Publications

Found 19 results
Filters: Author is X.F. Wang  [Clear All Filters]
2016
T. Wang, Zou, Q. D., Qi, S. Y., Wang, X. F., Wu, Y. Y., Liu, N., Zhang, Y. M., Zhang, Z. J., Li, H. T., Wang, T., Zou, Q. D., Qi, S. Y., Wang, X. F., Wu, Y. Y., Liu, N., Zhang, Y. M., Zhang, Z. J., and Li, H. T., Analysis of genetic diversity and population structure in a tomato (Solanum lycopersicum L.) germplasm collection based on single nucleotide polymorphism markers, vol. 15, p. -, 2016.
T. Wang, Zou, Q. D., Qi, S. Y., Wang, X. F., Wu, Y. Y., Liu, N., Zhang, Y. M., Zhang, Z. J., Li, H. T., Wang, T., Zou, Q. D., Qi, S. Y., Wang, X. F., Wu, Y. Y., Liu, N., Zhang, Y. M., Zhang, Z. J., and Li, H. T., Analysis of genetic diversity and population structure in a tomato (Solanum lycopersicum L.) germplasm collection based on single nucleotide polymorphism markers, vol. 15, p. -, 2016.
D. M. Zhang, Pan, Y. X., Zhang, Y., Li, Z. K., Wu, L. Q., Liu, H. W., Zhang, G. Y., Wang, X. F., Ma, Z. Y., Zhang, D. M., Pan, Y. X., Zhang, Y., Li, Z. K., Wu, L. Q., Liu, H. W., Zhang, G. Y., Wang, X. F., and Ma, Z. Y., Antisense expression of Gossypium hirsutum UDP-glucuronate decarboxylase in Arabidopsis leads to changes in cell wall components, vol. 15, p. -, 2016.
D. M. Zhang, Pan, Y. X., Zhang, Y., Li, Z. K., Wu, L. Q., Liu, H. W., Zhang, G. Y., Wang, X. F., Ma, Z. Y., Zhang, D. M., Pan, Y. X., Zhang, Y., Li, Z. K., Wu, L. Q., Liu, H. W., Zhang, G. Y., Wang, X. F., and Ma, Z. Y., Antisense expression of Gossypium hirsutum UDP-glucuronate decarboxylase in Arabidopsis leads to changes in cell wall components, vol. 15, p. -, 2016.
X. R. Song, Tang, S. H., Tang, Z. Q., Yang, X. M., Wang, X. W., Wang, X. F., Xu, P. J., Ren, G. W., Song, X. R., Tang, S. H., Tang, Z. Q., Yang, X. M., Wang, X. W., Wang, X. F., Xu, P. J., and Ren, G. W., Genetic variability of Myzus persicae nicotianae densovirus based on partial NS and VP gene sequences, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS Research supported by Shanghai Tobacco Co., Ltd (#SZBCW2015-00876), the Science Foundation for Young Scholars of Institute of Tobacco Research of CAAS (#2015B03) and the Agricultural Science and Technology Innovation Program (#ASTIP-TRIC04). REFERENCES Allendorf FW (1983). Isolation, gene flow and genetic differentiation among populations. In: Genetics and conservation (Schonewald-Cox CM, Chambers SM, MacBryde B and Thomas L, eds.). Benjamin-Cummings, London, 51-65. Bass C, Zimmer CT, Riveron JM, Wilding CS, et al (2013). Gene amplification and microsatellite polymorphism underlie a recent insect host shift. Proc. Natl. Acad. Sci. USA 110: 19460-19465. http://dx.doi.org/10.1073/pnas.1314122110 Berns KI, Bergoin M, Bloom M, Lederman M, et al. (1995). The family Parvoviridae. In: Virus taxonomy: classification and nomenclature of viruses. Sixth report of the International Committee on Taxonomy of Viruses (Murphy FA, Fauquet CM, Bishop DHL, Ghabrial SA, et al., eds.). Springer-Verlag, Vienna, 169-178. Blackman RL and Eastop VF (1984). Aphids on the world’s crops: an identification and information guide. John Wiley & Sons, Hoboken. Cotmore SF, Agbandje-McKenna M, Chiorini JA, Mukha DV, et al (2014). The family Parvoviridae. Arch. Virol. 159: 1239-1247. http://dx.doi.org/10.1007/s00705-013-1914-1 Evans N, Paulay G, et al (2012). DNA barcoding methods for invertebrates. Methods Mol. Biol. 858: 47-77. http://dx.doi.org/10.1007/978-1-61779-591-6_4 Excoffier L, Lischer HE, et al (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10: 564-567. http://dx.doi.org/10.1111/j.1755-0998.2010.02847.x Fédière G, et al (2000). Epidemiology and pathology of Densovirinae. Contrib. Microbiol. 4: 1-11. http://dx.doi.org/10.1159/000060332 Flint-Garcia SA, Thornsberry JM, BucklerES4thet al (2003). Structure of linkage disequilibrium in plants. Annu. Rev. Plant Biol. 54: 357-374. http://dx.doi.org/10.1146/annurev.arplant.54.031902.134907 Gao F, Jin J, Zou W, Liao F, et al (2016). Geographically driven adaptation of chilli veinal mottle virus revealed by genetic diversity analysis of the coat protein gene. Arch. Virol. 