Publications

Found 22 results
Filters: Author is J.B. Zhang  [Clear All Filters]
2016
Y. B. Shen, Zhang, J. B., Fu, J. J., Xu, X. Y., Li, J. L., Wang, R. Q., Xuan, Y. F., Shen, Y. B., Zhang, J. B., Fu, J. J., Xu, X. Y., Li, J. L., Wang, R. Q., Xuan, Y. F., Shen, Y. B., Zhang, J. B., Fu, J. J., Xu, X. Y., Li, J. L., Wang, R. Q., and Xuan, Y. F., A 425 T>C polymorphism in complement C7 association with resistance to Aeromonas hydrophila in grass carp, vol. 15, p. -, 2016.
Y. B. Shen, Zhang, J. B., Fu, J. J., Xu, X. Y., Li, J. L., Wang, R. Q., Xuan, Y. F., Shen, Y. B., Zhang, J. B., Fu, J. J., Xu, X. Y., Li, J. L., Wang, R. Q., Xuan, Y. F., Shen, Y. B., Zhang, J. B., Fu, J. J., Xu, X. Y., Li, J. L., Wang, R. Q., and Xuan, Y. F., A 425 T>C polymorphism in complement C7 association with resistance to Aeromonas hydrophila in grass carp, vol. 15, p. -, 2016.
Y. B. Shen, Zhang, J. B., Fu, J. J., Xu, X. Y., Li, J. L., Wang, R. Q., Xuan, Y. F., Shen, Y. B., Zhang, J. B., Fu, J. J., Xu, X. Y., Li, J. L., Wang, R. Q., Xuan, Y. F., Shen, Y. B., Zhang, J. B., Fu, J. J., Xu, X. Y., Li, J. L., Wang, R. Q., and Xuan, Y. F., A 425 T>C polymorphism in complement C7 association with resistance to Aeromonas hydrophila in grass carp, vol. 15, p. -, 2016.
C. Z. Chen, Zhu, Y. N., Chai, M. L., Dai, L. S., Gao, Y., Jiang, H., Zhang, L. J., Ding, Y., Liu, S. Y., Li, Q. Y., Lu, W. F., Zhang, J. B., Chen, C. Z., Zhu, Y. N., Chai, M. L., Dai, L. S., Gao, Y., Jiang, H., Zhang, L. J., Ding, Y., Liu, S. Y., Li, Q. Y., Lu, W. F., Zhang, J. B., Chen, C. Z., Zhu, Y. N., Chai, M. L., Dai, L. S., Gao, Y., Jiang, H., Zhang, L. J., Ding, Y., Liu, S. Y., Li, Q. Y., Lu, W. F., and Zhang, J. B., AMFR gene silencing inhibits the differentiation of porcine preadipocytes, vol. 15, p. -, 2016.
C. Z. Chen, Zhu, Y. N., Chai, M. L., Dai, L. S., Gao, Y., Jiang, H., Zhang, L. J., Ding, Y., Liu, S. Y., Li, Q. Y., Lu, W. F., Zhang, J. B., Chen, C. Z., Zhu, Y. N., Chai, M. L., Dai, L. S., Gao, Y., Jiang, H., Zhang, L. J., Ding, Y., Liu, S. Y., Li, Q. Y., Lu, W. F., Zhang, J. B., Chen, C. Z., Zhu, Y. N., Chai, M. L., Dai, L. S., Gao, Y., Jiang, H., Zhang, L. J., Ding, Y., Liu, S. Y., Li, Q. Y., Lu, W. F., and Zhang, J. B., AMFR gene silencing inhibits the differentiation of porcine preadipocytes, vol. 15, p. -, 2016.
C. Z. Chen, Zhu, Y. N., Chai, M. L., Dai, L. S., Gao, Y., Jiang, H., Zhang, L. J., Ding, Y., Liu, S. Y., Li, Q. Y., Lu, W. F., Zhang, J. B., Chen, C. Z., Zhu, Y. N., Chai, M. L., Dai, L. S., Gao, Y., Jiang, H., Zhang, L. J., Ding, Y., Liu, S. Y., Li, Q. Y., Lu, W. F., Zhang, J. B., Chen, C. Z., Zhu, Y. N., Chai, M. L., Dai, L. S., Gao, Y., Jiang, H., Zhang, L. J., Ding, Y., Liu, S. Y., Li, Q. Y., Lu, W. F., and Zhang, J. B., AMFR gene silencing inhibits the differentiation of porcine preadipocytes, vol. 15, p. -, 2016.
