Publications

Found 46 results
Filters: Author is Y. Zhou  [Clear All Filters]
2016
Y. Zhou, Zhu, W. P., Cai, X. J., Chen, M., Zhou, Y., Zhu, W. P., Cai, X. J., Chen, M., Zhou, Y., Zhu, W. P., Cai, X. J., and Chen, M., Atomized paclitaxel liposome inhalation treatment of bleomycin-induced pulmonary fibrosis in rats, vol. 15, p. -, 2016.
Y. Zhou, Zhu, W. P., Cai, X. J., Chen, M., Zhou, Y., Zhu, W. P., Cai, X. J., Chen, M., Zhou, Y., Zhu, W. P., Cai, X. J., and Chen, M., Atomized paclitaxel liposome inhalation treatment of bleomycin-induced pulmonary fibrosis in rats, vol. 15, p. -, 2016.
Y. Zhou, Zhu, W. P., Cai, X. J., Chen, M., Zhou, Y., Zhu, W. P., Cai, X. J., Chen, M., Zhou, Y., Zhu, W. P., Cai, X. J., and Chen, M., Atomized paclitaxel liposome inhalation treatment of bleomycin-induced pulmonary fibrosis in rats, vol. 15, p. -, 2016.
W. M. Zhao, Qin, Y. L., Niu, Z. P., Chang, C. F., Yang, J., Li, M. H., Zhou, Y., Xu, C. S., Zhao, W. M., Qin, Y. L., Niu, Z. P., Chang, C. F., Yang, J., Li, M. H., Zhou, Y., Xu, C. S., Zhao, W. M., Qin, Y. L., Niu, Z. P., Chang, C. F., Yang, J., Li, M. H., Zhou, Y., and Xu, C. S., Branches of the NF-κB signaling pathway regulate proliferation of oval cells in rat liver regeneration, vol. 15, p. -, 2016.
W. M. Zhao, Qin, Y. L., Niu, Z. P., Chang, C. F., Yang, J., Li, M. H., Zhou, Y., Xu, C. S., Zhao, W. M., Qin, Y. L., Niu, Z. P., Chang, C. F., Yang, J., Li, M. H., Zhou, Y., Xu, C. S., Zhao, W. M., Qin, Y. L., Niu, Z. P., Chang, C. F., Yang, J., Li, M. H., Zhou, Y., and Xu, C. S., Branches of the NF-κB signaling pathway regulate proliferation of oval cells in rat liver regeneration, vol. 15, p. -, 2016.
W. M. Zhao, Qin, Y. L., Niu, Z. P., Chang, C. F., Yang, J., Li, M. H., Zhou, Y., Xu, C. S., Zhao, W. M., Qin, Y. L., Niu, Z. P., Chang, C. F., Yang, J., Li, M. H., Zhou, Y., Xu, C. S., Zhao, W. M., Qin, Y. L., Niu, Z. P., Chang, C. F., Yang, J., Li, M. H., Zhou, Y., and Xu, C. S., Branches of the NF-κB signaling pathway regulate proliferation of oval cells in rat liver regeneration, vol. 15, p. -, 2016.
Y. Zhou, Xu, J. C., Xu, C. S., Zhou, Y., Xu, J. C., Xu, C. S., Zhou, Y., Xu, J. C., and Xu, C. S., Co-expression network analysis prioritizes signaling pathways regulating liver regeneration after partial hepatectomy in rats, vol. 15, p. -, 2016.
Y. Zhou, Xu, J. C., Xu, C. S., Zhou, Y., Xu, J. C., Xu, C. S., Zhou, Y., Xu, J. C., and Xu, C. S., Co-expression network analysis prioritizes signaling pathways regulating liver regeneration after partial hepatectomy in rats, vol. 15, p. -, 2016.
Y. Zhou, Xu, J. C., Xu, C. S., Zhou, Y., Xu, J. C., Xu, C. S., Zhou, Y., Xu, J. C., and Xu, C. S., Co-expression network analysis prioritizes signaling pathways regulating liver regeneration after partial hepatectomy in rats, vol. 15, p. -, 2016.
M. Huang, Sun, X. J., Zhou, Y., Wang, X. M., Huang, M., Sun, X. J., Zhou, Y., and Wang, X. M., Comparison of methods to preserve Rheum palmatum (Polygonaceae) for efficient DNA extraction and PCR amplification, vol. 15, p. -, 2016.
M. Huang, Sun, X. J., Zhou, Y., Wang, X. M., Huang, M., Sun, X. J., Zhou, Y., and Wang, X. M., Comparison of methods to preserve Rheum palmatum (Polygonaceae) for efficient DNA extraction and PCR amplification, vol. 15, p. -, 2016.
Y. Yang, Zhou, Y., Cheng, S., Sun, J. L., Yao, H., Ma, L., Yang, Y., Zhou, Y., Cheng, S., Sun, J. L., Yao, H., and Ma, L., Effect of uric acid on mitochondrial function and oxidative stress in hepatocytes, vol. 15, p. -, 2016.
Y. Yang, Zhou, Y., Cheng, S., Sun, J. L., Yao, H., Ma, L., Yang, Y., Zhou, Y., Cheng, S., Sun, J. L., Yao, H., and Ma, L., Effect of uric acid on mitochondrial function and oxidative stress in hepatocytes, vol. 15, p. -, 2016.