161: 1329-1333. http://dx.doi.org/10.1007/s00705-016-2761-7 Harpending HC, Batzer MA, Gurven M, Jorde LB, et al (1998). Genetic traces of ancient demography. Proc. Natl. Acad. Sci. USA 95: 1961-1967. http://dx.doi.org/10.1073/pnas.95.4.1961 Hebert PD, Gregory TR, et al (2005). The promise of DNA barcoding for taxonomy. Syst. Biol. 54: 852-859. http://dx.doi.org/10.1080/10635150500354886 Li JB, Ren ZM, et al (2009). Genetic diversity among Schlechtendalia chinensis individuals revealed by Cyt b sequences. J. Fudan Univ. Nat. Sci. 48: 680-686. Librado P, Rozas J, et al (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451-1452. http://dx.doi.org/10.1093/bioinformatics/btp187 Llewellyn KS, Loxdale HD, Harrington R, Brookes CP, et al (2003). Migration and genetic structure of the grain aphid (Sitobion avenae) in Britain related to climate and clonal fluctuation as revealed using microsatellites. Mol. Ecol. 12: 21-34. http://dx.doi.org/10.1046/j.1365-294X.2003.01703.x Loxdale HD, Hardie J, Halbert S, Foottit R, et al (1993). The relative importance of short- and long-range movement of flying aphids. Biol. Rev. Camb. Philos. Soc. 68: 291-311. http://dx.doi.org/10.1111/j.1469-185X.1993.tb00998.x Meynadier G, Vago C, Plantevin G, Atger P, et al (1964). Virose d’un type inhabituel chez le lépidoptère Galleria mellonella L. Revue de Zool. Agric. et Appliquée 63: 207-208. Mutuel D, Ravallec M, Chabi B, Multeau C, et al (2010). Pathogenesis of Junonia coenia densovirus in Spodoptera frugiperda: a route of infection that leads to hypoxia. Virology 403: 137-144. http://dx.doi.org/10.1016/j.virol.2010.04.003 Nohara K, Takeuchi H, Tsuzaki T, Suzuki N, et al (2010). Genetic variability and stock structure of red tilefish Branchiostegus japonicus inferred from mtDNA sequence analysis. Fish. Sci. 76: 75-81. http://dx.doi.org/10.1007/s12562-009-0188-8 Ryabov EV, Keane G, Naish N, Evered C, et al (2009). Densovirus induces winged morphs in asexual clones of the rosy apple aphid, Dysaphis plantaginea. Proc. Natl. Acad. Sci. USA 106: 8465-8470. http://dx.doi.org/10.1073/pnas.0901389106 Tajima F, et al (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585-595. Tamura K, Stecher G, Peterson D, Filipski A, et al (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729. http://dx.doi.org/10.1093/molbev/mst197 Tang S, Song X, Xue L, Wang X, et al (2016). Characterization and distribution analysis of a densovirus infecting Myzus persicae nicotianae (Hemiptera: Aphididae). J. Econ. Entomol. 109: 580-587. http://dx.doi.org/10.1093/jee/tov399 Taylor HR, Harris WE, et al (2012). An emergent science on the brink of irrelevance: a review of the past 8 years of DNA barcoding. Mol. Ecol. Resour. 12: 377-388. http://dx.doi.org/10.1111/j.1755-0998.2012.03119.x Thompson JD, Higgins DG, Gibson TJ, et al (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. http://dx.doi.org/10.1093/nar/22.22.4673 Wang XY, Xu GQ, et al (2014). Genetic differentiation and gene flow among geographic populations of Spodoptera exigua (Lepidoptera: Noctuidae) in China. Acta Entomol. Sin. 57: 1061-1074. Wright S (1984). Evolution and the genetics of populations, volume 3: experimental results and evolutionary deductions. University of Chicago Press, Chicago. Xu P, Cheng P, Liu Z, Li Y, et al (2012). Complete genome sequence of a monosense densovirus infecting the cotton bollworm, Helicoverpa armigera. J. Virol. 86: 10909. http://dx.doi.org/10.1128/JVI.01912-12 Xu P, Liu Y, Graham RI, Wilson K, et al (2014). Densovirus is a mutualistic symbiont of a global crop pest (Helicoverpa armigera) and protects against a baculovirus and Bt biopesticide. PLoS Pathog. 10: e1004490. http://dx.doi.org/10.1371/journal.ppat.1004490 Zhang B, Ma C, Edwards O, Fuller S, et al (2014). The mitochondrial genome of the Russian wheat aphid Diuraphis noxia: large repetitive sequences between trnE and trnF in aphids. Gene 533: 253-260. http://dx.doi.org/10.1016/j.gene.2013.09.064 Zhao C, Yang XM, Tang SH, Xu PJ, et al (2015a). Population genetic structure of Myzus persicae nicotianae (Hemiptera: Aphididae) in China by microsatellite analysis. Genet. Mol. Res. 14: 17159-17169. http://dx.doi.org/10.4238/2015.December.16.16 Zhao CL, Chen H, Song J, Cui BK, et al (2015b). Phylogeny and taxonomy of the genus Abundisporus (Polyporales, Basidiomycota). Mycol. Prog. 14: 38. http://dx.doi.org/10.1007/s11557-015-1062-y
