4 to regulate Th17 cells: a possible immunoregulatory mechanism for genetic control of the severity of rheumatoid arthritis. Arthritis Res. Ther. 13: R15. http://dx.doi.org/10.1186/ar3239 Wang C, Liao Q, Hu Y, Zhong D, et al (2015). T lymphocyte subset imbalances in patients contribute to ankylosing spondylitis. Exp. Ther. Med. 9: 250-256. Wang CM, Ho HH, Chang SW, Wu YJ, et al (2012). ERAP1 genetic variations associated with HLA-B27 interaction and disease severity of syndesmophytes formation in Taiwanese ankylosing spondylitis. Arthritis Res. Ther. 14: R125. http://dx.doi.org/10.1186/ar3855 Zhang L, Li YG, Li YH, Qi L, et al (2012). Increased frequencies of Th22 cells as well as Th17 cells in the peripheral blood of patients with ankylosing spondylitis and rheumatoid arthritis. PLoS One 7: e31000. http://dx.doi.org/10.1371/journal.pone.0031000 Zhang L, Huang Y, Liu Z, Liu W, et al (2015). Dynamics of T-cell subsets and their relationship with oral and systemic opportunistic infections in HIV/AIDS patients during the first year of HAART in Guangxi, China. J. Med. Virol. 87: 1158-1167. http://dx.doi.org/10.1002/jmv.24177  
N. Long, Liu, N., Liu, X. L., Li, J., Cai, B. Y., Cai, X., Long, N., Liu, N., Liu, X. L., Li, J., Cai, B. Y., and Cai, X., Endometrial expression of telomerase, progesterone, and estrogen receptors during the implantation window in patients with recurrent implantation failure, vol. 15, p. -, 2016.
N. Long, Liu, N., Liu, X. L., Li, J., Cai, B. Y., Cai, X., Long, N., Liu, N., Liu, X. L., Li, J., Cai, B. Y., and Cai, X., Endometrial expression of telomerase, progesterone, and estrogen receptors during the implantation window in patients with recurrent implantation failure, vol. 15, p. -, 2016.
2012
Y. Liu, Liu, X. L., He, H., and Gu, Y. L., Four SNPs of insulin-induced gene 1 associated with growth and carcass traits in Qinchuan cattle in China, vol. 11, pp. 1209-1216, 2012.
Engelking LJ, Liang G, Hammer RE, Takaishi K, et al. (2005). Schoenheimer effect explained--feedback regulation of cholesterol synthesis in mice mediated by Insig proteins. J. Clin. Invest. 115: 2489-2498. http://dx.doi.org/10.1172/JCI25614 PMid:16100574 PMCid:1184040   Espenshade PJ and Hughes AL (2007). Regulation of sterol synthesis in eukaryotes. Annu. Rev. Genet. 41: 401-427. http://dx.doi.org/10.1146/annurev.genet.41.110306.130315 PMid:17666007   Han LQ, Li HJ, Wang YY, Zhu HS, et al. (2010). mRNA abundance and expression of SLC27A, ACC, SCD, FADS, LPIN, INSIG, and PPARGC1 gene isoforms in mouse mammary glands during the lactation cycle. Genet. Mol. Res. 9: 1250-1257. http://dx.doi.org/10.4238/vol9-2gmr814 PMid:20603810   Herbert A, Gerry NP, McQueen MB, Heid IM, et al. (2006). A common genetic variant is associated with adult and childhood obesity. Science 312: 279-283. http://dx.doi.org/10.1126/science.1124779 PMid:16614226   Horton JD (2002). Sterol regulatory element-binding proteins: transcriptional activators of lipid synthesis. Biochem. Soc. Trans. 30: 1091-1095. http://dx.doi.org/10.1042/BST0301091 PMid:12440980   Hua X, Wu J, Goldstein JL, Brown MS, et al. (1995). Structure of the human gene encoding sterol regulatory element binding protein-1 (SREBF1) and localization of SREBF1 and SREBF2 to chromosomes 17p11.2 and 22q13. Genomics 25: 667-673. http://dx.doi.org/10.1016/0888-7543(95)80009-B   Knoll A, Putnova L, Dvorak J and Cepica S (2000). A NciI PCR-RFLP within intron 2 of the porcine insulin-like growth factor 2 (IGF2) gene. Anim. Genet. 