Y. He, Jian, C. X., Zhang, H. Y., Zhou, Y., Wu, X., Zhang, G., Tan, Y. H., He, Y., Jian, C. X., Zhang, H. Y., Zhou, Y., Wu, X., Zhang, G., and Tan, Y. H., Hypoxia enhances periodontal ligament stem cell proliferation via the MAPK signaling pathway, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS We thank the anonymous reviewers for reviewing this manuscript. REFERENCES Amemiya H, Matsuzaka K, Kokubu E, Ohta S, et al (2008). Cellular responses of rat periodontal ligament cells under hypoxia and re-oxygenation conditions in vitro. J. Periodontal Res. 43: 322-327. http://dx.doi.org/10.1111/j.1600-0765.2007.01032.x Bernet JD, Doles JD, Hall JK, Kelly Tanaka K, et al (2014). p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat. Med. 20: 265-271. http://dx.doi.org/10.1038/nm.3465 Corbet EF, et al (2006). Periodontal diseases in Asians. J. Int. Acad. Periodontol. 8: 136-144. Dumitrescu AL, et al (2016). Editorial: Periodontal Disease - A Public Health Problem. Front. Public Health 3: 278. http://dx.doi.org/10.3389/fpubh.2015.00278 Eke PI, Dye BA, Wei L, Slade GD, et al (2015). Update on prevalence of periodontitis in adults in the United States: NHANES 2009 to 2012. J. Periodontol. 86: 611-622. http://dx.doi.org/10.1902/jop.2015.140520 Gay IC, Chen S, MacDougall M, et al (2007). Isolation and characterization of multipotent human periodontal ligament stem cells. Orthod. Craniofac. Res. 10: 149-160. http://dx.doi.org/10.1111/j.1601-6343.2007.00399.x Hackett PH, Roach RC, et al (2001). High-altitude illness. N. Engl. J. Med. 345: 107-114. http://dx.doi.org/10.1056/NEJM200107123450206 Jaiswal RK, Jaiswal N, Bruder SP, Mbalaviele G, et al (2000). Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J. Biol. Chem. 275: 9645-9652. http://dx.doi.org/10.1074/jbc.275.13.9645 Jian C, Li C, Ren Y, He Y, et al (2014). Hypoxia augments lipopolysaccharide-induced cytokine expression in periodontal ligament cells. Inflammation 37: 1413-1423. http://dx.doi.org/10.1007/s10753-014-9865-6 Li Q, Yu B, Yang P, et al (2015). Hypoxia-induced HMGB1 in would tissues promotes the osteoblast cell proliferation via activating ERK/JNK signaling. Int. J. Clin. Exp. Med. 8: 15087-15097. Liu Q, Cen L, Zhou H, Yin S, et al (2009). The role of the extracellular signal-related kinase signaling pathway in osteogenic differentiation of human adipose-derived stem cells and in adipogenic transition initiated by dexamethasone. Tissue Eng. Part A 15: 3487-3497. http://dx.doi.org/10.1089/ten.tea.2009.0175 Matsuda N, Morita N, Matsuda K, Watanabe M, et al (1998). Proliferation and differentiation of human osteoblastic cells associated with differential activation of MAP kinases in response to epidermal growth factor, hypoxia, and mechanical stress in vitro. Biochem. Biophys. Res. Commun. 249: 350-354. http://dx.doi.org/10.1006/bbrc.1998.9151 Mattioli-Belmonte M, Teti G, Salvatore V, Focaroli S, et al (2015). Stem cell origin differently affects bone tissue engineering strategies. Front. Physiol. 6: 266. http://dx.doi.org/10.3389/fphys.2015.00266 Park SY, Kim KH, Gwak EH, Rhee SH, et al (2015). Ex vivo bone morphogenetic protein 2 gene delivery using periodontal ligament stem cells for enhanced re-osseointegration in the regenerative treatment of peri-implantitis. J. Biomed. Mater. Res. A 103: 38-47. http://dx.doi.org/10.1002/jbm.a.35145 Qiu X, Zheng M, Song D, Huang L, et al (2016). Notoginsenoside Rb1 inhibits activation of ERK and p38 MAPK pathways induced by hypoxia and hypercapnia. Exp. Ther. Med. 11: 2455-2461. Rodríguez-Carballo E, Gámez B, Ventura F, et al (2016). p38 MAPK Signaling in Osteoblast Differentiation. Front. Cell Dev. Biol. 4: 40. http://dx.doi.org/10.3389/fcell.2016.00040 Seo BM, Miura M, Gronthos S, Bartold PM, et al (2004). Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364: 149-155. http://dx.doi.org/10.1016/S0140-6736(04)16627-0 Somerman MJ, Young MF, Foster RA, Moehring JM, et al (1990). Characteristics of human periodontal ligament cells in vitro. Arch. Oral Biol. 35: 241-247. http://dx.doi.org/10.1016/0003-9969(90)90062-F Sun Y, Liu WZ, Liu T, Feng X, et al (2015). Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J. Recept. Signal Transduct. Res. 35: 600-604. http://dx.doi.org/10.3109/10799893.2015.1030412 Tang R, Wei F, Wei L, Wang S, et al (2014). Osteogenic differentiated periodontal ligament stem cells maintain their immunomodulatory capacity. J. Tissue Eng. Regen. Med. 8: 226-232. http://dx.doi.org/10.1002/term.1516 Terrizzi AR, Fernandez-Solari J, Lee CM, Bozzini C, et al (2013). Alveolar bone loss associated to periodontal disease in lead intoxicated rats under environmental hypoxia. Arch. Oral Biol. 58: 1407-1414. http://dx.doi.org/10.1016/j.archoralbio.2013.06.010 Trubiani O, Giacoppo S, Ballerini P, Diomede F, et al (2016). Alternative source of stem cells derived from human periodontal ligament: a new treatment for experimental autoimmune encephalomyelitis. Stem Cell Res. Ther. 7: 1. http://dx.doi.org/10.1186/s13287-015-0253-4 Vandana KL, Desai R, Dalvi PJ, et al (2015). Autologous Stem Cell Application in Periodontal Regeneration Technique (SAI-PRT) Using PDLSCs Directly From an Extracted Tooth···An Insight. Int. J. Stem Cells 8: 235-237. http://dx.doi.org/10.15283/ijsc.2015.8.2.235 Wang Z, Wang W, Xu S, Wang S, et al (2016). The role of MAPK signaling pathway in the Her-2-positive meningiomas. Oncol. Rep. 36: 685-695. Wu RX, Bi CS, Yu Y, Zhang LL, et al (2015). Age-related decline in the matrix contents and functional properties of human periodontal ligament stem cell sheets. Acta Biomater. 22: 70-82. http://dx.doi.org/10.1016/j.actbio.2015.04.024 Wu Y, Yang Y, Yang P, Gu Y, et al (2013). The osteogenic differentiation of PDLSCs is mediated through MEK/ERK and p38 MAPK signalling under hypoxia. Arch. Oral Biol. 58: 1357-1368. http://dx.doi.org/10.1016/j.archoralbio.2013.03.011 Xiao X, Li Y, Zhang G, Gao Y, et al (2012). Detection of bacterial diversity in rat’s periodontitis model under imitational altitude hypoxia environment. Arch. Oral Biol. 57: 23-29. http://dx.doi.org/10.1016/j.archoralbio.2011.07.005 Xu CL, Zheng B, Pei JH, Shen SJ, et al (2016). Embelin induces apoptosis of human gastric carcinoma through inhibition of p38 MAPK and NF-κB signaling pathways. Mol. Med. Rep. 14: 307-312. Yang ZH, Zhang XJ, Dang NN, Ma ZF, et al (2009). Apical tooth germ cell-conditioned medium enhances the differentiation of periodontal ligament stem cells into cementum/periodontal ligament-like tissues. J. Periodontal Res. 44: 199-210. http://dx.doi.org/10.1111/j.1600-0765.2008.01106.x Zhang HY, Liu R, Xing YJ, Xu P, et al (2013). Effects of hypoxia on the proliferation, mineralization and ultrastructure of human periodontal ligament fibroblasts in vitro. Exp. Ther. Med. 6: 1553-1559. Zhang QB, Zhang ZQ, Fang SL, Liu YR, et al (2014). Effects of hypoxia on proliferation and osteogenic differentiation of periodontal ligament stem cells: an in vitro and in vivo study. Genet. Mol. Res. 13: 10204-10214. http://dx.doi.org/10.4238/2014.December.4.15
Y. He, Jian, C. X., Zhang, H. Y., Zhou, Y., Wu, X., Zhang, G., Tan, Y. H., He, Y., Jian, C. X., Zhang, H. Y., Zhou, Y., Wu, X., Zhang, G., and Tan, Y. H., Hypoxia enhances periodontal ligament stem cell proliferation via the MAPK signaling pathway, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS We thank the anonymous reviewers for reviewing this manuscript. REFERENCES Amemiya H, Matsuzaka K, Kokubu E, Ohta S, et al (2008). Cellular responses of rat periodontal ligament cells under hypoxia and re-oxygenation conditions in vitro. J. Periodontal Res. 43: 322-327. http://dx.doi.org/10.1111/j.1600-0765.2007.01032.x Bernet JD, Doles JD, Hall JK, Kelly Tanaka K, et al (2014). p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat. Med. 20: 265-271. http://dx.doi.org/10.1038/nm.3465 Corbet EF, et al (2006). Periodontal diseases in Asians. J. Int. Acad. Periodontol. 8: 136-144. Dumitrescu AL, et al (2016). Editorial: Periodontal Disease - A Public Health Problem. Front. Public Health 3: 278. http://dx.doi.org/10.3389/fpubh.2015.00278 Eke PI, Dye BA, Wei L, Slade GD, et al (2015). Update on prevalence of periodontitis in adults in the United States: NHANES 2009 to 2012. J. Periodontol. 