N. Wang, Zhang, J. B., Zhao, J., Cai, X. T., Zhu, Y. S., Li, S. B., Wang, N., Zhang, J. B., Zhao, J., Cai, X. T., Zhu, Y. S., and Li, S. B., Association between dopamine D2 receptor gene polymorphisms and the risk of heroin dependence, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch partially supported by the National Science Foundation of China (#NSFC31100900). REFERENCESAl-Eitan LN, Jaradat SA, Hulse GK, Tay GK, et al (2012). Custom genotyping for substance addiction susceptibility genes in Jordanians of Arab descent. BMC Res. Notes 5: 497. http://dx.doi.org/10.1186/1756-0500-5-497 Chen D, Liu F, Shang Q, Song X, et al (2011). Association between polymorphisms of DRD2 and DRD4 and opioid dependence: evidence from the current studies. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 156B: 661-670. http://dx.doi.org/10.1002/ajmg.b.31208 Clarke TK, Weiss AR, Ferarro TN, Kampman KM, et al (2014). The dopamine receptor D2 (DRD2) SNP rs1076560 is associated with opioid addiction. Ann. Hum. Genet. 78: 33-39. http://dx.doi.org/10.1111/ahg.12046 Doehring A, Hentig Nv, Graff J, Salamat S, et al (2009). Genetic variants altering dopamine D2 receptor expression or function modulate the risk of opiate addiction and the dosage requirements of methadone substitution. Pharmacogenet. Genomics 19: 407-414. http://dx.doi.org/10.1097/FPC.0b013e328320a3fd Duan J, Wainwright MS, Comeron JM, Saitou N, et al (2003). Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor. Hum. Mol. Genet. 12: 205-216. http://dx.doi.org/10.1093/hmg/ddg055 Gorwood P, Le Strat Y, Ramoz N, Dubertret C, et al (2012). Genetics of dopamine receptors and drug addiction. Hum. Genet. 131: 803-822. http://dx.doi.org/10.1007/s00439-012-1145-7 Gupta M, Chauhan C, Bhatnagar P, Gupta S, et al (2009). Genetic susceptibility to schizophrenia: role of dopaminergic pathway gene polymorphisms. Pharmacogenomics 10: 277-291. http://dx.doi.org/10.2217/14622416.10.2.277 Hou QF, Li SB, et al (2009). Potential association of DRD2 and DAT1 genetic variation with heroin dependence. Neurosci. Lett. 464: 127-130. http://dx.doi.org/10.1016/j.neulet.2009.08.004 Huang CL, Ou WC, Chen PL, Liu CN, et al (2015). Effects of interaction between dopamine D2 receptor and monoamine oxidase A genes on smoking status in young men. Biol. Res. Nurs. 17: 422-428. http://dx.doi.org/10.1177/1099800415589366 Hwang R, Shinkai T, De Luca V, Müller DJ, et al (2005). Association study of 12 polymorphisms spanning the dopamine D(2) receptor gene and clozapine treatment response in two treatment refractory/intolerant populations. Psychopharmacology (Berl.) 181: 179-187. http://dx.doi.org/10.1007/s00213-005-2223-5 Iida K, Akashi H, et al (2000). A test of translational selection at ‘silent’ sites in the human genome: base composition comparisons in alternatively spliced genes. Gene 261: 93-105. http://dx.doi.org/10.1016/S0378-1119(00)00482-0 Jönsson EG, Nöthen MM, Grünhage F, Farde L, et al (1999). Polymorphisms in the dopamine D2 receptor gene and their relationships to striatal dopamine receptor density of healthy volunteers. Mol. Psychiatry 4: 290-296. http://dx.doi.org/10.1038/sj.mp.4000532 Kukreti R, Tripathi S, Bhatnagar P, Gupta S, et al (2006). Association of DRD2 gene variant with schizophrenia. Neurosci. Lett. 392: 68-71. http://dx.doi.org/10.1016/j.neulet.2005.08.059 Liu JH, Zhong HJ, Dang J, Peng L, et al (2015). Single-nucleotide polymorphisms in dopamine receptor D1 are associated with heroin dependence but not impulsive behavior. Genet. Mol. Res. 14: 4041-4050. http://dx.doi.org/10.4238/2015.April.27.19 Maldonado R, Saiardi A, Valverde O, Samad TA, et al (1997). Absence of opiate rewarding effects in mice lacking dopamine D2 receptors. Nature 388: 586-589. http://dx.doi.org/10.1038/41567 Meyers JL, Nyman E, Loukola A, Rose RJ, et al (2013). The association between DRD2/ANKK1 and genetically informed measures of alcohol use and problems. Addict. Biol. 18: 523-536. http://dx.doi.org/10.1111/j.1369-1600.2012.00490.x Moyer RA, Wang D, Papp AC, Smith RM, et al (2011). Intronic polymorphisms affecting alternative splicing of human dopamine D2 receptor are associated with cocaine abuse. Neuropsychopharmacology 36: 753-762. http://dx.doi.org/10.1038/npp.2010.208 Parsian A, Cloninger CR, Zhang ZH, et al (2000). Functional variant in the DRD2 receptor promoter region and subtypes of alcoholism. Am. J. Med. Genet. 96: 407-411. http://dx.doi.org/10.1002/1096-8628(20000612)96:3<407::AID-AJMG32>3.0.CO;2-1 Prasad P, Ambekar A, Vaswani M, et al (2010). Dopamine D2 receptor polymorphisms and susceptibility to alcohol dependence in Indian males: a preliminary study. BMC Med. Genet. 