X. R. Song, Tang, S. H., Tang, Z. Q., Yang, X. M., Wang, X. W., Wang, X. F., Xu, P. J., Ren, G. W., Song, X. R., Tang, S. H., Tang, Z. Q., Yang, X. M., Wang, X. W., Wang, X. F., Xu, P. J., and Ren, G. W., Genetic variability of Myzus persicae nicotianae densovirus based on partial NS and VP gene sequences, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS Research supported by Shanghai Tobacco Co., Ltd (#SZBCW2015-00876), the Science Foundation for Young Scholars of Institute of Tobacco Research of CAAS (#2015B03) and the Agricultural Science and Technology Innovation Program (#ASTIP-TRIC04). REFERENCES Allendorf FW (1983). Isolation, gene flow and genetic differentiation among populations. In: Genetics and conservation (Schonewald-Cox CM, Chambers SM, MacBryde B and Thomas L, eds.). Benjamin-Cummings, London, 51-65. Bass C, Zimmer CT, Riveron JM, Wilding CS, et al (2013). Gene amplification and microsatellite polymorphism underlie a recent insect host shift. Proc. Natl. Acad. Sci. USA 110: 19460-19465. http://dx.doi.org/10.1073/pnas.1314122110 Berns KI, Bergoin M, Bloom M, Lederman M, et al. (1995). The family Parvoviridae. In: Virus taxonomy: classification and nomenclature of viruses. Sixth report of the International Committee on Taxonomy of Viruses (Murphy FA, Fauquet CM, Bishop DHL, Ghabrial SA, et al., eds.). Springer-Verlag, Vienna, 169-178. Blackman RL and Eastop VF (1984). Aphids on the world’s crops: an identification and information guide. John Wiley & Sons, Hoboken. Cotmore SF, Agbandje-McKenna M, Chiorini JA, Mukha DV, et al (2014). The family Parvoviridae. Arch. Virol. 159: 1239-1247. http://dx.doi.org/10.1007/s00705-013-1914-1 Evans N, Paulay G, et al (2012). DNA barcoding methods for invertebrates. Methods Mol. Biol. 858: 47-77. http://dx.doi.org/10.1007/978-1-61779-591-6_4 Excoffier L, Lischer HE, et al (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10: 564-567. http://dx.doi.org/10.1111/j.1755-0998.2010.02847.x Fédière G, et al (2000). Epidemiology and pathology of Densovirinae. Contrib. Microbiol. 4: 1-11. http://dx.doi.org/10.1159/000060332 Flint-Garcia SA, Thornsberry JM, BucklerES4thet al (2003). Structure of linkage disequilibrium in plants. Annu. Rev. Plant Biol. 54: 357-374. http://dx.doi.org/10.1146/annurev.arplant.54.031902.134907 Gao F, Jin J, Zou W, Liao F, et al (2016). Geographically driven adaptation of chilli veinal mottle virus revealed by genetic diversity analysis of the coat protein gene. Arch. Virol. 161: 1329-1333. http://dx.doi.org/10.1007/s00705-016-2761-7 Harpending HC, Batzer MA, Gurven M, Jorde LB, et al (1998). Genetic traces of ancient demography. Proc. Natl. Acad. Sci. USA 95: 1961-1967. http://dx.doi.org/10.1073/pnas.95.4.1961 Hebert PD, Gregory TR, et al (2005). The promise of DNA barcoding for taxonomy. Syst. Biol. 54: 852-859. http://dx.doi.org/10.1080/10635150500354886 Li JB, Ren ZM, et al (2009). Genetic diversity among Schlechtendalia chinensis individuals revealed by Cyt b sequences. J. Fudan Univ. Nat. Sci. 48: 680-686. Librado P, Rozas J, et al (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451-1452. http://dx.doi.org/10.1093/bioinformatics/btp187 Llewellyn KS, Loxdale HD, Harrington R, Brookes CP, et al (2003). Migration and genetic structure of the grain aphid (Sitobion avenae) in Britain related to climate and clonal fluctuation as revealed using microsatellites. Mol. Ecol. 12: 21-34. http://dx.doi.org/10.1046/j.1365-294X.2003.01703.x Loxdale HD, Hardie J, Halbert S, Foottit R, et al (1993). The relative importance of short- and long-range movement of flying aphids. Biol. Rev. Camb. Philos. Soc. 68: 291-311. http://dx.doi.org/10.1111/j.1469-185X.1993.tb00998.x Meynadier G, Vago C, Plantevin G, Atger P, et al (1964). Virose d’un type inhabituel chez le lépidoptère Galleria mellonella L. Revue de Zool. Agric. et Appliquée 63: 207-208. Mutuel D, Ravallec M, Chabi B, Multeau C, et al (2010). Pathogenesis of Junonia coenia densovirus in Spodoptera frugiperda: a route of infection that leads to hypoxia. Virology 403: 137-144. http://dx.doi.org/10.1016/j.virol.2010.04.003 Nohara K, Takeuchi H, Tsuzaki T, Suzuki N, et al (2010). Genetic variability and stock structure of red tilefish Branchiostegus japonicus inferred from mtDNA sequence analysis. Fish. Sci. 76: 75-81. http://dx.doi.org/10.1007/s12562-009-0188-8 Ryabov EV, Keane G, Naish N, Evered C, et al (2009). Densovirus induces winged morphs in asexual clones of the rosy apple aphid, Dysaphis plantaginea. Proc. Natl. Acad. Sci. USA 106: 8465-8470. http://dx.doi.org/10.1073/pnas.0901389106 Tajima F, et al (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585-595. Tamura K, Stecher G, Peterson D, Filipski A, et al (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729. http://dx.doi.org/10.1093/molbev/mst197 Tang S, Song X, Xue L, Wang X, et al (2016). Characterization and distribution analysis of a densovirus infecting Myzus persicae nicotianae (Hemiptera: Aphididae). J. Econ. Entomol. 