Publications

Found 8 results
Filters: Author is M.Y. Rafii  [Clear All Filters]
2012
M. R. Naroui Rad, M. Kadir, A., Rafii, M. Y., Jaafar, H. Z. E., and Naghavi, M. R., Bulked segregant analysis for relative water content to detect quantitative trait loci in wheat under drought stress, vol. 11, pp. 3882-3888, 2012.
Barrs HD and Watherley PE (1962). A re-examination of the relative turgidity technique for estimating water deficit in leaves. Aust. J. Biol. Sci. 15: 413-428.   Blum A (1989). Osmotic adjustment and growth of barley genotypes under drought stress. Crop Sci. 29: 230-233. http://dx.doi.org/10.2135/cropsci1989.0011183X002900010052x   Farquhar GD and Richards RA (1984). Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Aust. J. Plant Physiol. 11: 539-552. http://dx.doi.org/10.1071/PP9840539   Govindaraj P, Arumugachamy S and Maheswaran M (2005). Bulked segregant analysis to detect main effect QTL associated with grain quality parameters in Basmati 370/ASD 16 cross in rice (Oryza sativa L.) using SSR markers. Euphytica 144: 61-68. http://dx.doi.org/10.1007/s10681-005-4316-y   Liu BH (1998). Statistical Genomics. CRC Press, Boca Raton, 387-416.   Merah O (2001). Potential importance of water status traits for durum wheat improvement under Mediterranean conditions. J. Agric. Sci. 137: 139-145. http://dx.doi.org/10.1017/S0021859601001253   Michelmore RW, Paran I and Kesseli RV (1991). Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. U. S. A. 88: 9828-9832. http://dx.doi.org/10.1073/pnas.88.21.9828 PMid:1682921 PMCid:52814   Peltonen-Sainio P and Mäkelä P (1995). Comparison of physiological methods to assess drought tolerance in oats. Acta Agric. Scand. 45: 32-38.   Price A and Courtois B (1999). Mapping QTLs associated with drought resistance in rice: progress, problems and prospects. Plant Growth Reg. 29: 123-133. http://dx.doi.org/10.1023/A:1006255832479   Röder MS, Korzun V, Wendehake K, Plaschke J, et al. (1998). A microsatellite map of wheat. Genetics 149: 2007-2023. PMid:9691054 PMCid:1460256   SAS Statistical Analysis Software (2001). Version 9.1. SAS Institute, Cary.   Schonfeld MA, Johnson RC, Carver BF and Mornhinweg DW (1988). Water relations in winter wheat as drought resistance indicators. Crop Sci. 28: 526-531. http://dx.doi.org/10.2135/cropsci1988.0011183X002800030021x   Sinclair TR and Ludlow MM (1985). Who taught plants thermodynamics? The unfulfilled potential of plant water potential. Aust. J. Plant Physiol. 12: 213-217. http://dx.doi.org/10.1071/PP9850213   Singh J and Patel AL (1996). Water-status, gas exchange, proline accumulation and yield of wheat in response to water deficit. Ann. Biol. 12: 77-81.   Tahara M, Carver BF, Johnson RC and Smith EL (1990). Relationship between relative water content during reproductive development and winter wheat grain yield. Euphytica 49: 255-262.   Tanksley SD (1993). Mapping polygenes. Ann. Rev. Genet. 27: 205-233. http://dx.doi.org/10.1146/annurev.ge.27.120193.001225 PMid:8122902   Teulat B, This D, Khairallah M, Borries C, et al. (1998). Several QTLs involved in osmotic-adjustment trait variation in barley (Hordeum vulgare L.). Theor. Appl. Genet. 96: 688-698. http://dx.doi.org/10.1007/s001220050790   Tuberosa R and Salvi S (2006). Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci. 11: 405-412. http://dx.doi.org/10.1016/j.tplants.2006.06.003 PMid:16843036
M. A. Latif, Omar, M. Y., Tan, S. G., Siraj, S. S., Ali, M. E., and Rafii, M. Y., Food assimilated by two sympatric populations of the brown planthopper Nilaparvata lugens (Delphacidae) feeding on different host plants contaminates insect DNA detected by RAPD-PCR analysis, vol. 11, pp. 30-41, 2012.