11: 24. http://dx.doi.org/10.1186/1471-2350-11-24 Rangel-Barajas C, Coronel I, Florán B, et al (2015). Dopamine receptors and neurodegeneration. Aging Dis. 6: 349-368. http://dx.doi.org/10.14336/AD.2015.0330 Ritchie T, Noble EP, et al (2003). Association of seven polymorphisms of the D2 dopamine receptor gene with brain receptor-binding characteristics. Neurochem. Res. 28: 73-82. http://dx.doi.org/10.1023/A:1021648128758 Rowlett JK, Platt DM, Yao WD, Spealman RD, et al (2007). Modulation of heroin and cocaine self-administration by dopamine D1- and D2-like receptor agonists in rhesus monkeys. J. Pharmacol. Exp. Ther. 321: 1135-1143. http://dx.doi.org/10.1124/jpet.107.120766 Teh LK, Izuddin AF, M H FH, Zakaria ZA, et al (2012). Tridimensional personalities and polymorphism of dopamine D2 receptor among heroin addicts. Biol. Res. Nurs. 14: 188-196. http://dx.doi.org/10.1177/1099800411405030 Uhl GR, Drgon T, Johnson C, Fatusin OO, et al (2008). “Higher order” addiction molecular genetics: convergent data from genome-wide association in humans and mice. Biochem. Pharmacol. 75: 98-111. http://dx.doi.org/10.1016/j.bcp.2007.06.042 van den Bree MB, Johnson EO, Neale MC, Pickens RW, et al (1998). Genetic and environmental influences on drug use and abuse/dependence in male and female twins. Drug Alcohol Depend. 52: 231-241. http://dx.doi.org/10.1016/S0376-8716(98)00101-X Vereczkei A, Demetrovics Z, Szekely A, Sarkozy P, et al (2013). Multivariate analysis of dopaminergic gene variants as risk factors of heroin dependence. PLoS One 8: e66592. http://dx.doi.org/10.1371/journal.pone.0066592 Wang GJ, Volkow ND, Fowler JS, Logan J, et al (1997). Dopamine D2 receptor availability in opiate-dependent subjects before and after naloxone-precipitated withdrawal. Neuropsychopharmacology 16: 174-182. http://dx.doi.org/10.1016/S0893-133X(96)00184-4 Xu K, Lichtermann D, Lipsky RH, Franke P, et al (2004). Association of specific haplotypes of D2 dopamine receptor gene with vulnerability to heroin dependence in 2 distinct populations. Arch. Gen. Psychiatry 61: 597-606. http://dx.doi.org/10.1001/archpsyc.61.6.597 Zhang JP, Lencz T, Malhotra AK, et al (2010). D2 receptor genetic variation and clinical response to antipsychotic drug treatment: a meta-analysis. Am. J. Psychiatry 167: 763-772. http://dx.doi.org/10.1176/appi.ajp.2009.09040598 Zhang Y, Bertolino A, Fazio L, Blasi G, et al (2007). Polymorphisms in human dopamine D2 receptor gene affect gene expression, splicing, and neuronal activity during working memory. Proc. Natl. Acad. Sci. USA 104: 20552-20557. http://dx.doi.org/10.1073/pnas.0707106104  
N. Wang, Zhang, J. B., Zhao, J., Cai, X. T., Zhu, Y. S., Li, S. B., Wang, N., Zhang, J. B., Zhao, J., Cai, X. T., Zhu, Y. S., and Li, S. B., Association between dopamine D2 receptor gene polymorphisms and the risk of heroin dependence, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch partially supported by the National Science Foundation of China (#NSFC31100900). REFERENCESAl-Eitan LN, Jaradat SA, Hulse GK, Tay GK, et al (2012). Custom genotyping for substance addiction susceptibility genes in Jordanians of Arab descent. BMC Res. Notes 5: 497. http://dx.doi.org/10.1186/1756-0500-5-497 Chen D, Liu F, Shang Q, Song X, et al (2011). Association between polymorphisms of DRD2 and DRD4 and opioid dependence: evidence from the current studies. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 156B: 661-670. http://dx.doi.org/10.1002/ajmg.b.31208 Clarke TK, Weiss AR, Ferarro TN, Kampman KM, et al (2014). The dopamine receptor D2 (DRD2) SNP rs1076560 is associated with opioid addiction. Ann. Hum. Genet. 78: 33-39. http://dx.doi.org/10.1111/ahg.12046 Doehring A, Hentig Nv, Graff J, Salamat S, et al (2009). Genetic variants altering dopamine D2 receptor expression or function modulate the risk of opiate addiction and the dosage requirements of methadone substitution. Pharmacogenet. Genomics 19: 407-414. http://dx.doi.org/10.1097/FPC.0b013e328320a3fd Duan J, Wainwright MS, Comeron JM, Saitou N, et al (2003). Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor. Hum. Mol. Genet. 12: 205-216. http://dx.doi.org/10.1093/hmg/ddg055 Gorwood P, Le Strat Y, Ramoz N, Dubertret C, et al (2012). Genetics of dopamine receptors and drug addiction. Hum. Genet. 131: 803-822. http://dx.doi.org/10.1007/s00439-012-1145-7 Gupta M, Chauhan C, Bhatnagar P, Gupta S, et al (2009). Genetic susceptibility to schizophrenia: role of dopaminergic pathway gene polymorphisms. Pharmacogenomics 10: 277-291. http://dx.doi.org/10.2217/14622416.10.2.277 Hou QF, Li SB, et al (2009). Potential association of DRD2 and DAT1 genetic variation with heroin dependence. Neurosci. Lett. 464: 127-130. http://dx.doi.org/10.1016/j.neulet.2009.08.004 Huang CL, Ou WC, Chen PL, Liu CN, et al (2015). Effects of interaction between dopamine D2 receptor and monoamine oxidase A genes on smoking status in young men. Biol. Res. Nurs. 17: 422-428. http://dx.doi.org/10.1177/1099800415589366 Hwang R, Shinkai T, De Luca V, Müller DJ, et al (2005). Association study of 12 polymorphisms spanning the dopamine D(2) receptor gene and clozapine treatment response in two treatment refractory/intolerant populations. Psychopharmacology (Berl.) 181: 179-187. http://dx.doi.org/10.1007/s00213-005-2223-5 Iida K, Akashi H, et al (2000). A test of translational selection at ‘silent’ sites in the human genome: base composition comparisons in alternatively spliced genes. Gene 261: 93-105. http://dx.doi.org/10.1016/S0378-1119(00)00482-0 Jönsson EG, Nöthen MM, Grünhage F, Farde L, et al (1999). Polymorphisms in the dopamine D2 receptor gene and their relationships to striatal dopamine