86: 611-622. http://dx.doi.org/10.1902/jop.2015.140520 Gay IC, Chen S, MacDougall M, et al (2007). Isolation and characterization of multipotent human periodontal ligament stem cells. Orthod. Craniofac. Res. 10: 149-160. http://dx.doi.org/10.1111/j.1601-6343.2007.00399.x Hackett PH, Roach RC, et al (2001). High-altitude illness. N. Engl. J. Med. 345: 107-114. http://dx.doi.org/10.1056/NEJM200107123450206 Jaiswal RK, Jaiswal N, Bruder SP, Mbalaviele G, et al (2000). Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J. Biol. Chem. 275: 9645-9652. http://dx.doi.org/10.1074/jbc.275.13.9645 Jian C, Li C, Ren Y, He Y, et al (2014). Hypoxia augments lipopolysaccharide-induced cytokine expression in periodontal ligament cells. Inflammation 37: 1413-1423. http://dx.doi.org/10.1007/s10753-014-9865-6 Li Q, Yu B, Yang P, et al (2015). Hypoxia-induced HMGB1 in would tissues promotes the osteoblast cell proliferation via activating ERK/JNK signaling. Int. J. Clin. Exp. Med. 8: 15087-15097. Liu Q, Cen L, Zhou H, Yin S, et al (2009). The role of the extracellular signal-related kinase signaling pathway in osteogenic differentiation of human adipose-derived stem cells and in adipogenic transition initiated by dexamethasone. Tissue Eng. Part A 15: 3487-3497. http://dx.doi.org/10.1089/ten.tea.2009.0175 Matsuda N, Morita N, Matsuda K, Watanabe M, et al (1998). Proliferation and differentiation of human osteoblastic cells associated with differential activation of MAP kinases in response to epidermal growth factor, hypoxia, and mechanical stress in vitro. Biochem. Biophys. Res. Commun. 249: 350-354. http://dx.doi.org/10.1006/bbrc.1998.9151 Mattioli-Belmonte M, Teti G, Salvatore V, Focaroli S, et al (2015). Stem cell origin differently affects bone tissue engineering strategies. Front. Physiol. 6: 266. http://dx.doi.org/10.3389/fphys.2015.00266 Park SY, Kim KH, Gwak EH, Rhee SH, et al (2015). Ex vivo bone morphogenetic protein 2 gene delivery using periodontal ligament stem cells for enhanced re-osseointegration in the regenerative treatment of peri-implantitis. J. Biomed. Mater. Res. A 103: 38-47. http://dx.doi.org/10.1002/jbm.a.35145 Qiu X, Zheng M, Song D, Huang L, et al (2016). Notoginsenoside Rb1 inhibits activation of ERK and p38 MAPK pathways induced by hypoxia and hypercapnia. Exp. Ther. Med. 11: 2455-2461. Rodríguez-Carballo E, Gámez B, Ventura F, et al (2016). p38 MAPK Signaling in Osteoblast Differentiation. Front. Cell Dev. Biol. 4: 40. http://dx.doi.org/10.3389/fcell.2016.00040 Seo BM, Miura M, Gronthos S, Bartold PM, et al (2004). Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364: 149-155. http://dx.doi.org/10.1016/S0140-6736(04)16627-0 Somerman MJ, Young MF, Foster RA, Moehring JM, et al (1990). Characteristics of human periodontal ligament cells in vitro. Arch. Oral Biol. 35: 241-247. http://dx.doi.org/10.1016/0003-9969(90)90062-F Sun Y, Liu WZ, Liu T, Feng X, et al (2015). Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J. Recept. Signal Transduct. Res. 35: 600-604. http://dx.doi.org/10.3109/10799893.2015.1030412 Tang R, Wei F, Wei L, Wang S, et al (2014). Osteogenic differentiated periodontal ligament stem cells maintain their immunomodulatory capacity. J. Tissue Eng. Regen. Med. 8: 226-232. http://dx.doi.org/10.1002/term.1516 Terrizzi AR, Fernandez-Solari J, Lee CM, Bozzini C, et al (2013). Alveolar bone loss associated to periodontal disease in lead intoxicated rats under environmental hypoxia. Arch. Oral Biol. 58: 1407-1414. http://dx.doi.org/10.1016/j.archoralbio.2013.06.010 Trubiani O, Giacoppo S, Ballerini P, Diomede F, et al (2016). Alternative source of stem cells derived from human periodontal ligament: a new treatment for experimental autoimmune encephalomyelitis. Stem Cell Res. Ther. 7: 1. http://dx.doi.org/10.1186/s13287-015-0253-4 Vandana KL, Desai R, Dalvi PJ, et al (2015). Autologous Stem Cell Application in Periodontal Regeneration Technique (SAI-PRT) Using PDLSCs Directly From an Extracted Tooth···An Insight. Int. J. Stem Cells 8: 235-237. http://dx.doi.org/10.15283/ijsc.2015.8.2.235 Wang Z, Wang W, Xu S, Wang S, et al (2016). The role of MAPK signaling pathway in the Her-2-positive meningiomas. Oncol. Rep. 36: 685-695. Wu RX, Bi CS, Yu Y, Zhang LL, et al (2015). Age-related decline in the matrix contents and functional properties of human periodontal ligament stem cell sheets. Acta Biomater. 