Claridge MF and Den Hollander J (1982). Virulence to rice cultivars and selection for virulence in populations of the brown planthopper Nilaparvata lugens. Entom. Expert. Appl. 32: 213-221. http://dx.doi.org/10.1111/j.1570-7458.1982.tb03208.x Claridge MF, Den Hollander J and Morgan JC (1985). The status of weed associated populations of the brown planthopper, Nilaparvata lugens (Stål)-host race or biological species. Zool. J. Linn. Soc. 84: 77-90. http://dx.doi.org/10.1111/j.1096-3642.1985.tb01717.x Comeau AM, Short S and Suttle CA (2004). The use of degenerate-primed random amplification of polymorphic DNA (DP-RAPD) for strain-typing and inferring the genetic similarity among closely related viruses. J. Virol. Methods 118: 95-100. http://dx.doi.org/10.1016/j.jviromet.2004.01.020 PMid:15081604 Domingo IT, Heinrichs EA and Saxena RS (1983). Occurrences of brown planthopper on Leersia hexandra in the Philippines. Intl. Rice Newsl. 8: 17. Dyck VA and Thomas B (1979). The Brown Planthopper Problem. In: Brown Planthopper. Treat to rice production in Asia IRRI, Philippines, Los Banos, 3-17. Khan ZR and Saxena RC (1985). Behavioral and physiological responses of Sogatella furcifera (Homoptera: Delphacidae) to selected resistant and susceptible rice cultivars. J. Econ. Entom. 78: 1280-1286. Latif MA (2000). Morphological, Molecular Genetic and Host Plant Relationship Studies of Rice and Weed Infesting Populations of Brown Planthopper, Nilaparvata lugens (Stål) (Homoptera: Delphacidae). A PhD thesis Submitted in Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Faculty of Science and Environmental Studies. Universiti Putra Malaysia, 314. Latif MA, Soon GT, Mohd YO and Siraj SS (2008). Evidence of sibling species in the brown planthopper complex (Nilaparvata lugens) detected from short and long primer random amplified polymorphic DNA fingerprints. Biochem. Genet. 46: 520-537. http://dx.doi.org/10.1007/s10528-008-9167-5 PMid:18504649 Latif MA, Omar MY, Tan SG, Siraj SS, et al. (2010). Interpopulation crosses, inheritance study, and genetic variability in the brown planthopper complex, Nilaparvata lugens (Homoptera: Delphacidae). Biochem. Genet. 48: 266-286. http://dx.doi.org/10.1007/s10528-009-9316-5 PMid:19967400 Lewin R (1989). Limits to DNA fingerprinting. Science 243: 1549-1551. http://dx.doi.org/10.1126/science.2928790 PMid:2928790 Ling KC (1977). Rice ragged stunt disease. Intl. Rice Res. Newsl. 2-6. McClelland M and Welsh J (1994). DNA fingerprinting by arbitrarily primed PCR. PCR Methods Appl. 4: S59-S65. PMid:9018327 Mochida O and Okada T (1979). Taxonomy and Biology of Nilaparvata lugens (Homoptera, Delphacidae). In: Brown Planthopper; Threat to Rice Production in Asia Philippines, Los Banos, 21-44. Ocampo CB and Wesson DM (2004). Population dynamics of Aedes aegypti from a dengue hyperendemic urban setting in Colombia. Am. J. Trop. Med. Hyg. 71: 506-513. PMid:15516650 Pathak PK and Heinrichs EA (1982). Selection of biotype populations 2 and 3 of Nilaparvata lugens by exposure to resistant rice varieties. Environ. Entom. 11: 85-90. Ruano G, Brash DE and Kidd KK (1991). PCR: The first few cycles. Amplifications 7: 1-4. Sambrook J, Fritsch EF and Maniatis T (1989). Molecular Cloning: A Laboratory Manual. 