receptor density of healthy volunteers. Mol. Psychiatry 4: 290-296. http://dx.doi.org/10.1038/sj.mp.4000532 Kukreti R, Tripathi S, Bhatnagar P, Gupta S, et al (2006). Association of DRD2 gene variant with schizophrenia. Neurosci. Lett. 392: 68-71. http://dx.doi.org/10.1016/j.neulet.2005.08.059 Liu JH, Zhong HJ, Dang J, Peng L, et al (2015). Single-nucleotide polymorphisms in dopamine receptor D1 are associated with heroin dependence but not impulsive behavior. Genet. Mol. Res. 14: 4041-4050. http://dx.doi.org/10.4238/2015.April.27.19 Maldonado R, Saiardi A, Valverde O, Samad TA, et al (1997). Absence of opiate rewarding effects in mice lacking dopamine D2 receptors. Nature 388: 586-589. http://dx.doi.org/10.1038/41567 Meyers JL, Nyman E, Loukola A, Rose RJ, et al (2013). The association between DRD2/ANKK1 and genetically informed measures of alcohol use and problems. Addict. Biol. 18: 523-536. http://dx.doi.org/10.1111/j.1369-1600.2012.00490.x Moyer RA, Wang D, Papp AC, Smith RM, et al (2011). Intronic polymorphisms affecting alternative splicing of human dopamine D2 receptor are associated with cocaine abuse. Neuropsychopharmacology 36: 753-762. http://dx.doi.org/10.1038/npp.2010.208 Parsian A, Cloninger CR, Zhang ZH, et al (2000). Functional variant in the DRD2 receptor promoter region and subtypes of alcoholism. Am. J. Med. Genet. 96: 407-411. http://dx.doi.org/10.1002/1096-8628(20000612)96:3<407::AID-AJMG32>3.0.CO;2-1 Prasad P, Ambekar A, Vaswani M, et al (2010). Dopamine D2 receptor polymorphisms and susceptibility to alcohol dependence in Indian males: a preliminary study. BMC Med. Genet. 11: 24. http://dx.doi.org/10.1186/1471-2350-11-24 Rangel-Barajas C, Coronel I, Florán B, et al (2015). Dopamine receptors and neurodegeneration. Aging Dis. 6: 349-368. http://dx.doi.org/10.14336/AD.2015.0330 Ritchie T, Noble EP, et al (2003). Association of seven polymorphisms of the D2 dopamine receptor gene with brain receptor-binding characteristics. Neurochem. Res. 28: 73-82. http://dx.doi.org/10.1023/A:1021648128758 Rowlett JK, Platt DM, Yao WD, Spealman RD, et al (2007). Modulation of heroin and cocaine self-administration by dopamine D1- and D2-like receptor agonists in rhesus monkeys. J. Pharmacol. Exp. Ther. 321: 1135-1143. http://dx.doi.org/10.1124/jpet.107.120766 Teh LK, Izuddin AF, M H FH, Zakaria ZA, et al (2012). Tridimensional personalities and polymorphism of dopamine D2 receptor among heroin addicts. Biol. Res. Nurs. 14: 188-196. http://dx.doi.org/10.1177/1099800411405030 Uhl GR, Drgon T, Johnson C, Fatusin OO, et al (2008). “Higher order” addiction molecular genetics: convergent data from genome-wide association in humans and mice. Biochem. Pharmacol. 75: 98-111. http://dx.doi.org/10.1016/j.bcp.2007.06.042 van den Bree MB, Johnson EO, Neale MC, Pickens RW, et al (1998). Genetic and environmental influences on drug use and abuse/dependence in male and female twins. Drug Alcohol Depend. 52: 231-241. http://dx.doi.org/10.1016/S0376-8716(98)00101-X Vereczkei A, Demetrovics Z, Szekely A, Sarkozy P, et al (2013). Multivariate analysis of dopaminergic gene variants as risk factors of heroin dependence. PLoS One 8: e66592. http://dx.doi.org/10.1371/journal.pone.0066592 Wang GJ, Volkow ND, Fowler JS, Logan J, et al (1997). Dopamine D2 receptor availability in opiate-dependent subjects before and after naloxone-precipitated withdrawal. Neuropsychopharmacology 16: 174-182. http://dx.doi.org/10.1016/S0893-133X(96)00184-4 Xu K, Lichtermann D, Lipsky RH, Franke P, et al (2004). Association of specific haplotypes of D2 dopamine receptor gene with vulnerability to heroin dependence in 2 distinct populations. Arch. Gen. Psychiatry 61: 597-606. http://dx.doi.org/10.1001/archpsyc.61.6.597 Zhang JP, Lencz T, Malhotra AK, et al (2010). D2 receptor genetic variation and clinical response to antipsychotic drug treatment: a meta-analysis. Am. J. Psychiatry 167: 763-772. http://dx.doi.org/10.1176/appi.ajp.2009.09040598 Zhang Y, Bertolino A, Fazio L, Blasi G, et al (2007). Polymorphisms in human dopamine D2 receptor gene affect gene expression, splicing, and neuronal activity during working memory. Proc. Natl. Acad. Sci. USA 104: 20552-20557. http://dx.doi.org/10.1073/pnas.0707106104  
L. L. Chen, Shen, Y., Zhang, J. B., Wang, S., Jiang, T., Zheng, M. Q., Zheng, Z. J., Chen, C. X., Chen, L. L., Shen, Y., Zhang, J. B., Wang, S., Jiang, T., Zheng, M. Q., Zheng, Z. J., and Chen, C. X., Association between polymorphisms in the promoter region of pri-miR-34b/c and risk of hepatocellular carcinoma, vol. 15, p. -, 2016.
L. L. Chen, Shen, Y., Zhang, J. B., Wang, S., Jiang, T., Zheng, M. Q., Zheng, Z. J., Chen, C. X., Chen, L. L., Shen, Y., Zhang, J. B., Wang, S., Jiang, T., Zheng, M. Q., Zheng, Z. J., and Chen, C. X., Association between polymorphisms in the promoter region of pri-miR-34b/c and risk of hepatocellular carcinoma, vol. 15, p. -, 2016.
2015
M. Cao, Zhang, J. B., Dong, D. D., Mou, Y., Li, K., Fang, J., Wang, Z. Y., Chen, C., Zhao, J., and Yie, S. M., Alleviation of streptozotocin-induced diabetes in nude mice by stem cells derived from human first trimester umbilical cord, vol. 14, pp. 12505-12519, 2015.