109: 580-587. http://dx.doi.org/10.1093/jee/tov399 Taylor HR, Harris WE, et al (2012). An emergent science on the brink of irrelevance: a review of the past 8 years of DNA barcoding. Mol. Ecol. Resour. 12: 377-388. http://dx.doi.org/10.1111/j.1755-0998.2012.03119.x Thompson JD, Higgins DG, Gibson TJ, et al (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. http://dx.doi.org/10.1093/nar/22.22.4673 Wang XY, Xu GQ, et al (2014). Genetic differentiation and gene flow among geographic populations of Spodoptera exigua (Lepidoptera: Noctuidae) in China. Acta Entomol. Sin. 57: 1061-1074. Wright S (1984). Evolution and the genetics of populations, volume 3: experimental results and evolutionary deductions. University of Chicago Press, Chicago. Xu P, Cheng P, Liu Z, Li Y, et al (2012). Complete genome sequence of a monosense densovirus infecting the cotton bollworm, Helicoverpa armigera. J. Virol. 86: 10909. http://dx.doi.org/10.1128/JVI.01912-12 Xu P, Liu Y, Graham RI, Wilson K, et al (2014). Densovirus is a mutualistic symbiont of a global crop pest (Helicoverpa armigera) and protects against a baculovirus and Bt biopesticide. PLoS Pathog. 10: e1004490. http://dx.doi.org/10.1371/journal.ppat.1004490 Zhang B, Ma C, Edwards O, Fuller S, et al (2014). The mitochondrial genome of the Russian wheat aphid Diuraphis noxia: large repetitive sequences between trnE and trnF in aphids. Gene 533: 253-260. http://dx.doi.org/10.1016/j.gene.2013.09.064 Zhao C, Yang XM, Tang SH, Xu PJ, et al (2015a). Population genetic structure of Myzus persicae nicotianae (Hemiptera: Aphididae) in China by microsatellite analysis. Genet. Mol. Res. 14: 17159-17169. http://dx.doi.org/10.4238/2015.December.16.16 Zhao CL, Chen H, Song J, Cui BK, et al (2015b). Phylogeny and taxonomy of the genus Abundisporus (Polyporales, Basidiomycota). Mycol. Prog. 14: 38. http://dx.doi.org/10.1007/s11557-015-1062-y
2015
W. H. Zheng, Zhuo, Y., Liang, L., Ding, W. Y., Liang, L. Y., and Wang, X. F., Conservation and population genetic diversity of Curcuma wenyujin (Zingiberaceae), a multifunctional medicinal herb, vol. 14, pp. 10422-10432, 2015.
S. Zhang, Li, C., Li, Q., Wang, Q. N., Huang, S. H., Zhang, Y. F., and Wang, X. F., Functional divergence of BAK1 genes from Brassica rapa in regulating plant architecture, vol. 14, pp. 14587-14596, 2015.
X. X. Liu, Lang, S. R., Su, L. Q., Liu, X., and Wang, X. F., Improved Agrobacterium-mediated transformation and high efficiency of root formation from hypocotyl meristem of spring Brassica napus ‘Precocity’ cultivar, vol. 14, pp. 16840-16855, 2015.
Y. Yu, Lv, F., Lin, H., Qian, G., Jiang, Y. S., Pang, L. X., Wang, Y. P., Wang, X. F., Kang, Y. M., Li, C. B., Liu, Q., Xu, J. Z., and You, W., Mitochondrial ND3 G10398A mutation: a biomarker for breast cancer, vol. 14, pp. 17426-17431, 2015.
M. B. Luan, Chen, B. F., Zou, Z. Z., Zhu, J. J., Wang, X. F., Xu, Y., Sun, Z. M., and Chen, J. H., Molecular identity of ramie germplasms using simple sequence repeat markers, vol. 14, pp. 2302-2311, 2015.
Y. X. Lin, Lin, K., Liu, X. X., Kang, D. Z., Ye, Z. X., Wang, X. F., Zheng, S. F., Yu, L. H., and Lin, Z. Y., PI3K-AKT pathway polymerase chain reaction (PCR) array analysis of epilepsy induced by type II focal cortical dysplasia, vol. 14, pp. 9994-10000, 2015.
C. Zhao, Yang, X. M., Tang, S. H., Xu, P. J., Bian, W. J., Wang, X. F., Wang, X. W., and Ren, G. W., Population genetic structure of Myzus persicae nicotianae (Hemiptera: Aphididae) in China by microsatellite analysis, vol. 14, pp. 17159-17169, 2015.
2012
H. W. Liu, Shi, R. F., Wang, X. F., Pan, Y. X., Zang, G. Y., and Ma, Z. Y., Cloning of a phosphatidylinositol 4-kinase gene based on fiber strength transcriptome QTL mapping in the cotton species Gossypium barbadense, vol. 11, pp. 3367-3378, 2012.