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor. Saxena KN (1969). Patterns of insect-plants relationships determine susceptibility or resistance of different plants to an insect. Entomol. Exp. Appl. 12: 751-766. http://dx.doi.org/10.1111/j.1570-7458.1969.tb02569.x Saxena RC and Pathak MD (1977). Factor Affecting Resistant of Rice Varieties to the Brown Planthopper, Nilaparvat lugens. In: Proceedings of 8th Annual Conference of Pest Control Council of the Phillipines, Bacolod City, 18-20. Scott JC and McManus DP (1994). The random amplification of polymorphic DNA can discriminate species and strains of Echinococcus. Trop. Med. Parasitol. 45: 1-4. PMid:8066374 Sogawa K (1981). Biotypic variations in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae) at the IRRI, the Philippines. Appl. Entom. Zool. 16: 129-137. Sogawa K, Kilin D and Kusmayadi A (1984). A Leersia feeding brown planthopper (BPH) biotype in North Sumatra, Indonesia. Intl. Rice Newsl. 9: 20. Velusamy R (1988). Resistance of wild rice, Oryza spp., to the brown planthopper, Nilaparvata lugens (Stål) (Homoptera: Delphacidae). Crop Prot. 7: 403-408. http://dx.doi.org/10.1016/0261-2194(88)90010-5 Wu JT, Heinrichs EA and Medrano FG (1986). Resistance of wild rice Oryza spp. to the brown planthopper Nilaparvata lugens (Homoptera: Delphacidae). Environ. Entom. 15: 648-649. Zhi-Gang G and Alan MJ (1995) Genetic comparison of Neospora caninum with Toxoplasma and Sarcocystis by random amplified polymorphic DNA-polymerase chain reaction, Parasitol. Res. 81: 365-370. http://dx.doi.org/10.1007/BF00931495 PMid:7501633
M. Y. Rafii, Jalani, B. S., Rajanaidu, N., Kushairi, A., Puteh, A., and Latif, M. A., Stability analysis of oil yield in oil palm (Elaeis guineensis) progenies in different environments, vol. 11, pp. 3629-3641, 2012.
Allard RW (1999). Principles of Plant Breeding. 2nd edn. John Wiley and Sons, London.   Badiger PK, Rudranaik V, Parameshwarappa KG and Patil MS (2009). Genotype x environmental interactions and stability analysis of non-spiny breeding lines in safflower. Karnataka J. Agric. Sci. 22: 978-981.   Breese EL (1969). The measurement and significance of genotype-environment interactions in grasses. Heredity 24: 27-44. http://dx.doi.org/10.1038/hdy.1969.3   Caligari PDS (1993). G x E Studies in Perennial Three Crops: Old, Familiar Friend or Awkward, Unwanted Nuisance? Proceedings of the 1991 International Society of Oil Palm Breeders Workshop Genotype-Environment Interaction Studies in Perennial Tree Crops. Palm Oil Research Institute of Malaysia, Kuala Lumpur, 1-11.   Comstock RE and Moll RH (1963). Genotype-Environment Interactions. In: Statistical Genetics and Plant Breeding (Hanson WD and Robinson HR, eds.). National Academic Science Natural Environment Research Council, Washington, 164-196.   Eberhart SA and Russell WA (1966). Stability parameters for comparing varieties. Crop Sci. 6: 36-40. http://dx.doi.org/10.2135/cropsci1966.0011183X000600010011x   Finlay KW and Wilkinson GN (1963). The analysis of adaptation in a plant breeding programme. Aust. J. Agric. Res. 14: 742-754. http://dx.doi.org/10.1071/AR9630742   Fisher RA and Mackenzie WA (1923). The manurial response of different potato varieties. J. Agric. Sci. 13: 311-320. http://dx.doi.org/10.1017/S0021859600003592   Francis TR and Kannenberg LW (1978). Yield stability studied in short-season maize. I. A descriptive method for grouping genotypes. Can. J. Plant Sci.1029-1034. http://dx.doi.org/10.4141/cjps78-157   Freeman GH (1973). Statistical methods for the analysis of genotype-environment interaction. Heredity 31: 339-354. http://dx.doi.org/10.1038/hdy.1973.90 PMid:4589174   Hartley CWS (1988). The Oil Palm. Longmans, London.   