Q. Deng, Gao, Y., Jiang, H., Chen, C. Z., Li, C. H., Yu, W. L., Chen, X., and Zhang, J. B., Association of a hypoxia-inducible factor-3α gene polymorphism with superovulation traits in Changbaishan black cattle, vol. 14, pp. 14539-14547, 2015.
S. Y. Liu, Jiang, H., Yuan, B., Gao, Y., Dai, L. S., and Zhang, J. B., Characterization of a novel CAPN3 transcript generated by alternative splicing in cattle, vol. 14, pp. 457-463, 2015.
J. L. Liu, Zhao, X. H., Zhang, D. L., Zhang, J. B., and Liu, Z. H., Effect of montelukast on the expression of interleukin-18, telomerase reverse transcriptase, and Bcl-2 in the brain tissue of neonatal rats with hypoxic-ischemic brain damage, vol. 14, pp. 8901-8908, 2015.
Q. Deng, Gao, Y., Li, C. H., Yu, X. F., Ren, J. S., Li, S. J., Chen, C. Z., Yuan, B., Ding, Y., Jiang, H., and Zhang, J. B., Effects of choice of month of treatment and parity order on bovine superovulation traits, vol. 14, pp. 15062-15072, 2015.
C. H. Li, Gao, Y., Wang, S., Xu, F. F., Dai, L. S., Jiang, H., Yu, X. F., Chen, C. Z., Yuan, B., and Zhang, J. B., Expression pattern of JMJD1C in oocytes and its impact on early embryonic development, vol. 14, pp. 18249-18258, 2015.
B. Yuan, Sun, G. J., Zhang, G. L., Wu, J., Xu, C., Dai, L. S., Chen, J., Yu, X. F., Zhao, Z. H., and Zhang, J. B., Identification of target genes for adenohypophysis-prefer miR-7 and miR-375 in cattle, vol. 14, pp. 9753-9763, 2015.
2013
Y. H. Zhang, Dai, L. S., Ma, T. H., Wang, S. Z., Guo, J., Li, F. J., Zhang, S. M., Sun, B. X., Liu, D. F., Gao, Y., and Zhang, J. B., Association of T1740C polymorphism of L-FABP with meat quality traits in Junmu No. 1 white swine, vol. 12, pp. 235-241, 2013.
Atshaves BP, McIntosh AM, Lyuksyutova OI, Zipfel W, et al. (2004). Liver fatty acid-binding protein gene ablation inhibits branched-chain fatty acid metabolism in cultured primary hepatocytes. J. Biol. Chem. 279: 30954-30965. http://dx.doi.org/10.1074/jbc.M313571200 PMid:15155724   Curi RA, Chardulo LA, Mason MC, Arrigoni MD, et al. (2009). Effect of single nucleotide polymorphisms of CAPN1 241 and CAST genes on meat traits in Nellore beef cattle (Bos indicus) and in their crosses with Bos taurus. Anim. Genet. 40: 456-462. http://dx.doi.org/10.1111/j.1365-2052.2009.01859.x PMid:19392828   Di Pietro SM and Santomé JA (1996). Presence of two new fatty acid binding proteins in catfish liver. Biochem. Cell Biol. 74: 675-680. http://dx.doi.org/10.1139/o96-073 PMid:9018375   Di Pietro SM, Veerkamp JH and Santomé JA (1999). Isolation, amino acid sequence determination and binding properties of two fatty-acid-binding proteins from axolotl (Ambistoma mexicanum) liver. Evolutionary relationship. Eur. J. Biochem. 259: 127-134. http://dx.doi.org/10.1046/j.1432-1327.1999.00015.x PMid:9914484   Geay Y, Bauchart D, Hocquette JF and Culioli J (2001). Effect of nutritional factors on biochemical, structural and metabolic characteristics of muscles in ruminants, consequences on dietetic value and sensorial qualities of meat. Reprod. Nutr. Dev. 41: 1-26. http://dx.doi.org/10.1051/rnd:2001108 PMid:11368241   Gertow K, Bellanda M, Eriksson P, Boquist S, et al. (2004). Genetic and structural evaluation of fatty acid transport protein-4 in relation to markers of the insulin resistance syndrome. J. Clin. Endocrinol. Metab. 89: 392-399. http://dx.doi.org/10.1210/jc.2003-030682 PMid:14715877   Glatz JF and van der Vusse GJ (1996). Cellular fatty acid-binding proteins: their function and physiological significance. Prog. Lipid Res. 35: 243-282. http://dx.doi.org/10.1016/S0163-7827(96)00006-9   Gomez LC, Real SM, Ojeda MS, Gimenez S, et al. (2007). Polymorphism of the FABP2 gene: a population frequency analysis and an association study with cardiovascular risk markers in Argentina. BMC Med. Genet. 8: 39. http://dx.doi.org/10.1186/1471-2350-8-39 PMid:17594477 PMCid:1925061   Heyer A and Lebret B (2007). Compensatory growth response in pigs: effects on growth performance, composition of weight gain at carcass and muscle levels, and meat quality. J. Anim. Sci. 85: 769-778. http://dx.doi.org/10.2527/jas.2006-164 PMid:17296780   Jiang YZ, Li XW and Yang GX (2006). Sequence characterization, tissue-specific expression and polymorphism of the porcine (Sus scrofa) liver-type fatty acid binding protein gene. Yi Chuan Xue Bao 33: 598-606. PMid:16875317   Jurie C, Cassar-Malek I, Bonnet M, Leroux C, et al. (2007). Adipocyte fatty acid-binding protein and mitochondrial enzyme activities in muscles as relevant indicators of marbling in cattle. J. Anim. Sci. 85: 2660-2669. http://dx.doi.org/10.2527/jas.2006-837 PMid:17565066   Kamalakar RB, Chiba LI, Divakala KC, Rodning SP, et al. (2009). Effect of the degree and duration of early dietary amino acid restrictions on subsequent and overall pig performance and physical and sensory characteristics