Arioli T (2005). Genetic engineering for cotton fiber improvement. Pflanzenschutz-Nachrichten Bayer 58: 140-150.   Balla A and Balla T (2006). Phosphatidylinositol 4-kinases: old enzymes with emerging functions. Trends Cell Biol. 16: 351-361. http://dx.doi.org/10.1016/j.tcb.2006.05.003 PMid:16793271   Carricaburu V, Lamia KA, Lo E, Favereaux L, et al. (2003). The phosphatidylinositol (PI)-5-phosphate 4-kinase type II enzyme controls insulin signaling by regulating PI-3,4,5-trisphosphate degradation. Proc. Natl. Acad. Sci. U. S. A. 100: 9867-9872. http://dx.doi.org/10.1073/pnas.1734038100 PMid:12897244 PMCid:187868   Coburn RF, Labelle EF and Baron CB (2006). Polyamines, PI(4,5)P2, and actin polymerization. J. Cell Physiol. 209: 405-412. http://dx.doi.org/10.1002/jcp.20729 PMid:16883568   Delmer DP, Pear JR, Andrawis A and Stalker DM (1995). Genes encoding small GTP-binding proteins analogous to mammalian rac are preferentially expressed in developing cotton fibers. Mol. Gen. Genet. 248: 43-51. http://dx.doi.org/10.1007/BF02456612 PMid:7651326   Felsenstein J (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791. http://dx.doi.org/10.2307/2408678   Galvão RM, Kota U, Soderblom EJ, Goshe MB, et al. (2008). Characterization of a new family of protein kinases from Arabidopsis containing phosphoinositide 3/4-kinase and ubiquitin-like domains. Biochem. J. 409: 117-127. http://dx.doi.org/10.1042/BJ20070959 PMid:17880284   Lingaraj T, Donovan J, Li Z, Li P, et al. (2008). A high-throughput liposome substrate assay with automated lipid extraction process for PI 3-kinase. J. Biomol. Screen. 13: 906-911. http://dx.doi.org/10.1177/1087057108324498 PMid:18812570   Liu HW, Wang XF, Pan YX, Shi RF, et al. (2009). Mining cotton fiber strength candidate genes based on transcriptome mapping. Chin. Sci. Bull. 54: 4651-4657. http://dx.doi.org/10.1007/s11434-009-0708-z   Oude Weernink PA, Han L, Jakobs KH and Schmidt M (2007). Dynamic phospholipid signaling by G protein-coupled receptors. Biochim. Biophys. Acta 1768: 888-900. http://dx.doi.org/10.1016/j.bbamem.2006.09.012 PMid:17054901   Potikha TS, Collins CC, Johnson DI, Delmer DP, et al. (1999). The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers. Plant Physiol. 119: 849-858. http://dx.doi.org/10.1104/pp.119.3.849 PMid:10069824 PMCid:32100   Preuss ML, Schmitz AJ, Thole JM, Bonner HK, et al. (2006). A role for the RabA4b effector protein PI-4Kbeta1 in polarized expansion of root hair cells in Arabidopsis thaliana. J. Cell Biol. 172: 991-998. http://dx.doi.org/10.1083/jcb.200508116 PMid:16567499 PMCid:2063757   Xue HW, Pical C, Brearley C, Elge S, et al. (1999). A plant 126-kDa phosphatidylinositol 4-kinase with a novel repeat structure. Cloning and functional expression in baculovirus-infected insect cells. J. Biol. Chem. 274: 5738-5745. http://dx.doi.org/10.1074/jbc.274.9.5738 PMid:10026194
2011
Y. Zhang, Wang, X. F., Li, Z. K., Zhang, G. Y., and Ma, Z. Y., Assessing genetic diversity of cotton cultivars using genomic and newly developed expressed sequence tag-derived microsatellite markers, vol. 10, pp. 1462-1470, 2011.
Abdalla AM, Reddy OUK, El-Zik KM and Pepper AE (2001). Genetic diversity and relationships of diploid and tetraploid cottons revealed using AFLP. Theor. Appl. Genet. 102: 222-229. doi:10.1007/s001220051639 Anderson JA, Churchill GA, Autrique JE, Tanksley SD, et al. (1993). Optimizing parental selection for genetic linkage maps. Genome 36: 181-186. doi:10.1139/g93-024 PMid:18469981 Brubaker CL and Wendel JF (1994). Reevaluating the origin of domesticated cotton (Gossypium hirsutum; Malvaceae) using nuclear restriction fragment length polymorphisms (RFLPs). Am. J. Bot. 81: 1309-1326. doi:10.2307/2445407 Gutiérrez OA, Basu S, Saha S, Jenkins JN, et al. (2002). Genetic distance among selected cotton genotypes and its relationship with F2 performance. Crop Sci. 42: 1841-1847. doi:10.2135/cropsci2002.1841 Iqbal MJ, Aziz N, Saeed NA, Zafar Y, et al. (1997). Genetic diversity evaluation of some elite cotton varieties by RAPD analysis. Theor. Appl. Genet. 94: 139-144. doi:10.1007/s001220050392 PMid:19352756 Lacape JM, Dessauw D, Rajab M, Noyer JL, et al. (2007). Microsatellite diversity in tetraploid Gossypium germplasm: assembling a highly informative genotyping set of cotton SSRs. Mol. Breed. 19: 45-58. doi:10.1007/s11032-006-9042-1 Liu D, Guo X, Lin Z, Nie Y, et al. (2006). Genetic diversity of Asian cotton (Gossypium arboretum L) in China evaluated by microsatellite analysis. Genet. Resour. Crop Evol. 53: 1145-1152. doi:10.1007/s10722-005-1304-y Liu S, Saha S, Stelly D, Burr B, et al. (2000a). Chromosomal assignment of microsatellite loci in cotton. J. Hered. 