Hill J (1975). Genotype-environment interactions - a challenge for plant breeding. J. Agric. Sci. 85: 477-493. http://dx.doi.org/10.1017/S0021859600062365   Huhn M (1979). Beitrage zur erfassung der phanotypischen stabilitat. I. Vorschlag einiger auf ranginformationen beruhenden stabilitas parameter. EDP Med. Biol. 10: 112-117.   Hutomo T and Pamin K (1992). Hasil pendahuluan uji keturunan kelapa sawit hibrida D x P dan Dy x P di Sumatera Utara. 2. Interaksi genotipe dan lingkungan terhadap produksi TBS dan komponennya. Bull. Perkeb. 23: 143-154.   Immer FR, Hayes HK and Powers LR (1933). Statistical determination of barley varietal adaptation. J. Am. Soc. Agron. 26: 403-419. http://dx.doi.org/10.2134/agronj1934.00021962002600050008x   Junaidah J, Rafii MY, Chin CW and Saleh G (2011). Performance of tenera oil palm population derived from crosses between Deli dura and pisifera from different sources on inland soils. J. Oil Palm Res. 23: 1210-1221.   Kang MS (1988). A rank-sum method for selecting high yielding stable corn genotypes. Cereal Res. Commun. 16: 113-115.   Kang MS (1993). Issue in Genotype-by-Environment Interaction. Proceedings of the 1991 International Society of Oil Palm Breeders Workshop Genotype-Environment Interaction Studies in Perennial Tree Crops. Palm Oil Research Institute of Malaysia, Kuala Lumpur, 67-73.   Kang MS and Miller JD (1984). Genotype x environment interactions for cane and sugar yield and their implications in sugarcane breeding. Crop Sci. 24: 435-440. http://dx.doi.org/10.2135/cropsci1984.0011183X002400030002x   Kang MS and Pham HN (1991). Simultaneous selection for high yielding and stable crop genotypes. Agron. J. 83: 161-165. http://dx.doi.org/10.2134/agronj1991.00021962008300010037x   Kang MS, Boquet DJ, Hall W, Hallmark W, et al. (1990). Alternative selection methods that consider stability of performance in corn yield trials. Am. Soc. Agron. 95.   Kang MS, Gorman DP and Pham HN (1991). Application of a stability statistic to international maize yield trials. Theor. Genet. 81: 162-165. http://dx.doi.org/10.1007/BF00215718   Knight R (1970). The measurement and interpretation of genotype-environment interactions. Euphytica 19: 225-235. http://dx.doi.org/10.1007/BF01902950   Lee CH and Donough CR (1993). Genotype-Environment Interaction in Oil Palm Clones. Proceedings of the 1991 International Society of Oil Palm Breeders Workshop Genotype-Environment Interaction Studies in Perennial Tree Crops. Palm Oil Research Institute of Malaysia, Kuala Lumpur, 33-45.   Lin CS and Binns MR (1988). A superiority measure of cultivar performance for cultivar x location data. Can. J. Plant Sci. 68: 193-198. http://dx.doi.org/10.4141/cjps88-018   MPOB (2011). Overview of the Malaysian Oil Palm Industry 2010. Available at [http://econ.mpob.gov.my/economy/]. Accessed October 10, 2011. Malaysian Palm Oil Board, Malaysia.   