of pork. J. Anim. Sci. 87: 3596-3606. http://dx.doi.org/10.2527/jas.2008-1609 PMid:19574567   Li X, Kim SW, Choi JS, Lee YM, et al. (2010). Investigation of porcine FABP3 and LEPR gene polymorphisms and mRNA expression for variation in intramuscular fat content. Mol. Biol. Rep. 37: 3931-3939. http://dx.doi.org/10.1007/s11033-010-0050-1 PMid:20300864   Liu K, Wang G, Zhao SH, Liu B, et al. (2010). Molecular characterization, chromosomal location, alternative splicing and polymorphism of porcine GFAT1 gene. Mol. Biol. Rep. 37: 2711-2717. http://dx.doi.org/10.1007/s11033-009-9805-y PMid:19757168   Nemecz G, Jefferson JR and Schroeder F (1991). Polyene fatty acid interactions with recombinant intestinal and liver fatty acid-binding proteins. Spectroscopic studies. J. Biol. Chem. 266: 17112-17123. PMid:1894608   Richieri GV, Ogata RT and Kleinfeld AM (1994). Equilibrium constants for the binding of fatty acids with fatty acid-binding proteins from adipocyte, intestine, heart, and liver measured with the fluorescent probe ADIFAB. J. Biol. Chem. 269: 23918-23930. PMid:7929039   Rolf B, Oudenampsen-Krüger E, Börchers T, Faergeman NJ, et al. (1995). Analysis of the ligand binding properties of recombinant bovine liver-type fatty acid binding protein. Biochim. Biophys. Acta 1259: 245-253. http://dx.doi.org/10.1016/0005-2760(95)00170-0   Sambrook J, Fritsch EF and Maniatis T (1989). Molecular Cloning: A Laboratory Manual. 2nd edn. Cold Spring Harbor Laboratory Press, New York.   Switonski M, Stachowiak M, Cieslak J, Bartz M, et al. (2010). Genetics of fat tissue accumulation in pigs: a comparative approach. J. Appl. Genet. 51: 153-168. http://dx.doi.org/10.1007/BF03195724 PMid:20453303   Thompson J, Winter N, Terwey D, Bratt J, et al. (1997). The crystal structure of the liver fatty acid-binding protein. A complex with two bound oleates. J. Biol. Chem. 272: 7140-7150. http://dx.doi.org/10.1074/jbc.272.11.7140 PMid:9054409
2012
T. H. Ma, Xiong, Q. H., Yuan, B., Jiang, H., Gao, Y., Xu, J. B., Liu, S. Y., Ding, Y., Zhang, G. L., Zhao, Y. M., and Zhang, J. B., Luteinizing hormone receptor splicing variants in bovine Leydig cells, vol. 11, pp. 1721-1730, 2012.
Aatsinki JT, Pietila EM, Lakkakorpi JT and Rajaniemi HJ (1992). Expression of the LH/CG receptor gene in rat ovarian tissue is regulated by an extensive alternative splicing of the primary transcript. Mol. Cell Endocrinol. 84: 127-135. http://dx.doi.org/10.1016/0303-7207(92)90079-L   Apaja PM, Tuusa JT, Pietila EM, Rajaniemi HJ, et al. (2006). Luteinizing hormone receptor ectodomain splice variant misroutes the full-length receptor into a subcompartment of the endoplasmic reticulum. Mol. Biol. Cell 17: 2243- 2255. http://dx.doi.org/10.1091/mbc.E05-09-0875 PMid:16495341 PMCid:1446094   Ascoli M, Fanelli F and Segaloff DL (2002). The lutropin/choriogonadotropin receptor, a 2002 perspective. Endocr. Rev. 23: 141-174. http://dx.doi.org/10.1210/er.23.2.141 PMid:11943741   Bacich DJ, Rohan RM, Norman RJ and Rodgers RJ (1994). Characterization and relative abundance of alternatively spliced luteinizing hormone receptor messenger ribonucleic acid in the ovine ovary. Endocrinology 135: 735-744. http://dx.doi.org/10.1210/en.135.2.735 PMid:7518389   Bacich DJ, Earl CR, O'Keefe DS, Norman RJ, et al. (1999). Characterization of the translated products of the alternatively spliced luteinizing hormone receptor in the ovine ovary throughout the oestrous cycle. Mol. Cell Endocrinol. 147: 113-124. http://dx.doi.org/10.1016/S0303-7207(98)00216-0   Buratini J Jr, Teixeira AB, Costa IB, Glapinski VF, et al. (2005). Expression of fibroblast growth factor-8 and regulation of cognate receptors, fibroblast growth factor receptor-3c and -4, in bovine antral follicles. Reproduction 130: 343-350. http://dx.doi.org/10.1530/rep.1.00642 PMid:16123241   Chandolia RK, Luetjens CM, Wistuba J, Yeung CH, et al. (2006). Changes in endocrine profile and reproductive organs during puberty in the male marmoset monkey (Callithrix jacchus). Reproduction 132: 355-363. http://dx.doi.org/10.1530/rep.1.01186 PMid:16885543   Chuzel F, Schteingart H, Vigier M, Avallet O, et al. (1995). Transcription and post-transcriptional regulation of luteotropin/ chorionic gonadotropin receptor by the agonist in Leydig cells. Eur. J. Biochem. 229: 316-325. http://dx.doi.org/10.1111/j.1432-1033.1995.tb20471.x PMid:7744046   Davis JS, May JV and Keel BA (1996). Mechanisms of hormone and growth factor action in the bovine corpus luteum. Theriogenology 45: 1351-1380. http://dx.doi.org/10.1016/0093-691X(96)00101-X   Dickinson RE, Myers M and Duncan WC (2008). Novel regulated expression of the SLIT/ROBO pathway in the ovary: possible role during luteolysis in women. Endocrinology 149: 5024-5034. http://dx.doi.org/10.1210/en.2008-0204 PMid:18566128   Gromoll J, Eiholzer U, Nieschlag E and Simoni M (2000). Male hypogonadism caused by homozygous deletion of exon 10 of the luteinizing hormone (LH) receptor: differential action of human chorionic gonadotropin and LH. J. Clin. Endocrinol. Metab. 