91: 326-332. doi:10.1093/jhered/91.4.326 Liu S, Cantrell RG, McCarty JC and Stewart JM (2000b). Simple sequence repeat-based assessment of genetic diversity in cotton race stock accessions. Crop Sci. 40: 1459-1469. doi:10.2135/cropsci2000.4051459x Monica AM, Robert RK, Natalie CU, William LR, et al. (2004). Genetic diversity of public inbreds of sorghum determined by mapped AFLP and SSR markers. Crop Sci. 44: 1236-1244. doi:10.2135/cropsci2004.1236 Morgante M, Hanafey M and Powell W (2002). Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat. Genet. 30: 194-200. doi:10.1038/ng822 PMid:11799393 Multani DS and Lyon BR (1995). Genetic fingerprinting of Australian cotton cultivars with RAPD markers. Genome 38: 1005-1008. doi:10.1139/g95-132 PMid:18470223 Murtaza N (2006). Cotton genetic diversity study by AFLP markers. Electron. J. Biotechnol. 9: 457-460. doi:10.2225/vol9-issue4-fulltext-9 Nei M and Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273. doi:10.1073/pnas.76.10.5269 Park YH, Alabady MS, Ulloa M, Sickler B, et al. (2005). Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred line cotton population. Mol. Genet. Genomics 274: 428-441. doi:10.1007/s00438-005-0037-0 PMid:16187061 Reddy OUK, Pepper AE, Abdurakhmonov I, Saha S, et al. (2001). New dinucleotide and trinucleotide microsatellite marker resources for cotton genome research. J. Cotton Sci. 5: 103-113. Rohlf FJ (2000). NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System, Version 2.1. User Guide. Exeter Software, New York. Rong J, Abbey C, Bowers JE, Brubaker CL, et al. (2004). A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics 166: 389-417. doi:10.1534/genetics.166.1.389 PMid:15020432    PMCid:1470701 Saha S, Wu J, Jenkins JN, McCarty JC Jr, et al. (2004). Effect of chromosome substitutions from Gossypium barbadense L.3-79 into G. hirsutum L. TM-1 on agronomic and fiber traits. J. Cotton Sci. 8: 162-169. Sun DL, Sun JL, Jia YH, Ma ZY, et al. (2009). Genetic diversiry of colored analyzed by simple sequence repeat markers. Int. J. Plant Sci. 170: 76-82. doi:10.1086/593037 Tatineni V, Canterell RG and Davis DD (1996). Genetic diversity in elite cotton germplasm determined by morphological characteristics and RAPDs. Crop Sci. 36: 186-192. doi:10.2135/cropsci1996.0011183X003600010033x Turkoglu Z, Bilgener S, Ercisli S, Bakir M, et al. (2010). Simple sequence repeat-based assessment of genetic relationships among Prunus rootstocks. Genet. Mol. Res. 9: 2156-2165. doi:10.4238/vol9-4gmr957 PMid:21053179 Ulloa M, Brubaker C and Chee P (2007). Cotton. In: Genome Mapping & Molecular Breeding (Kole C, ed.). Vol. 6. Technical Crops Springer, New York. Wang X, Ma J, Yang S, Zhang G, et al. (2007). Assessment of genetic diversity among Chinese upland cottons with Fusarium and/or Verticillium wilts resistance by AFLP and SSR markers. Front. Agric. China 1: 129-135. doi:10.1007/s11703-007-0023-x Zhang J and Stewart JM (2000). Economical and rapid method for extracting cotton genomic DNA. J. Cotton Sci. 4: 193-201. Zhang J, Wu YT, Guo WZ and Zhang TZ (2000). Fast screening of microsatellite markers in cotton with PAGE silver staining. J. Cotton Sci. 12: 267-269. Zhu LF, Zhang XL and Nie YC (2003). Analysis of genetic diversity in upland cotton (Gossypium hirsutum L.) cultivars from China and foreign countries by RAPDs and SSRs. J. Agric. Biotechnol. 11: 450-455.
H. G. Wang, Wang, X. F., Jing, X. Y., Li, Z., Zhang, Y., and Lv, Z. J., Effect of mutations in a simian virus 40 PolyA signal enhancer on green fluorescent protein reporter gene expression, vol. 10, pp. 1866-1883, 2011.
Cai L, Fritz D, Stefanovic L and Stefanovic B (2010). Binding of LARP6 to the conserved 5' stem-loop regulates translation of mRNAs encoding type I collagen. J. Mol. Biol. 395: 309-326. http://dx.doi.org/10.1016/j.jmb.2009.11.020 PMid:19917293    PMCid:2826804 Chou SH, Tseng YY and Chu BY (1999). Stable formation of a pyrimidine-rich loop hairpin in a cruciform promoter. J. Mol. Biol. 292: 309-320. http://dx.doi.org/10.1006/jmbi.1999.3066 PMid:10493877 Costa FF (2008). Non-coding RNAs, epigenetics and complexity. Gene 410: 9-17. http://dx.doi.org/10.1016/j.gene.2007.12.008 PMid:18226475 Costantini M and Bernardi G (2008). Correlations between coding and contiguous non-coding sequences in isochore families from vertebrate genomes. Gene 410: 241-248. http://dx.doi.org/10.1016/j.gene.2007.12.016 PMid:18252269 Dai X, Kloster M and Rothman-Denes LB (1998). Sequence-dependent extrusion of a small DNA hairpin at the N4 virion RNA polymerase promoters. J. Mol. Biol. 283: 43-58. http://dx.doi.org/10.1006/jmbi.1998.2096 PMid:9761672 Darlow JM and Leach DR (1998). Evidence for two preferred hairpin folding patterns in d(CGG).d(CCG) repeat tracts in vivo. J. Mol. Biol. 275: 17-23. http://dx.doi.org/10.1006/jmbi.1997.1452 PMid:9451435 Frolov I, Hardy R and Rice CM (2001). Cis-acting RNA elements at the 5' end of Sindbis virus genome RNA regulate minus- and plus-strand RNA synthesis. RNA 7: 1638-1651. http://dx.doi.org/10.1017/S135583820101010X PMid:11720292    PMCid:1370205 Gleghorn ML, Davydova EK, Rothman-Denes LB and Murakami KS (2008). Structural basis for DNA-hairpin promoter recognition by the bacteriophage N4 virion RNA polymerase. Mol. Cell 32: 707-717. http://dx.doi.org/10.1016/j.molcel.2008.11.010 PMid:19061645    PMCid:2639713 Grimwood J, Gordon LA, Olsen A, Terry A, et al. (2004). The DNA sequence and biology of human chromosome 19. Nature 428: 529-535. http://dx.doi.org/10.1038/nature02399 PMid:15057824 Kang H, Feng M, Schroeder ME, Giedroc DP, et al. (2006). Putative cis-acting stem-loops in the 5' untranslated region of the severe acute respiratory syndrome coronavirus can substitute for their mouse hepatitis virus counterparts. J. Virol. 80: 10600-10614. http://dx.doi.org/10.1128/JVI.00455-06 PMid:16920822    PMCid:1641749 Kuznetsov SV, Ren CC, Woodson SA and Ansari A (2008). Loop dependence of the stability and dynamics of nucleic acid hairpins. Nucleic Acids Res. 36: 1098-1112. http://dx.doi.org/10.1093/nar/gkm1083 PMid:18096625    PMCid:2275088 Lander ES, Linton LM, Birren B, Nusbaum C, et al. (2001). Initial sequencing and analysis of the human genome. Nature 409: 860-921. http://dx.doi.org/10.1038/35057062 PMid:11237011 Li L, Kang H, Liu P, Makkinje N, et al. (2008). Structural lability in stem-loop 1 drives a 5' UTR-3' UTR interaction in coronavirus replication. J. Mol. Biol. 377: 790-803. http://dx.doi.org/10.1016/j.jmb.2008.01.068 PMid:18289557    PMCid:2652258 Li Y, Ho ES, Gunderson SI and Kiledjian M (2009). Mutational analysis of a Dcp2-binding element reveals general enhancement of decapping by 5'-end stem-loop structures. Nucleic Acids Res. 37: 2227-2237. http://dx.doi.org/10.1093/nar/gkp087 PMid:19233875    PMCid:2673433 Lu ZJ, Zhai Y, Wang XF and Song SX (2003). DNA sequence composition on human X chromosome differing from that on chromosomes 6,7,8,10,11 and 12. Genet. Sin. 30: 1051-1060. Nelson MJ and Green BR (2005). Double hairpin elements and tandem repeats in the non-coding region of Adenoides eludens chloroplast gene minicircles. Gene 358: 102-110. http://dx.doi.org/10.1016/j.gene.2005.05.024 PMid:16043313 Nickens DG and Hardy RW (2008). Structural and functional analyses of stem-loop 1 of the Sindbis virus genome. Virology 370: 158-172. http://dx.doi.org/10.1016/j.virol.2007.08.006 PMid:17900652 Rosskopf JJ, Upton JH 3rd, Rodarte L, Romero TA, et al. (2010). A 3' terminal stem-loop structure in Nodamura virus RNA2 forms an essential cis-acting signal for RNA replication. Virus Res. 150: 12-21. http://dx.doi.org/10.1016/j.virusres.2010.02.006 PMid:20176063    PMCid:3017585 Sean P, Nguyen JHC and Semler BL (2009). Altered interactions between stem-loop IV within the 5' noncoding region of coxsackievirus RNA and poly(rC) binding protein 2: effects on IRES-mediated translation and viral infectivity. Virology 389: 45-58. http://dx.doi.org/10.1016/j.virol.2009.03.012 PMid:19446305    PMCid:2694229 Ueno M, Kodama EN, Shimura K, Sakurai Y, et al. (2009). Synonymous mutations in stem-loop III of Rev responsive elements enhance HIV-1 replication impaired by primary mutations for resistance to enfuvirtide. Antiviral Res. 82: 67-72. http://dx.doi.org/10.1016/j.antiviral.2009.02.002 PMid:19428597 Wang XF, Wang X, Liu J, Feng J, et al. (2009a). Alu tandem sequences inhibit GFP gene expression by triggering chromatin wrapping. Genes Genom. 31: 209-215. http://dx.doi.org/10.1007/BF03191192 Wang XF, Jin X, Wang X, Liu J, et al. (2009b). Effects of L1-ORF2 fragments on green fluorescent protein gene expression. Genet. Mol. Biol. 32: 688-696. http://dx.doi.org/10.1590/S1415-47572009005000068 PMid:21637438    PMCid:3036906 Xu ZL, Mizuguchi H, Ishii-Watabe A, Uchida E, et al. (2001). Optimization of transcriptional regulatory elements for constructing plasmid vectors. Gene 272: 149-156. http://dx.doi.org/10.1016/S0378-1119(01)00550-9 Yin K, Wang X, Ma H, Xie Y, et al. (2010). Impact of copy number of distinct SV40PolyA segments on expression of a GFP reporter gene. Sci. China Life Sci. 53: 606-612. http://dx.doi.org/10.1007/s11427-010-0110-8 PMid:20596944 Yu L and Markoff L (2005). The topology of bulges in the long stem of the flavivirus 3'stem-loop is a major determinant of RNA replication competence. J. Virol. 79: 2309-2324. http://dx.doi.org/10.1128/JVI.79.4.2309-2324.2005 PMid:15681432    PMCid:546603
X. F. Wang, Zheng, H. Y., Zheng, W. H., Ao, C. Q., Jin, H. Y., Zhao, L. H., Li, N., and Jia, L. R., RAPD-based genetic diversities and correlation with morphological traits in Camellia (Theaceae) cultivars in China, vol. 10, pp. 849-859, 2011.
