Publications

Found 1 results
Filters: Author is D. Hong  [Clear All Filters]
2010
Y. Xue, Zhao, Z. Q., Hong, D., Zhao, M. Y., Zhang, Y. X., Wang, H. J., Wang, Y., and Li, J. C., Lack of association between MD-2 promoter gene variants and tuberculosis, vol. 9, pp. 1584-1590, 2010.
Abel B, Thieblemont N, Quesniaux VJ, Brown N, et al. (2002). Toll-like receptor 4 expression is required to control chronic Mycobacterium tuberculosis infection in mice. J. Immunol. 169: 3155-3162. PMid:12218133   Abreu MT, Arnold ET, Thomas LS, Gonsky R, et al. (2002). TLR4 and MD-2 expression is regulated by immune-mediated signals in human intestinal epithelial cells. J. Biol. Chem. 277: 20431-20437. http://dx.doi.org/10.1074/jbc.M110333200 PMid:11923281   Branger J, Leemans JC, Florquin S, Weijer S, et al. (2004). Toll-like receptor 4 plays a protective role in pulmonary tuberculosis in mice. Int. Immunol. 16: 509-516. http://dx.doi.org/10.1093/intimm/dxh052 PMid:14978024   Bulut Y, Michelsen KS, Hayrapetian L, Naiki Y, et al. (2005). Mycobacterium tuberculosis heat shock proteins use diverse Toll-like receptor pathways to activate pro-inflammatory signals. J. Biol. Chem. 280: 20961-20967. http://dx.doi.org/10.1074/jbc.M411379200 PMid:15809303   Cooke GS and Hill AV (2001). Genetics of susceptibility to human infectious disease. Nat. Rev. Genet. 2: 967-977. http://dx.doi.org/10.1038/35103577 PMid:11733749   Davila S, Hibberd ML, Hari DR, Wong HE, et al. (2008). Genetic association and expression studies indicate a role of Toll-like receptor 8 in pulmonary tuberculosis. PLoS. Genet. 4: e1000218. http://dx.doi.org/10.1371/journal.pgen.1000218 PMid:18927625 PMCid:2568981   Drage MG, Pecora ND, Hise AG, Febbraio M, et al. (2009). TLR2 and its co-receptors determine responses of macrophages and dendritic cells to lipoproteins of Mycobacterium tuberculosis. Cell Immunol. 258: 29-37. http://dx.doi.org/10.1016/j.cellimm.2009.03.008 PMid:19362712 PMCid:2730726   Ferwerda B, Kibiki GS, Netea MG, Dolmans WM, et al. (2007). The Toll-like receptor 4 Asp299Gly variant and tuberculosis susceptibility in HIV-infected patients in Tanzania. AIDS 21: 1375-1377. http://dx.doi.org/10.1097/QAD.0b013e32814e6b2d PMid:17545720   Gu W, Shan YA, Zhou J, Jiang DP, et al. (2007). Functional significance of gene polymorphisms in the promoter of myeloid differentiation-2. Ann. Surg. 246: 151-158. http://dx.doi.org/10.1097/01.sla.0000262788.67171.3f PMid:17592304 PMCid:1899213   Jo EK, Yang CS, Choi CH and Harding CV (2007). Intracellular signalling cascades regulating innate immune responses to Mycobacteria: branching out from Toll-like receptors. Cell Microbiol. 9: 1087-1098. http://dx.doi.org/10.1111/j.1462-5822.2007.00914.x PMid:17359235   Kamath AB, Alt J, Debbabi H and Behar SM (2003). Toll-like receptor 4-defective C3H/HeJ mice are not more susceptible than other C3H substrains to infection with Mycobacterium tuberculosis. Infect. Immun. 71: 4112-4118. http://dx.doi.org/10.1128/IAI.71.7.4112-4118.2003 PMid:12819102 PMCid:162027   Ma X, Liu Y, Gowen BB, Graviss EA, et al. (2007). Full-exon resequencing reveals Toll-like receptor variants contribute to human susceptibility to tuberculosis disease. PLoS. One 2: e1318. http://dx.doi.org/10.1371/journal.pone.0001318 PMid:18091991 PMCid:2117342   Means TK, Jones BW, Schromm AB, Shurtleff BA, et al. (2001). Differential effects of a Toll-like receptor antagonist on Mycobacterium tuberculosis-induced macrophage responses. J. Immunol. 