85: 2281-2286. http://dx.doi.org/10.1210/jc.85.6.2281 PMid:10852464   Kawate N (2004). Studies on the regulation of expression of luteinizing hormone receptor in the ovary and the mechanism of follicular cyst formation in ruminants. J. Reprod. Dev. 50: 1-8. http://dx.doi.org/10.1262/jrd.50.1 PMid:15007196   Kishi H, Minegishi T, Tano M, Abe Y, et al. (1997). Down-regulation of LH/hCG receptor in rat cultured granulosa cells. FEBS Lett. 402: 198-202. http://dx.doi.org/10.1016/S0014-5793(96)01528-1   Lakkakorpi JT, Pietila EM, Aatsinki JT and Rajaniemi HJ (1993). Human chorionic gonadotrophin (CG)-induced down-regulation of the rat luteal LH/CG receptor results in part from the down-regulation of its synthesis, involving increased alternative processing of the primary transcript. J. Mol. Endocrinol. 10: 153-162. http://dx.doi.org/10.1677/jme.0.0100153 PMid:8484864   Livak KJ and Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408.   Loosfelt H, Misrahi M, Atger M, Salesse R, et al. (1989). Cloning and sequencing of porcine LH-hCG receptor cDNA: variants lacking transmembrane domain. Science 245: 525-528. http://dx.doi.org/10.1126/science.2502844 PMid:2502844   Lu DL, Peegel H, Mosier SM and Menon KM (1993). Loss of lutropin/human choriogonadotropin receptor messenger ribonucleic acid during ligand-induced down-regulation occurs post transcriptionally. Endocrinology 132: 235-240. http://dx.doi.org/10.1210/en.132.1.235 PMid:8419125   Michel C, Gromoll J, Chandolia R, Luetjens CM, et al. (2007). LHR splicing variants and gene expression in the marmoset monkey. Mol. Cell Endocrinol. 279: 9-15. http://dx.doi.org/10.1016/j.mce.2007.08.009 PMid:17913340   Minegishi T, Tano M, Abe Y, Nakamura K, et al. (1997). Expression of luteinizing hormone/human chorionic gonadotrophin (LH/HCG) receptor mRNA in the human ovary. Mol. Hum. Reprod. 3: 101-107. http://dx.doi.org/10.1093/molehr/3.2.101 PMid:9239715   Müller T, Gromoll J and Simoni M (2003). Absence of exon 10 of the human luteinizing hormone (LH) receptor impairs LH, but not human chorionic gonadotropin action. J. Clin. Endocrinol. Metab. 88: 2242-2249. http://dx.doi.org/10.1210/jc.2002-021946 PMid:12727981   Nakamura K, Yamashita S, Omori Y and Minegishi T (2004). A splice variant of the human luteinizing hormone (LH) receptor modulates the expression of wild-type human LH receptor. Mol. Endocrinol. 18: 1461-1470. http://dx.doi.org/10.1210/me.2003-0489 PMid:15031322   Nishimori K, Dunkel L, Hsueh AJ, Yamoto M, et al. (1995). Expression of luteinizing hormone and chorionic gonadotropin receptor messenger ribonucleic acid in human corpora lutea during menstrual cycle and pregnancy. J. Clin. Endocrinol. Metab. 80: 1444-1448. http://dx.doi.org/10.1210/jc.80.4.1444 PMid:7714122   Payne AH, Downing JR and Wong KL (1980). Luteinizing hormone receptors and testosterone synthesis in two distinct populations of Leydig cells. Endocrinology 106: 1424-1429. http://dx.doi.org/10.1210/endo-106-5-1424 PMid:6244930   Reinholz MM, Zschunke MA and Roche PC (2000). Loss of alternately spliced messenger RNA of the luteinizing hormone receptor and stability of the follicle-stimulating hormone receptor messenger RNA in granulosa cell tumors of the human ovary. Gynecol. Oncol. 79: 264-271. http://dx.doi.org/10.1006/gyno.2000.5946 PMid:11063655   Robert C, McGraw S, Massicotte L, Pravetoni M, et al. (2002). Quantification of housekeeping transcript levels during the development of bovine preimplantation embryos. Biol. Reprod. 67: 1465-1472. http://dx.doi.org/10.1095/biolreprod.102.006320 PMid:12390877   Robert C, Gagne D, Lussier JG, Bousquet D, et al. (2003). Presence of LH receptor mRNA in granulosa cells as a potential marker of oocyte developmental competence and characterization of the bovine splicing isoforms. Reproduction 125: 437-446. http://dx.doi.org/10.1530/rep.0.1250437 PMid:12611607   Saint-Dizier M, Chopineau M, Dupont J, Daels PF, et al. (2003). Expression and binding activity of luteinizing hormone/ chorionic gonadotropin receptors in the primary corpus luteum during early pregnancy in the mare. Biol. Reprod. 69: 1743-1749. http://dx.doi.org/10.1095/biolreprod.103.018812 PMid:12890729   Sanger F, Nicklen S and Coulson AR (1977). DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. U. S. A. 74: 5463-5467. http://dx.doi.org/10.1073/pnas.74.12.5463 PMid:271968 PMCid:431765   Shiraishi K and Ascoli M (2007). Lutropin/choriogonadotropin stimulate the proliferation of primary cultures of rat Leydig cells through a pathway that involves activation of the extracellularly regulated kinase 1/2 cascade. Endocrinology 148: 3214-3225. http://dx.doi.org/10.1210/en.2007-0160 PMid:17412805 PMCid:2085235   Smith CW, Patton JG and Nadal-Ginard B (1989). Alternative splicing in the control of gene expression. Annu. Rev. Genet. 