Ahlawat A, Katoch M, Ram G and Ahuja A (2010). Genetic diversity in Acorus calamus L. as revealed by RAPD markers and its relationship with β-asarone content and ploidy level. Sci. Hortic. 124: 294-297. doi:10.1016/j.scienta.2009.12.035 Ahmad F, Khan AI, Awan FS, Sadia B, et al. (2010). Genetic diversity of chickpea (Cicer arietinum L.) germplasm in Pakistan as revealed by RAPD analysis. Genet. Mol. Res. 9: 1414-1420. doi:10.4238/vol9-3gmr862 PMid:20662156 Chung MG and Kang SS (1996). Genetic variation within and among populations of Camellia japonica (Theaceae) in Korea. Can. J. For. Res. 26: 537-542. doi:10.1139/x26-061 Collard BC and Mackill DJ (2008). Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 363: 557-572. doi:10.1098/rstb.2007.2170 PMid:17715053    PMCid:2610170 Dorokhov DB and Klocke E (1997). A rapid and economic technique for RAPD analysis of plant genomes. Russ. J. Genet. 33: 443-450. Ferrara L, Montesano D and Senatore A (2001). The distribution of minerals and flavonoids in the tea plant (Camellia sinensis). Farmaco 56: 397-401. doi:10.1016/S0014-827X(01)01104-1 Gao JY, Clifford RP and Du YQ (2005). Collected Species of the Genus Camellia, an Illustrated Outline. Zhejiang Science and Technology Publishing House, Hangzhou. Jung E, Lee J, Baek J, Jung K, et al. (2007). Effect of Camellia japonica oil on human type I procollagen production and skin barrier function. J. Ethnopharmacol. 112: 127-131. doi:10.1016/j.jep.2007.02.012 PMid:17386986 Khan N and Mukhtar H (2007). Tea polyphenols for health promotion. Life Sci. 81: 519-533. doi:10.1016/j.lfs.2007.06.011 PMid:17655876 Khlestkina EK and Salina EA (2006). SNP markers: methods of analysis, ways of development, and comparison on an example of common wheat. Genetika 42: 725-736. PMid:16871776 Kim KY, Davidson PM and Chung HJ (2001). Antibacterial activity in extracts of Camellia japonica L. petals and its application to a model food system. J. Food Prot. 64: 1255-1260. PMid:11510672 Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, et al. (2005). Use of DNA barcodes to identify flowering plants. Proc. Natl. Acad. Sci. U. S. A. 102: 8369-8374. doi:10.1073/pnas.0503123102 PMid:15928076    PMCid:1142120 Leal AA, Mangolin CA, do Amaral ATJ, Goncalves LS, et al. (2010). Efficiency of RAPD versus SSR markers for determining genetic diversity among popcorn lines. Genet. Mol. Res. 9: 9-18. doi:10.4238/vol9-1gmr692 PMid:20082266 Liu LQ and Gu (2009). Chromosome relationship between Camellia japonica and Camellia reticulate revealed by genomic in situ hybridization. Chromosome Bot. 4: 1-4. doi:10.3199/iscb.4.1 Nei M and Li WH (1997). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273. doi:10.1073/pnas.76.10.5269 Porebski S, Bailey LG and Baum BR (1997). Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol. Biol. Rep. 15: 8-15. doi:10.1007/BF02772108 Powell W, Morgante M, Andre C and Hanafey M (1996). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol. Breed. 2: 225-238. doi:10.1007/BF00564200 Sablowski R (2010). Genes and functions controlled by floral organ identity genes. Semin. Cell Dev. Biol. 21: 94-99. doi:10.1016/j.semcdb.2009.08.008 Tang S, Bin X, Wang L and Zhong Y (2006). Genetic diversity and population structure of yellow Camellia (Camellia nitidissima) in China as revealed by RAPD and AFLP markers. Biochem. Genet. 44: 449-461. doi:10.1007/s10528-006-9053-y PMid:17109218 Ueno S, Yoshimaru H, Tomaru N and Yamamoto S (1999). Development and characterization of microsatellite markers in Camellia japonica L. Mol. Ecol. 8: 335-336. PMid:10065549 Ueno S, Tomaru N, Yoshimaru H, Manabe T, et al. (2002). Size-class differences in genetic structure and individual distribution of Camellia japonica L. in a Japanese old-growth evergreen forest. Heredity 89: 120-126. doi:10.1038/sj.hdy.6800111 PMid:12136414 Vandenbussche M, Zethof J, Souer E, Koes R, et al. (2003). Toward the analysis of the petunia MADS box gene family by reverse and forward transposon insertion mutagenesis approaches: B, C, and D floral organ identity functions require SEPALLATA-like MADS box genes in petunia. Plant Cell 15: 2680-2693. doi:10.1105/tpc.017376 PMid:14576291    PMCid:280571 Varshney RK, Graner A and Sorrells ME (2005). Genomics-assisted breeding for crop improvement. Trends Plant Sci. 10: 621-630. doi:10.1016/j.tplants.2005.10.004 PMid:16290213 Vijayan K, Zhang WJ and Tsou CH (2009). Molecular taxonomy of Camellia (Theaceae) inferred from nrITS sequences. Am. J. Bot. 96: 1348-1360. doi:10.3732/ajb.0800205 Wang XF, Zheng WH, Zheng HX and Xie QQ (2010). Optimization of RAPD-PCR reaction system for genetic relationships analysis of 15 Camellia cultivars. Afr. J. Biotechnol. 9: 798-804. Wei X, Cao HL, Jiang YS, Ye WH, et al. (2008). Population genetic structure of Camellia nitidissima (Theaceae) and conservation implications. Bot. Stud. 49: 147-153. Xiao TJ and Clifford RP (2003). Molecular analysis of the genus Camellia. Int. Camellia J. 35: 57-65.