22: 70-82. http://dx.doi.org/10.1016/j.actbio.2015.04.024 Wu Y, Yang Y, Yang P, Gu Y, et al (2013). The osteogenic differentiation of PDLSCs is mediated through MEK/ERK and p38 MAPK signalling under hypoxia. Arch. Oral Biol. 58: 1357-1368. http://dx.doi.org/10.1016/j.archoralbio.2013.03.011 Xiao X, Li Y, Zhang G, Gao Y, et al (2012). Detection of bacterial diversity in rat’s periodontitis model under imitational altitude hypoxia environment. Arch. Oral Biol. 57: 23-29. http://dx.doi.org/10.1016/j.archoralbio.2011.07.005 Xu CL, Zheng B, Pei JH, Shen SJ, et al (2016). Embelin induces apoptosis of human gastric carcinoma through inhibition of p38 MAPK and NF-κB signaling pathways. Mol. Med. Rep. 14: 307-312. Yang ZH, Zhang XJ, Dang NN, Ma ZF, et al (2009). Apical tooth germ cell-conditioned medium enhances the differentiation of periodontal ligament stem cells into cementum/periodontal ligament-like tissues. J. Periodontal Res. 44: 199-210. http://dx.doi.org/10.1111/j.1600-0765.2008.01106.x Zhang HY, Liu R, Xing YJ, Xu P, et al (2013). Effects of hypoxia on the proliferation, mineralization and ultrastructure of human periodontal ligament fibroblasts in vitro. Exp. Ther. Med. 6: 1553-1559. Zhang QB, Zhang ZQ, Fang SL, Liu YR, et al (2014). Effects of hypoxia on proliferation and osteogenic differentiation of periodontal ligament stem cells: an in vitro and in vivo study. Genet. Mol. Res. 13: 10204-10214. http://dx.doi.org/10.4238/2014.December.4.15
S. Jiang, Yang, Z. H., Chen, Y. Y., He, Z., Zhou, Y., Gao, Y., Zhang, Q., Tan, M. Q., Jiang, S., Yang, Z. H., Chen, Y. Y., He, Z., Zhou, Y., Gao, Y., Zhang, Q., Tan, M. Q., Jiang, S., Yang, Z. H., Chen, Y. Y., He, Z., Zhou, Y., Gao, Y., Zhang, Q., and Tan, M. Q., MMP-9 genetic polymorphism may confer susceptibility to COPD, vol. 15, p. -, 2016.
S. Jiang, Yang, Z. H., Chen, Y. Y., He, Z., Zhou, Y., Gao, Y., Zhang, Q., Tan, M. Q., Jiang, S., Yang, Z. H., Chen, Y. Y., He, Z., Zhou, Y., Gao, Y., Zhang, Q., Tan, M. Q., Jiang, S., Yang, Z. H., Chen, Y. Y., He, Z., Zhou, Y., Gao, Y., Zhang, Q., and Tan, M. Q., MMP-9 genetic polymorphism may confer susceptibility to COPD, vol. 15, p. -, 2016.
S. Jiang, Yang, Z. H., Chen, Y. Y., He, Z., Zhou, Y., Gao, Y., Zhang, Q., Tan, M. Q., Jiang, S., Yang, Z. H., Chen, Y. Y., He, Z., Zhou, Y., Gao, Y., Zhang, Q., Tan, M. Q., Jiang, S., Yang, Z. H., Chen, Y. Y., He, Z., Zhou, Y., Gao, Y., Zhang, Q., and Tan, M. Q., MMP-9 genetic polymorphism may confer susceptibility to COPD, vol. 15, p. -, 2016.
L. Hou, Li, W., Wei, X., Zhou, Y., Zhuo, Y., Wu, H., Shen, B., Hou, L., Li, W., Wei, X., Zhou, Y., Zhuo, Y., Wu, H., and Shen, B., RETRACTION of “Immune memory responses to HBV vaccine 13-18 years after primary vaccination” by L. Hou, W. Li, X. Wei, Y. Zhou, Y. Zhuo, H. Wu, B. Shen. Genet. Mol. Res. 14 (3): 8466-8472 (2015), vol. 15. p. -, 2016.
L. Hou, Li, W., Wei, X., Zhou, Y., Zhuo, Y., Wu, H., Shen, B., Hou, L., Li, W., Wei, X., Zhou, Y., Zhuo, Y., Wu, H., and Shen, B., RETRACTION of “Immune memory responses to HBV vaccine 13-18 years after primary vaccination” by L. Hou, W. Li, X. Wei, Y. Zhou, Y. Zhuo, H. Wu, B. Shen. Genet. Mol. Res. 14 (3): 8466-8472 (2015), vol. 15. p. -, 2016.
2015
X. F. Jin, Wang, D. L., Zhou, Y., and Xiong, H., Association between the interleukin-6-174 G/C polymorphism and risk of ischemic stroke: a meta-analysis, vol. 14, pp. 13076-13083, 2015.
P. Qi, Wang, L., Zhou, B., Yao, W. J., Xu, S., Zhou, Y., and Xie, Z. B., Associations of miRNA polymorphisms and expression levels with breast cancer risk in the Chinese population, vol. 14, pp. 6289-6296, 2015.
C. F. Chang, Zhao, W. M., Mei, J. X., Zhou, Y., Pan, C. Y., Xu, T. T., and Xu, C. S., Branches of NF-κb signaling pathway regulate hepatocyte proliferation in rat liver regeneration, vol. 14, pp. 7643-7654, 2015.
Y. Su, Kong, G. L., Su, Y. L., Zhou, Y., Lv, L. F., Wang, Q., Huang, B. P., Zheng, R. Z., Li, Q. Z., Yuan, H. J., and Zhao, Z. G., Correlation analysis of the PNPLA7 gene polymorphism and susceptibility to menstrual disorder, vol. 14, pp. 1733-1740, 2015.