Noh A, Rafii MY, Saleh G and Kushairi A (2010). Genetic performance of 40 Deli dura × AVROS pisifera full-sib families. J. Oil Palm Res. 22: 781-795.   Perkins JM and Jinks JL (1968). Environmental and genotype-environmental components of variability III. Multiple lines and crosses. Heredity 23: 339-356. http://dx.doi.org/10.1038/hdy.1968.48 PMid:5250121   Plaisted RL (1960). A shorter method for evaluating the ability of selections to yield consistently over locations. Am. Potato J. 37: 166-172. http://dx.doi.org/10.1007/BF02855271   Rajanaidu N, Rao V, Hoong HW, Lee CH, et al (1992). Yield Potential and Genotype x Environment (GE) Studies in Oil Palm (Elaeis Guineensis). Proceedings of the Workshop Yield Potential in the Oil Palm. International Society of Oil Palm Breeders, Kuala Lumpur, 44-57.   Rajanaidu N, Jalani BS, Rao V and Kushairi A (1993). Genotype-Environment Interaction (GE) Studies in Oil Palm (Elaeis Guineensis) Progenies. Proceedings of the 1991 International Society of Oil Palm Breeders Workshop Genotype-Environment Interaction Studies in Perennial Tree Crops. Palm Oil Research Institute of Malaysia, Kuala Lumpur, 12-32.   Rao V, Soh AC, Corley RHV and Lee CH (1983). A critical reexamination of the method of bunch quality analysis in oil palm breeding. Palm Oil Research Institute of Malaysia, Kuala Lumpur.   Robbelen G (1990). Mutation Breeding for Quality Improvement - A Case Study for Oilseed Crops. Mutation Breeding Review. Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture No. 6: 1-44.   Sabaghnia N, Dehghani H and Sabaghpour SH (2006). Nonparametric methods for interpreting genotype x environment interaction of Lentil genotypes. Crop Sci. 46: 1100-1106. http://dx.doi.org/10.2135/cropsci2005.06-0122   Shukla GK (1972). Some statistical aspects of partitioning genotype-environmental components of variability. Heredity 29: 237-245. http://dx.doi.org/10.1038/hdy.1972.87 PMid:4507945   Tarmizi AM, Tayeb MD and Zin ZZ (1992). Maximum Yield of Oil Palm in Peninsular Malaysia. Yield Response and Efficiency of Nutrient Recovery. Proceedings of the 1990 International Society of Oil Palm Breeders Workshop Yield Potential in the Oil Palm. International Society of Oil Palm Breeders, Kuala Lumpur, 145-153.   Tiawari DK, Pandey P, Singh RK, Singh SP, et al. (2011). Genotype x Environment Interaction and Stability Analysis in Elite Clones of Sugarcane (Saccharum officinarum L.). Int. J. Plant Breed. Genet. 5: 93-98. http://dx.doi.org/10.3923/ijpbg.2011.93.98   Yates F and Cochran WG (1938). The analysis of groups of experiments. J. Agric. Sci. Camb. 28: 556-580. http://dx.doi.org/10.1017/S0021859600050978   Yong YY, Lee CH, Tan ST and Chiu SB (1993). Evaluation of Elaeis Oleifera x Elaeis Guineensis Inter-Specific Hybrids at Five Locations for Genotype x Environment Interaction. Proceedings of the 1991 International Society of Oil Palm Breeders Workshop Genotype-Environments Interaction Studies in Perennial Tree Crops. International Society of Oil Palm Breeders, Kuala Lumpur, 55-62.
2011
S. Ashkani, Rafii, M. Y., Sariah, M., A. Akmar, S. Nor, Rusli, I., H. Rahim, A., and Latif, M. A., Analysis of simple sequence repeat markers linked with blast disease resistance genes in a segregating population of rice (Oryza sativa), vol. 10, pp. 1345-1355, 2011.