166: 4074-4082. PMid:11238656   Moller M, de Wit E and Hoal EG (2010). Past, present and future directions in human genetic susceptibility to tuberculosis. FEMS Immunol. Med. Microbiol. 58: 3-26. http://dx.doi.org/10.1111/j.1574-695X.2009.00600.x PMid:19780822   Nagai Y, Akashi S, Nagafuku M, Ogata M, et al. (2002). Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat. Immunol. 3: 667-672. PMid:12055629   Nishitani C, Takahashi M, Mitsuzawa H, Shimizu T, et al. (2009). Mutational analysis of Cys(88) of Toll-like receptor 4 highlights the critical role of MD-2 in cell surface receptor expression. Int. Immunol. 21: 925-934. http://dx.doi.org/10.1093/intimm/dxp059 PMid:19556306   Pacheco E, Fonseca C, Montes C, Zabaleta J, et al. (2004). CD14 gene promoter polymorphism in different clinical forms of tuberculosis. FEMS Immunol. Med. Microbiol. 40: 207-213. http://dx.doi.org/10.1016/S0928-8244(03)00369-9   Rosas-Taraco AG, Revol A, Salinas-Carmona MC, Rendon A, et al. (2007). CD14 C(-159)T polymorphism is a risk factor for development of pulmonary tuberculosis. J. Infect. Dis. 196: 1698-1706. http://dx.doi.org/10.1086/522147 PMid:18008256   Rosman MD and Oner-Eyupoglu AF (1998). Clinical Presentation and Treatment of Tuberculosis. In: Fishman's Pulmonary Diseases and Disorders (Fishman AP, ed.). McGraw-Hill, New York, 2483-2502.   Rousseau F, Rehel R, Rouillard P, DeGranpre P, et al. (1994). High throughput and economical mutation detection and RFLP analysis using a minimethod for DNA preparation from whole blood and acrylamide gel electrophoresis. Hum. Mutat. 4: 51-54. http://dx.doi.org/10.1002/humu.1380040107 PMid:7951258   Sandanger O, Ryan L, Bohnhorst J, Iversen AC, et al. (2009). IL-10 enhances MD-2 and CD14 expression in monocytes and the proteins are increased and correlated in HIV-infected patients. J. Immunol. 182: 588-595. PMid:19109192   Shim TS, Turner OC and Orme IM (2003). Toll-like receptor 4 plays no role in susceptibility of mice to Mycobacterium tuberculosis infection. Tuberculosis 83: 367-371. http://dx.doi.org/10.1016/S1472-9792(03)00071-4   Tissieres P, Dunn-Siegrist I, Schappi M, Elson G, et al. (2008). Soluble MD-2 is an acute-phase protein and an opsonin for Gram-negative bacteria. Blood 111: 2122-2131. http://dx.doi.org/10.1182/blood-2007-06-097782 PMid:18056837   Velez DR, Wejse C, Stryjewski ME, Abbate E, et al. (2010). Variants in Toll-like receptors 2 and 9 influence susceptibility to pulmonary tuberculosis in Caucasians, African-Americans, and West Africans. Hum. Genet. 127: 65-73. http://dx.doi.org/10.1007/s00439-009-0741-7 PMid:19771452 PMCid:2902366   Visintin A, Iliev DB, Monks BG, Halmen KA, et al. (2006). MD-2. Immunobiology 211: 437-447. http://dx.doi.org/10.1016/j.imbio.2006.05.010 PMid:16920483   Wolfs TG, Dunn-Siegrist I, van't Veer C, Hodin CM, et al. (2008). Increased release of sMD-2 during human endotoxemia and sepsis: a role for endothelial cells. Mol. Immunol. 45: 3268-3277. http://dx.doi.org/10.1016/j.molimm.2008.02.014 PMid:18384879