Publications

Found 3 results
Filters: Author is H. Karlidag  [Clear All Filters]
2011
S. Ercisli, Agar, G., Yildirim, N., Karlidag, H., Duralija, B., and Vokurka, A., Genetic diversity in wild sweet cherries (Prunus avium) in Turkey revealed by SSR markers, vol. 10, pp. 1211-1219, 2011.
Anonymous (2009). The World Conservation Union. Available at [www.iucn.org]. Accessed March 15, 2011. Aradhya MK, Liana Y, Zee FT and Manshardt RM (1998). Genetic variability in Macadamia. Genet. Res. Crop Evol. 45: 19-32. doi:10.1023/A:1008634103954 Baytop T (1984). Therapy with Medicinal Plants in Turkey. Istanbul University Publication, Turkey. Benjak A, Ercisli S, Vokurka A, Maletic E, et al. (2005). Genetic relationships among grapevine cultivars native to Croatia, Greece and Turkey. Vitis 44: 73-77. Bouhadida M, Casas AM, Gonzalo MJ, Arus P, et al. (2009). Molecular characterization and genetic diversity of Prunus rootstocks. Sci. Hortic. 120: 237-245. doi:10.1016/j.scienta.2008.11.015 Cheng Z and Huang H (2009). SSR fingerprinting Chinese peach cultivars and landraces (Prunus persica) and analysis of their genetic relationships. Sci. Hortic. 120: 188-193. doi:10.1016/j.scienta.2008.10.008 Cipriani G, Lot G, Huang WG, Marrazzo MT, et al. (1999). AC/GT and AG/CT microsatellite repeats in peach (Prunus persica (L) Batsch): isolation, characterisation and cross-species amplification in Prunus. Theor. Appl. Genet. 99: 65-72. doi:10.1007/s001220051209 Clarke JB and Tobutt KR (2003). Development and characterization of polymorphic microsatellites from Prunus avium ‘Napoleon’. Mol. Ecol. Notes 3: 578-580. doi:10.1046/j.1471-8286.2003.00517.x Dirlewanger E, Cosson P, Tavaud M, Aranzana MJ, et al. (2002). Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry, Prunus avium L.). Theor. Appl. Genet. 105: 127-138. doi:10.1007/s00122-002-0867-7 PMid:12582570 Downey SL and Iezzoni AF (2000). Polymorphic DNA markers in black cherry (Prunus serotina) are identified using sequences from sweet cherry, peach and sour cherry. J. Am. Soc. Hortic. Sci. 125: 76-80. Doyle JJ and Doyle JL (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11-15. Ercisli S (2004). A short review of the fruit germplasm resources of Turkey. Genet. Res. Crop Evol. 51: 419-435. doi:10.1023/B:GRES.0000023458.60138.79 Guarino C, Santoro S, De SL and Cipriani G (2009). Prunus avium: nuclear DNA study in wild populations and sweet cherry cultivars. Genome 52: 320-337. doi:10.1139/G09-007 PMid:19370088 Gulen H, Ipek A, Ergin S, Akcay ME, et al. (2010). Assessment of genetic relationships among 29 introduced and 49 local sweet cherry accessions in Turkey using AFLP and SSR markers. J. Hortic. Sci. Biotechnol. 85: 427-431. Halilova H and Ercisli S (2010). Several physico-chemical characteristics of cherry laurel (Laurocerasus officinalis Roem) fruits. Biotechnol. Biotechnol. Equip. 24: 1970-1973. doi:10.2478/V10133-010-0059-6 Kacar AY, Iezzoni A and Cetiner S (2005). Sweet cherry cultivar identification by using SSR markers. J. Biol. Sci. 5: 616-619. doi:10.3923/jbs.2005.616.619 Kafkas S, Ozgen M, Dogan Y, Ozcan B, et al. (2008). Molecular characterization of mulberry accessions in Turkey by AFLP markers. J. Am. Soc. Hortic. Sci. 133: 593-597. Lacis G, Rashal I, Ruisa S, Trajkovski V, et al. (2009). Assessment of genetic diversity of Latvian and Swedish sweet cherry (Prunus avium L.) genetic resources collections by using SSR (microsatellite) markers. Sci. Hortic. 