Akagi H, Yokozeki Y, Inagaki A and Fujimura T (1996). Microsatellite DNA markers for rice chromosomes. Theor. Appl. Genet. 93: 1071-1077. doi:10.1007/BF00230127 Berruyer R, Adreit H, Milazzo J, Gaillard S, et al. (2003). Identification and fine mapping of Pi33, the rice resistance gene corresponding to the Magnaporthe grisea avirulence gene ACE1. Theor. Appl. Genet. 107: 1139-1147. doi:10.1007/s00122-003-1349-2 PMid:12838393 Bonman JM, Bandong JM, Lee YH, Lee EJ, et al. (1989). Race-specific partial resistance to blast in temperate japonica rice cultivars. Plant Dis. 73: 496-499. doi:10.1094/PD-73-0496 Bres-Patry C, Loreux M, Clément G, Bangratz M, et al. (2001). Heredity and genetic mapping of domestication-related traits in a temperate japonica weedy rice. Theor. Appl. Genet. 102: 118-126. doi:10.1007/s001220051626 Chauhan S, Farman ML, Zhang HB and Leong A (2002). Genetic and physical mapping of a rice blast resistance locus, PiCO39(t), that corresponds to the avirulence gene AVR1-CO39 of Magnaporthe grisea. Mol. Genet. Genomics 267: 603-612. doi:10.1007/s00438-002-0691-4 PMid:12172799 Chen H (2001). Population Structure of Pyricularia grisea from Central and Southern China and Comparative Mapping of QTL for Blast- and Bacterial Blight-Resistance in Rice and Barley (in Chinese). Ph.D. dissertation, Huazhong Agriculture University, Wuhan, China. Cho YG, Ishii T, Temnykh S, Chen X, et al. (2000). Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.). Theor. Appl. Genet. 100: 713-722. doi:10.1007/s001220051343 Correa-Victoria FJ, Tharreau D, Martínez C, Vales M, et al. (2002). Combinaciones de genes en arroz para el desarrollo de resistencia durable a Pyricularia grisea en Colombia. Fitopatología Colombiana 26: 47-54. Doyle JJ and Doyle JL (1990). Isolation of plant DNA from fresh tissue. Focus 12: 13-15. Ellingboe AH and Chao CCT (1994). Genetic Interactions in Magnaporthe grisea that Affect Cultivar Specific Avirulence/Virulence in Rice. In: Rice Blast Disease (Zeigler RS, Leong SA and TengP S, eds.). CAB International, Wallingford, 51-64. Filippi MC and Prahbu AS (2001). Phenotypic virulence analysis of Pyricularia grisea isolates from Brazilian upland rice cultivars. Pesq. Agropec. Bras. 36: 27-35. doi:10.1590/S0100-204X2001000100004 Fjellstrom R, McClung A, Shank AR, Marchetti MA, et al (2002). Progress on Development of Microsatellite Markers Associated With Rice Blast Resistance Genes. Proceedings of the 29th Rice Technical Working Group Meeting. The Texas Agricultural Experiment Station, College Station, 43-44. Harrington S (2000). A survey of genetic diversity of eight AA genome species of Oryza using microsatellite markers. MS thesis Cornell University, Ithaca. Hittalmani S, Foolad MR, Mew T, Rodriguez RL, et al. (1995). Development of a PCR-based marker to identify rice blast resistance gene, Pi-2(t), in a segregation population. Theor. Appl. Genet. 91: 9-14. doi:10.1007/BF00220852 IRRI (1996). Standard Evaluation System for Rice. 4th edn. The International Network for Genetic Evaluation of Rice, Genetic Resources Center. International Rice Research Institute, Manila, 52. Jia Y, Bryan GT, Farrall L and Valent B (2003). Natural variation at the Pi-ta rice blast resistance locus. Phytopathology 93: 1452-1459. doi:10.1094/PHYTO.2003.93.11.1452 PMid:18944075 Koizumi S (2007). Durability of resistance to rice blast disease. JIRCAS Working Rep. 53: 1-10. Liu B, Zhang S, Zhu X, Yang Q, et al. (2004). Candidate defense genes as predictors of quantitative blast resistance in rice. Mol. Plant Microbe Interact. 