Y. Z. Su, Wang, C. B., Zhou, Y., and Sun, N. T., Effects of changes in serum endostatin and fibroblast growth factor 19 on the chemotherapeutic sensitivity in acute myeloid leukemia patients, vol. 14, pp. 5181-5187, 2015.
J. P. Tao, Huang, Q. Q., Huang, H. Q., Yang, J. J., Shi, M., Zhou, Y., Wan, L. J., Zhou, C., Ou, Y. J., Tong, Y. Y., Yang, D. G., and Si, Y. Y., Effects of goal-directed fluid therapy with different lactated Ringer’s: hydroxyethyl starch ratios in hemorrhagic shock dogs, vol. 14, pp. 6649-6663, 2015.
N. Lin, Zhou, Y., Lian, X., and Tu, Y., Expression of microRNA-106b and its clinical significance in cutaneous melanoma, vol. 14, pp. 16379-16385, 2015.
C. F. Chang, Yang, J., Zhao, W. M., Li, Y., Guo, P. J., Li, M. H., Zhou, Y., and Xu, C. S., Gene expression profiling analysis of 5-hydroxytryptamine signaling pathway in rat regenerating liver and different types of liver cells, vol. 14, pp. 3409-3420, 2015.
Y. Zhou, Hao, G., Zhong, H., Wu, Q., Lu, S. Q., Zhao, Q., and Liu, Z., Human chorionic gonadotropin promotes expression of protein absorption factors in the intestine of goldfish (Carassius auratus), vol. 14, pp. 8306-8313, 2015.
Y. Zhou, Wu, X. X., Zhang, Z., and Gao, Z. H., Identification of differentially expressed genes associated with flower color in peach using genome-wide transcriptional analysis, vol. 14, pp. 4724-4739, 2015.
L. Hou, Li, W., Wei, X., Zhou, Y., Zhuo, Y., Wu, H., and Shen, B., Immune memory responses to HBV vaccine 13-18 years after primary vaccination, vol. 14. pp. 8466-8472, 2015.
Y. Zhou, Liu, Y., Yang, S. X., and Wang, Z., N-ethylmaleimide-sensitive factor siRNA improves cardiac function following myocardial infarction in rats, vol. 14, pp. 9478-9485, 2015.
Y. Zhou, Teng, S. - J., Yang, L., Li, S. - B., and Xu, Y., A novel variant of the β-lactamase ADC-61 gene in multi-drug resistant Acinetobacter baumannii, vol. 14, pp. 7092-7100, 2015.
Y. Xie, Wu, J., Lin, S., Zhou, Y., Fang, Q., and Sun, X., Replication timing regulation in adults with chromosomal balance rearrangements, vol. 14, pp. 7833-7840, 2015.
Y. Zhou, Xu, J. C., Jia, Y. F., and Xu, C. S., Role of death receptors in the regulation of hepatocyte proliferation and apoptosis during rat liver regeneration, vol. 14, pp. 14066-14075, 2015.
L. H. Shi, Zhou, Y., Guo, M. F., Liu, J. S., Li, C. X., Wang, G. F., Liu, W., and Tian, L., Serum levels of S-100β correlate with the clinical status and severity of hypoxic-ischemic encephalopathy in neonates, vol. 14, pp. 14760-14771, 2015.
2013
J. M. Liu, Liu, J. N., Wei, M. T., He, Y. Z., Zhou, Y., Song, X. B., Ying, B. W., and Huang, J., Effect of IL-18 gene promoter polymorphisms on prostate cancer occurrence and prognosis in Han Chinese population, vol. 12, pp. 820-829, 2013.
Alexandrakis MG, Passam FH, Sfiridaki K, Moschandrea J, et al. (2004). Interleukin-18 in multiple myeloma patients: serum levels in relation to response to treatment and survival. Leuk. Res. 28: 259-266. http://dx.doi.org/10.1016/S0145-2126(03)00261-3   Amin MA, Mansfield PJ, Pakozdi A, Campbell PL, et al. (2007). Interleukin-18 induces angiogenic factors in rheumatoid arthritis synovial tissue fibroblasts via distinct signaling pathways. Arthritis Rheum. 56: 1787-1797. http://dx.doi.org/10.1002/art.22705 PMid:17530707   Bushley AW, Ferrell R, McDuffie K, Terada KY, et al. (2004). Polymorphisms of interleukin (IL)-1alpha, IL-1beta, IL-6, IL-10, and IL-18 and the risk of ovarian cancer. Gynecol. Oncol. 95: 672-679. http://dx.doi.org/10.1016/j.ygyno.2004.08.024 PMid:15581980   Charles AD (1999). Interleukin-18. Methods 19: 121-132. http://dx.doi.org/10.1006/meth.1999.0837 PMid:10525448   Cho ML, Jung YO, Moon YM, Min SY, et al. (2006). Interleukin-18 induces the production of vascular endothelial growth factor (VEGF) in rheumatoid arthritis synovial fibroblasts via AP-1-dependent pathways. Immunol. Lett. 103: 159-166. http://dx.doi.org/10.1016/j.imlet.2005.10.020 PMid:16368150   Desai KV, Michalowska AM, Kondaiah P, Ward JM, et al. (2004). Gene expression profiling identifies a unique androgen-mediated inflammatory/immune signature and a PTEN (phosphatase and tensin homolog deleted on chromosome 10)-mediated apoptotic response specific to the rat ventral prostate. Mol. Endocrinol. 