31: 150-151. http://dx.doi.org/10.1046/j.1365-2052.2000.00583.x PMid:10782228   Krapivner S, Chernogubova E, Ericsson M, Ahlbeck-Glader C, et al. (2007). Human evidence for the involvement of insulin-induced gene 1 in the regulation of plasma glucose concentration. Diabetologia 50: 94-102. http://dx.doi.org/10.1007/s00125-006-0479-x PMid:17106696   Liu GL, Jiang SW, Xiong YZ, Zheng R, et al. (2003). Association of PCR-RFLP polymorphisms of IGF2 gene with fat deposit related traits in pig resource family. Yi Chuan Xue Bao 30: 1107-1112. PMid:14986427   Liu YX, Zhou X, Li DQ, Cui QW, et al. (2010). Association of ATP1A1 gene polymorphism with heat tolerance traits in dairy cattle. Genet. Mol. Res. 9: 891-896. http://dx.doi.org/10.4238/vol9-2gmr769 PMid:20467982   Nei M and Roychoudhury AK (1974). Sampling variances of heterozygosity and genetic distance. Genetics 76: 379-390. PMid:4822472 PMCid:1213072   Peng Y, Schwarz EJ, Lazar MA, Genin A, et al. (1997). Cloning, human chromosomal assignment, and adipose and hepatic expression of the CL-6/INSIG1 gene. Genomics 43: 278-284. http://dx.doi.org/10.1006/geno.1997.4821 PMid:9268630   Saunders MA, Hammer MF and Nachman MW (2002). Nucleotide variability at G6pd and the signature of malarial selection in humans. Genetics 162: 1849-1861. PMid:12524354 PMCid:1462360   Saunders MA, Slatkin M, Garner C, Hammer MF, et al. (2005). The extent of linkage disequilibrium caused by selection on G6PD in humans. Genetics 171: 1219-1229. http://dx.doi.org/10.1534/genetics.105.048140 PMid:16020776 PMCid:1456824   Sever N, Song BL, Yabe D, Goldstein JL, et al. (2003a). Insig-dependent ubiquitination and degradation of mammalian 3-hydroxy-3-methylglutaryl-CoA reductase stimulated by sterols and geranylgeraniol. J. Biol. Chem. 278: 52479- 52490. http://dx.doi.org/10.1074/jbc.M310053200 PMid:14563840   Sever N, Yang T, Brown MS, Goldstein JL, et al. (2003b). Accelerated degradation of HMG CoA reductase mediated by binding of insig-1 to its sterol-sensing domain. Mol. Cell 11: 25-33. http://dx.doi.org/10.1016/S1097-2765(02)00822-5   Smith EM, Zhang Y, Baye TM, Gawrieh S, et al. (2010). INSIG1 influences obesity-related hypertriglyceridemia in humans. J. Lipid. Res. 51: 701-708. http://dx.doi.org/10.1194/jlr.M001404 PMid:19965593 PMCid:2838707   Sun LP, Li L, Goldstein JL and Brown MS (2005). Insig required for sterol-mediated inhibition of Scap/SREBP binding to COPII proteins in vitro. J. Biol. Chem. 280: 26483-26490. http://dx.doi.org/10.1074/jbc.M504041200 PMid:15899885   Sun LP, Seemann J, Goldstein JL and Brown MS (2007). Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: Insig renders sorting signal in Scap inaccessible to COPII proteins. Proc. Natl. Acad. Sci. U. S. A. 104: 6519-6526. http://dx.doi.org/10.1073/pnas.0700907104 PMid:17428919 PMCid:1851663   Szopa M, Meirhaeghe A, Luan J, Moreno LA, et al. (2010). No association between polymorphisms in the INSIG1 gene and the risk of type 2 diabetes and related traits. Am. J. Clin. Nutr. 92: 252-257. http://dx.doi.org/10.3945/ajcn.2010.29422 PMid:20444954   Takaishi K, Duplomb L, Wang MY, Li J, et al. (2004). Hepatic insig-1 or -2 overexpression reduces lipogenesis in obese Zucker diabetic fatty rats and in fasted/refed normal rats. Proc. Natl. Acad. Sci. U. S. A. 101: 7106-7111. http://dx.doi.org/10.1073/pnas.0401715101 PMid:15096598 PMCid:406473   Tiwari AK, Zai CC, Meltzer HY, Lieberman JA, et al. (2010). Association study of polymorphisms in insulin induced gene 2 (INSIG2) with antipsychotic-induced weight gain in European and African-American schizophrenia patients. Hum. Psychopharmacol. 25: 253-259. http://dx.doi.org/10.1002/hup.1111 PMid:20373477   Toomajian C and Kreitman M (2002). Sequence variation and haplotype structure at the human HFE locus. Genetics 161: 1609-1623. PMid:12196404 PMCid:1462210   Yabe D, Brown MS and Goldstein JL (2002). Insig-2, a second endoplasmic reticulum protein that binds SCAP and blocks export of sterol regulatory element-binding proteins. Proc. Natl. Acad. Sci. U. S. A. 99: 12753-12758. http://dx.doi.org/10.1073/pnas.162488899 PMid:12242332 PMCid:130532   Yabe D, Komuro R, Liang G, Goldstein JL, et al. (2003). Liver-specific mRNA for Insig-2 down-regulated by insulin: implications for fatty acid synthesis. Proc. Natl. Acad. Sci. U. S. A. 100: 3155-3160. http://dx.doi.org/10.1073/pnas.0130116100 PMid:12624180 PMCid:152262