121: 451-457. doi:10.1016/j.scienta.2009.03.016 Messina R, Lain O, Marrazzo MT, Cipriani G, et al. (2004). New set of microsatellite loci isolated in apricot. Mol. Ecol. Notes 4: 432-434. doi:10.1111/j.1471-8286.2004.00674.x Mnejja M, Garcia-Mas J, Howad W and Arús P (2005). Development and transportability across Prunus species of 42 polymorphic almond microsatellites. Mol. Ecol. Notes 5: 531-535. doi:10.1111/j.1471-8286.2005.00977.x Olmstead JW, Sebolt AM, Cabrera A, Sooriyapathirana SS, et al. (2008). Construction of an intra-specific sweet cherry (Prunus avium L.) genetic linkage map and synteny analysis with the Prunus reference map. Tree Genet. Genom. 4: 897-910. doi:10.1007/s11295-008-0161-1 Powell W, Morgante M, Andre C, Hanafey M, et al. (1996). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol. Breed. 2: 225-238. doi:10.1007/BF00564200 Rohlf FJ (1998). NTSYS-PC Numerical Taxonomy and Multivariate Analysis System. Exeter Software, Setauket, New York. Schueler S, Tusch A, Schuster M and Ziegenhagen B (2003). Characterization of microsatellites in wild and sweet cherry (Prunus avium L.) - markers for individual identification and reproductive processes. Genome 46: 95-102. doi:10.1139/g02-107 PMid:12669801 Sefc KM, Lopez MS, Lefort F, Botta R, et al. (2000). Microsatellites variability in grapevine cultivars from different European regions and evaluation of assignment testing to assess the geographic origin of cultivars. Theor. Appl. Genet. 100: 498-505. doi:10.1007/s001220050065 Sneath PH and Sokal RR (1973). Numerical Taxonomy. Freeman, San Francisco. Sosinski B, Gannavarapu M, Hager LD, Beck LE, et al. (2000). Characterisation of microsatellite markers in peach (Prunus persica (L.) Batsch). Theor. Appl. Genet. 101: 421-428. doi:10.1007/s001220051499 Struss D, Ahmad R, Southwick SM and Boritzki M (2003). Analysis of sweet cherry (Prunus avium L.) cultivars using SSR and AFLP markers. J. Am. Soc. Hortic. Sci. 128: 904-909. Turkoglu Z, Bilgener S, Ercisli S, Bakir M, et al. (2010). Simple sequence repeat-based assessment of genetic relationships among Prunus rootstocks. Genet. Mol. Res. 9: 2156-2165. doi:10.4238/vol9-4gmr957 PMid:21053179 Vaughan SP and Russell K (2004). Characterization of novel microsatellites and development of multiplex PCR for large-scale population studies in wild cherry; Prunus avium. Mol. Ecol. Notes 4: 429-431. doi:10.1111/j.1471-8286.2004.00673.x Webster AD (1996). The Taxonomic Classification of Sweet and Sour Cherries and a Brief History of Their Cultivation. In: Cherries: Crop Physiology, Production and Uses (Webster AD and Looney NE, eds). CAB International, Wallingford, 3-24. Wünsch A (2009). SSR Markers for fingerprinting Prunus species. Acta Hortic. 814: 689-694. Wünsch A and Hormaza JI (2002). Molecular characterisation of sweet cherry (Prunus avium L.) genotypes using peach [Prunus persica (L.) Batsch] SSR sequences. Heredity 89: 56-63. PMid:12080370 Wünsch A and Hormaza JI (2004). Molecular evaluation of genetic diversity and S-allele composition of local Spanish sweet cherry (Prunus avium L.) cultivars. Genet. Res. Crop Evol. 51: 635-641. doi:10.1023/B:GRES.0000024649.06681.43 Wünsch A, Gella R and Hormaza JI (2004). Molecular characterization of rootstocks for sweet cherry (Prunus avium L.). Acta Hortic. 658: 599-602. Xuan H, Wang R, Buchele M, Moller O, et al. (2009). Microsatellite markers (SSR) as a tool to assist in identification of sweet (Prunus avium) and sour cherry (Prunus cerasus). Acta Hortic. 839: 507-514.4
2010
E. Yildirim, Yildirim, N., Ercisli, S., Agar, G., and Karlidag, H., Genetic relationships among turnip (Brassica rapa var. rapa) genotypes, vol. 9, pp. 987-993, 2010.