18: 2895-2907. http://dx.doi.org/10.1210/me.2004-0033 PMid:15358834   Dinarello CA (1999). IL-18: A TH1-inducing, proinflammatory cytokine and new member of the IL-1 family. J. Allergy Clin. Immunol. 103: 11-24. http://dx.doi.org/10.1016/S0091-6749(99)70518-X   Eissa SA, Zaki SA, El-Maghraby SM and Kadry DY (2005). Importance of serum IL-18 and RANTES as markers for breast carcinoma progression. J. Egypt. Natl. Canc. Inst. 17: 51-55. PMid:16353083   Figg WD, Franks ME, Venzon D, Duray P, et al. (2004). Gleason score and pretreatment prostate-specific antigen in survival among patients with stage D2 prostate cancer. World J. Urol. 22: 425-430. http://dx.doi.org/10.1007/s00345-004-0443-7 PMid:15592675   Fujita K, Ewing CM, Sokoll LJ, Elliott DJ, et al. (2008). Cytokine profiling of prostatic fluid from cancerous prostate glands identifies cytokines associated with extent of tumor and inflammation. Prostate 68: 872-882. http://dx.doi.org/10.1002/pros.20755 PMid:18361406 PMCid:2562260   Fujita K, Ewing CM, Isaacs WB and Pavlovich CP (2011). Immunomodulatory IL-18 binding protein is produced by prostate cancer cells and its levels in urine and serum correlate with tumor status. Int. J. Cancer 129: 424-432. http://dx.doi.org/10.1002/ijc.25705 PMid:20878981 PMCid:3040782   Giedraitis V, He B, Huang WX and Hillert J (2001). Cloning and mutation analysis of the human IL-18 promoter: a possible role of polymorphisms in expression regulation. J. Neuroimmunol. 112: 146-152. http://dx.doi.org/10.1016/S0165-5728(00)00407-0   Gillies SD, Young D, Lo KM and Roberts S (1993). Biological activity and in vivo clearance of antitumor antibody/ cytokine fusion proteins. Bioconjug. Chem. 4: 230-235. http://dx.doi.org/10.1021/bc00021a008 PMid:8324014   Han MY, Zheng S, Yu JM, Peng JP, et al. (2004). Study on interleukin-18 gene transfer into human breast cancer cells to prevent tumorigenicity. J. Zhejiang Univ. Sci. 5: 472-476. http://dx.doi.org/10.1631/jzus.2004.0472 PMid:14994440   Jung MK, Song HK, Kim KE, Hur DY, et al. (2006). IL-18 enhances the migration ability of murine melanoma cells through the generation of ROI and the MAPK pathway. Immunol. Lett. 107: 125-130. http://dx.doi.org/10.1016/j.imlet.2006.08.004 PMid:17014914   Kalina U, Ballas K, Koyama N, Kauschat D, et al. (2000). Genomic organization and regulation of the human interleukin-18 gene. Scand. J. Immunol. 52: 525-530. http://dx.doi.org/10.1046/j.1365-3083.2000.00836.x PMid:11119255   Kim KE, Song H, Kim TS, Yoon D, et al. (2007). Interleukin-18 is a critical factor for vascular endothelial growth factor-enhanced migration in human gastric cancer cell lines. Oncogene 26: 1468-1476. http://dx.doi.org/10.1038/sj.onc.1209926 PMid:17001321   Lebel-Binay S, Thiounn N, De PG, Vieillefond A, et al. (2003). IL-18 is produced by prostate cancer cells and secreted in response to interferons. Int. J. Cancer 106: 827-835. http://dx.doi.org/10.1002/ijc.11285 PMid:12918059   Li Z, Zhang Z, He Z, Tang W, et al. (2009). A partition-ligation-combination-subdivision EM algorithm for haplotype inference with multiallelic markers: update of the SHEsis (http://analysis.bio-x.cn). Cell Res. 19: 519-523. http://dx.doi.org/10.1038/cr.2009.33 PMid:19290020   Liu J, Liu J, Zhou Y, Li S, et al. (2011). Association between promoter variants of interleukin-18 and schizophrenia in a Han Chinese population. DNA Cell Biol. 30: 913-917. http://dx.doi.org/10.1089/dna.2011.1221 PMid:21510800   Liu Y, Lin N, Huang L, Xu Q, et al. (2007). Genetic polymorphisms of the interleukin-18 gene and risk of prostate cancer. DNA Cell Biol. 26: 613-618. http://dx.doi.org/10.1089/dna.2007.0600 PMid:17688413   Marshall DJ, Rudnick KA, McCarthy SG, Mateo LR, et al. (2006). Interleukin-18 enhances Th1 immunity and tumor protection of a DNA vaccine. Vaccine 24: 244-253. http://dx.doi.org/10.1016/j.vaccine.2005.07.087 PMid:16135392   Merendino RA, Gangemi S, Ruello A, Bene A, et al. (2001). Serum levels of interleukin-18 and sICAM-1 in patients affected by breast cancer: preliminary considerations. Int. J. Biol. Markers 16: 126-129. PMid:11471895   Okamura H, Tsutsi H, Komatsu T, Yutsudo M, et al. (1995). Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature 378: 88-91. http://dx.doi.org/10.1038/378088a0 PMid:7477296   Park H, Byun D, Kim TS, Kim YI, et al. (2001). Enhanced IL-18 expression in common skin tumors. Immunol. Lett. 79: 215-219. http://dx.doi.org/10.1016/S0165-2478(01)00278-4   Pratesi C, Bortolin MT, Bidoli E, Tedeschi R, et al. (2006). Interleukin-10 and interleukin-18 promoter polymorphisms in an Italian cohort of patients with undifferentiated carcinoma of nasopharyngeal type. Cancer Immunol. Immunother. 55: 23-30. http://dx.doi.org/10.1007/s00262-005-0688-z PMid:16059673   Shi YY and He L (2005). SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 15: 97-98. http://dx.doi.org/10.1038/sj.cr.7290272 PMid:15740637   Stacey SN, Sulem P, Jonasdottir A, Masson G, et al. (2011). A germline variant in the TP53 polyadenylation signal confers cancer susceptibility. Nat. Genet. 43: 1098-1103. http://dx.doi.org/10.1038/ng.926 PMid:21946351 PMCid:3263694   Takagawa T, Tamura K, Takeda N, Tomita T, et al. (2005). Association between IL-18 gene promoter polymorphisms and inflammatory bowel disease in a Japanese population. Inflamm. Bowel. Dis. 11: 1038-1043. http://dx.doi.org/10.1097/01.MIB.0000182868.67025.b9 PMid:16306765   Tse BW, Russell PJ, Lochner M, Förster I, et al. (2011). IL-18 inhibits growth of murine orthotopic prostate carcinomas via both adaptive and innate immune mechanisms. PLoS One 6: e24241. http://dx.doi.org/10.1371/journal.pone.0024241 PMid:21935389 PMCid:3174151   Wang F, Zou YF, Feng XL, Su H, et al. (2011). CYP17 gene polymorphisms and prostate cancer risk: a meta-analysis based on 38 independent studies. Prostate 71: 1167-1177. http://dx.doi.org/10.1002/pros.21332   Wentzensen N, Black A, Jacobs K, Yang HP, et al. (2011). Genetic variation on 9p22 is associated with abnormal ovarian ultrasound results in the prostate, lung, colorectal, and ovarian cancer screening trial. PLoS One 6: e21731. http://dx.doi.org/10.1371/journal.pone.0021731 PMid:21750727 PMCid:3131287   Xia D, Li F and Xiang J (2004). Engineered fusion hybrid vaccine of IL-18 gene-modified tumor cells and dendritic cells induces enhanced antitumor immunity. Cancer Biother. Radiopharm. 19: 322-330. http://dx.doi.org/10.1089/1084978041424990 PMid:15285878   Ye ZB, Ma T, Li H, Jin XL, et al. (2007). Expression and significance of intratumoral interleukin-12 and interleukin-18 in human gastric carcinoma. World J. Gastroenterol. 13: 1747-1751. PMid:17461482   Yoon- DY, Cho YS, Park JW, Kim SH, et al. (2004). Up-regulation of reactive oxygen species (ROS) and resistance to Fas-mediated apoptosis in the C33A cervical cancer cell line transfected with IL-18 receptor. Clin. Chem. Lab. Med. 42: 499-506. PMid:15202785   Zeegers MP, Khan HS, Schouten LJ, van Dijk BA, et al. (2011). Genetic marker polymorphisms on chromosome 8q24 and prostate cancer in the Dutch population: DG8S737 may not be the causative variant. Eur. J. Hum. Genet. 19: 118-120. http://dx.doi.org/10.1038/ejhg.2010.133 PMid:20700145 PMCid:3039500   Zhou W, Chen Z, Hu W, Shen M, et al. (2011). Association of short tandem repeat polymorphism in the promoter of prostate cancer antigen 3 gene with the risk of prostate cancer. PLoS One 6: e20378. http://dx.doi.org/10.1371/journal.pone.0020378 PMid:21655300 PMCid:3105025
Q. Xie, Kang, H., Sparkes, D. L., Tao, S., Fan, X. M., Xu, L., Fan, X., Sha, L., Zhang, H., Wang, Y., Zeng, J., and Zhou, Y., Mitotic and meiotic behavior of rye chromosomes in wheat - Psathyrostachys huashanica amphiploid x triticale progeny, vol. 12, pp. 2537-2548, 2013.
B. Chen, Chen, L., Zhou, Y., Mi, T., Chen, D. Y., Chen, L., Yin, J., and Xue, Z. F., Multiple abnormalities due to a nonsense mutation in the Alx4 gene, vol. 12, pp. 2771-2778, 2013.
C. Y. Zhu, Zhu, K. J., Zhou, Y., and Fan, Y. M., A novel insertion mutation in the ADAR1 gene of a Chinese family with dyschromatosis symmetrica hereditaria, vol. 12, pp. 2858-2862, 2013.
L. Li, Zhao, Y. W., Zeng, J. S., Fan, F., Wang, X., Zhou, Y., and Zhu, Z., Rituximab regulates the expression of the Raf kinase inhibitor protein via NF-κB in renal tissue of rats with diabetic nephropathy, vol. 12, pp. 2973-2981, 2013.