17: 1146-1152. doi:10.1094/MPMI.2004.17.10.1146 PMid:15497407 Lopez-Gerena L (2006). Mapping QTL Controlling Durable Resistance to Rice Blast in Cultivar Oryza llanos 5. Ph.D. thesis, Kansas State University, Manhattan, KS, USA. Mackill DJ and Bonman JM (1992). Inheritance of blast resistance in near-isogenic lines of rice. Phytopathology 82: 746-749. doi:10.1094/Phyto-82-746 McCouch SR, Kochert G, Yu ZH, Wang ZY, et al. (1988). Molecular mapping of rice chromosomes. Theor. Appl. Genet. 76: 815-829. doi:10.1007/BF00273666 McCouch SR, Teytelman L, Xu Y, Lobos KB, et al. (2002). Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res. 9: 199-207. doi:10.1093/dnares/9.6.199 PMid:12597276 Moncada P, Martinez CP, Borrero J, Châtel M, et al. (2001). Quantitative trait loci for yield and yield components in an Oryza sativa x Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor. Appl. Genet. 102: 41-52. doi:10.1007/s001220051616 Naqvi NI and Chattoo BB (1996). Development of a sequence characterized amplified region (SCAR) based indirect selection method for a dominant blast-resistance gene in rice. Genome 39: 26-30. doi:10.1139/g96-004 PMid:8851795 Ou SH (1980). Pathogen variability and host resistance in rice blast disease. Ann. Rev. Phytopathol. 18: 167-187. doi:10.1146/annurev.py.18.090180.001123 Pan QH, Wang L and Tanisaka T (1999). A new blast resistance gene identified in the Indian native rice cultivar Aus373 through allelism and linkage tests. Plant Pathol. 48: 288-293. doi:10.1046/j.1365-3059.1999.00337.x Panaud O, Chen X and McCouch SR (1996). Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol. Gen. Genet. 252: 597-607. PMid:8914521 Sallaud C, Lorieux M, Roumen E, Tharreau D, et al. (2003). Identification of five new blast resistance genes in the highly blast-resistant rice variety IR64 using a QTL mapping strategy. Theor. Appl. Genet. 106: 794-803. PMid:12647052 Sharma RC, Shrestha SM and Pandey MP (2007). Inheritance of blast resistance and associated microsatellite markers in rice cultivar “Laxmi”. J. Phytopathol. 155: 749-753. doi:10.1111/j.1439-0434.2007.01298.x Talukder ZI, Tharreau D and Price AH (2004). Quantitative trait loci analysis suggests that partial resistance to rice blast is mostly determined by race-specific interactions. New Phytol. 162: 197-209. doi:10.1111/j.1469-8137.2004.01010.x Temnykh S, Park WD, Ayers N, Cartinhour S, et al. (2000). Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor. Appl. Genet. 100: 697-712. doi:10.1007/s001220051342 Wang GL, Mackill DJ, Bonman JM, McCouch SR, et al. (1994). RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics 136: 1421-1434. PMid:7912216    PMCid:1205921 Wu KS and Tanksley SD (1993). Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol. Gen. Genet. 241: 225-235. doi:10.1007/BF00280220 Yamakawa Y, Fuji K, Kawakami J and Samoto S (1977). Studies on breeding Malinja, Mahsuri and Bahagia, new rice varieties for double cropping in Malaysia. Jpn. J. Trop. Agric. 21: 40-42. Yu ZH, Mackill DJ and Bonman JM (1987). Inheritance of resistance to blast in some traditional and improved rice cultivars. Phytopathology 77: 323-326. doi:10.1094/Phyto-77-323 Zhu M, Wang L and Pan Q (2004). Identification and characterization of a new blast resistance gene located on rice chromosome 1 through linkage and differential analyses. Phytopathology 94: 515-519. doi:10.1094/PHYTO.2004.94.5.515 PMid:18943771 Zou JH, Pan XB, Chen ZX, Xu JY, et al. (2000). Mapping quantitative trait loci controlling sheath blight resistance into rice cultivars (Oryza sativa L.). Theor. Appl. Genet. 101: 569-573. doi:10.1007/s001220051517