Akbulut M, Ercisli S and Karlidag H (2009). RAPD-based study of genetic variation and relationships among wild fig genotypes in Turkey. Genet. Mol. Res. 8: 1109-1115. http://dx.doi.org/10.4238/vol8-3gmr634 PMid:19768673   Armstrong J, Gibbs A, Peakall R and Weiller G (1994). The RAPDistance Package. Available at [http://life.anu.edu.au/molecular/software/rapd.htm]. Accessed July 4, 2008.   Badenes ML, Martínez-Calvo J and Llácer G (1998). Analysis of apricot germplasm from the European ecogeographical group. Euphytica 102: 93-99. http://dx.doi.org/10.1023/A:1018332312570   Benjak A, Ercisli S, Vokurka A, Maletic E, et al. (2005). Genetic relationships among grapevine cultivars native to Croatia, Greece and Turkey. Vitis 44: 73-77.   Cartea ME, Soengas P, Picoaga A and Ordas A (2005). Relationships among Brassica napus (L.) germplasm from Spain and Great Britain as determined by RAPD markers. Genet. Res. Crop Evol. 52: 655-662. http://dx.doi.org/10.1007/s10722-003-6014-8   Cassian R and Echeverrigaray S (2000). Discrimination among cultivars of cabbage using randomly amplified polymorphic DNA markers. HortScience 35: 1155-1158.   dos Santos JB, Nienhuis J, Skroch P, Tivang J, et al. (1994). Comparison of RAPD and RFLP genetic markers in determining genetic similarity among Brassica oleracea L. genotypes. Theor. Appl. Genet. 87: 909-915.   Ercisli S (2004). A short review of the fruit germplasm resources of Turkey. Genet. Res. Crop Evol. 51: 419-435. http://dx.doi.org/10.1023/B:GRES.0000023458.60138.79   Ercisli S, Agar G, Orhan E, Yildirim N, et al. (2007). Interspecific variability of RAPD and fatty acid composition of some pomegranate cultivars (Punica granatum L.) growing in Southern Anatolia Region in Turkey. Biochem. Syst. Ecol. 35: 764-769. http://dx.doi.org/10.1016/j.bse.2007.05.014   Gottlieb LD (1984). Genetics and morphological evolution in plants. Am. Nat. 123: 681-709. http://dx.doi.org/10.1086/284231   Halldén C, Nilsson NO, Rading IM and Säll T (1994). Evaluation of RFLP and RAPD markers in a comparison of Brassica napus breeding lines. Theor. Appl. Genet. 88: 123-128. http://dx.doi.org/10.1007/BF00222404   Ilgin M, Kafkas S and Ercisli S (2009). Molecular characterization of plum cultivars by AFLP markers. Biotechnol. Biotechnol. Eq. 23: 1189-1193.   Khakwani AA, Shiraishi M, Zubair M, Baloch MS, et al. (2005). Effect of seedling age and water depth on morphological and physiological aspects of transplanted rice under high temperature. J. Zhejiang. Univ. Sci. B 6: 389-395. PMid:15822153 PMCid:1389756   Kresovich S, Williams JGK, McFerson JR, Routman EJ, et al. (1992). Characterization of genetic identities and relationships of Brassica oleracea L. via a random amplified polymorphic DNA assay. Theor. Appl. Genet. 85: 190-196. http://dx.doi.org/10.1007/BF00222859   Lin RC, Ding ZS, Li LB and Kuang TY (2001). A rapid and efficient DNA minipreparation suitable for screening transgenic plants. Plant Mol. Biol. Rep. 19: 379a-379e. http://dx.doi.org/10.1007/BF02772839   Mailer RJ, Scarth R and Fristensky B (1994). Discrimination among cultivars of rapeseed (Brassica napus L.) using DNA polymorphisms amplified from arbitrary primers. Theor. Appl. Genet. 87: 697-704. http://dx.doi.org/10.1007/BF00222895   O'Neill R, Snowdon R and Köhler W (2003). Population genetics aspects of biodiversity. Prog. Bot. 64: 115-137. http://dx.doi.org/10.1007/978-3-642-55819-1_7   Padilla G, Cartea ME, Rodríguez VM and Ordás A (2005). Genetic diversity in a germplasm collection of Brassica rapa subsp rapa L. from northwestern Spain. Euphytica 145: 171-180. http://dx.doi.org/10.1007/s10681-005-0895-x   Rabbani MA, Iwabushi A, Murakami Y, Suzuki T, et al. (1998). Genetic diversity in mustard (Brassica juncea L.) germplasm from Pakistan as determined by RAPDs. Euphytica 103: 235-242. http://dx.doi.org/10.1023/A:1018304921526   Reif JC, Zhang P, Dreisigacker S, Warburton ML, et al. (2005). Wheat genetic diversity trends during domestication and breeding. Theor. Appl. Genet. 110: 859-864. http://dx.doi.org/10.1007/s00122-004-1881-8 PMid:15690175   Ren J, McFerson JR, Li R, Kresovich S, et al. (1995). Identities and relationships among Chinese vegetable Brassicas as determined by random amplified polymorphic DNA markers. J. Am. Soc. Hortic. Sci. 120: 548-555.   Seyis F, Snowdon RJ, Lühs W and Friedt W (2003). Molecular characterization of novel resynthesized rapeseed (Brassica napus) lines and analysis of their genetic diversity in comparison with spring rapeseed cultivars. Plant Breed. 122: 473-478. http://dx.doi.org/10.1111/j.1439-0523.2003.00859.x   Tanhuanpaa P, Vilkki J, Vilkki J and Pulli S (1993). Genetic polymorphism at RAPD loci in spring turnip rape (Brassica rapa ssp oleifera). Agric. Sci. Finland 2: 303-310.