23: 527-577. http://dx.doi.org/10.1146/annurev.ge.23.120189.002523 PMid:2694943   Svechnikov KV, Sultana T and Soder O (2001). Age-dependent stimulation of Leydig cell steroidogenesis by interleukin-1 isoforms. Mol. Cell Endocrinol. 182: 193-201. http://dx.doi.org/10.1016/S0303-7207(01)00554-8   Wilson JD, Griffin JE, George FW and Leshin M (1981). The role of gonadal steroids in sexual differentiation. Recent Prog. Horm. Res. 37: 1-39. PMid:7280356   Wu SM and Chan WY (1999). Male pseudohermaphroditism due to inactivating luteinizing hormone receptor mutations. Arch. Med. Res. 30: 495-500. http://dx.doi.org/10.1016/S0188-4409(99)00074-0   You S, Kim H, Hsu CC, El Halawani ME, et al. (2000). Three different turkey luteinizing hormone receptor (tLH-R) isoforms I: characterization of alternatively spliced tLH-R isoforms and their regulated expression in diverse tissues. Biol. Reprod. 62: 108-116. http://dx.doi.org/10.1095/biolreprod62.1.108 PMid:10611074   Zamecnik J, Barbe G, Moger WH and Armstrong DT (1977). Radioimmunoassays for androsterone, 5alpha-androstane- 3a, 17β-diol and 5a-androstane-3β, 17β-diol. Steroids 30: 679-689. http://dx.doi.org/10.1016/0039-128X(77)90057-5   Zhang FP, Kero J and Huhtaniemi I (1998). The unique exon 10 of the human luteinizing hormone receptor is necessary for expression of the receptor protein at the plasma membrane in the human luteinizing hormone receptor, but deleterious when inserted into the human follicle-stimulating hormone receptor. Mol. Cell Endocrinol. 142: 165-174. http://dx.doi.org/10.1016/S0303-7207(98)00108-7   Zhang FP, Poutanen M, Wilbertz J and Huhtaniemi I (2001). Normal prenatal but arrested postnatal sexual development of luteinizing hormone receptor knockout (LuRKO) mice. Mol. Endocrinol. 15: 172-183. http://dx.doi.org/10.1210/me.15.1.172 PMid:11145748
Z. L. Zhao, Wang, C. F., Li, Q. L., Ju, Z. H., Huang, J. M., Li, J. B., Zhong, J. F., and Zhang, J. B., Novel SNPs of the mannan-binding lectin 2 gene and their association with production traits in Chinese Holsteins, vol. 11, pp. 3744-3754, 2012.
Agah A, Montalto MC, Young K and Stahl GL (2001). Isolation, cloning and functional characterization of porcine mannose-binding lectin. Immunology 102: 338-343. http://dx.doi.org/10.1046/j.1365-2567.2001.01191.x PMid:11298833 PMCid:1783182   Arora M, Munoz E and Tenner AJ (2001). Identification of a site on mannan-binding lectin critical for enhancement of phagocytosis. J. Biol. Chem. 276: 43087-43094. http://dx.doi.org/10.1074/jbc.M105455200 PMid:11533031   Brown-Augsburger P, Hartshorn K, Chang D, Rust K, et al. (1996). Site-directed mutagenesis of Cys-15 and Cys-20 of pulmonary surfactant protein D. Expression of a trimeric protein with altered anti-viral properties. J. Biol. Chem. 271: 13724-13730. http://dx.doi.org/10.1074/jbc.271.23.13724 PMid:8662732   Capparelli R, Parlato M, Amoroso MG, Roperto S, et al. (2008). Mannose-binding lectin haplotypes influence Brucella abortus infection in the water buffalo (Bubalus bubalis). Immunogenetics 60: 157-165. http://dx.doi.org/10.1007/s00251-008-0284-4 PMid:18330558   Chaneton L, Tirante L, Maito J, Chaves J, et al. (2008). Relationship between milk lactoferrin and etiological agent in the mastitic bovine mammary gland. J. Dairy Sci. 91: 1865-1873. http://dx.doi.org/10.3168/jds.2007-0732 PMid:18420617   Eisen DP and Minchinton RM (2003). Impact of mannose-binding lectin on susceptibility to infectious diseases. Clin. Infect. Dis. 37: 1496-1505. http://dx.doi.org/10.1086/379324 PMid:14614673   Fallin D, Cohen A, Essioux L, Chumakov I, et al. (2001). Genetic analysis of case/control data using estimated haplotype frequencies: application to APOE locus variation and Alzheimer's disease. Genome Res. 11: 143-151. http://dx.doi.org/10.1101/gr.148401 PMid:11156623 PMCid:311030   Gjerstorff M, Hansen S, Jensen B, Dueholm B, et al. (2004). The genes encoding bovine SP-A, SP-D, MBL-A, conglutinin, CL-43 and CL-46 form a distinct collectin locus on Bos taurus chromosome 28 (BTA28) at position q.1.8-1.9. Anim. Genet. 35: 333-337. http://dx.doi.org/10.1111/j.1365-2052.2004.01167.x PMid:15265076   Holmskov U, Thiel S and Jensenius JC (2003). Collections and ficolins: humoral lectins of the innate immune defense. Annu. Rev. Immunol. 21: 547-578. http://dx.doi.org/10.1146/annurev.immunol.21.120601.140954 PMid:12524383   Huang J, Wang H, Wang C, Li J, et al. (2010). Single nucleotide polymorphisms, haplotypes and combined genotypes of lactoferrin gene and their associations with mastitis in Chinese Holstein cattle. Mol. Biol. Rep. 37: 477-483. http://dx.doi.org/10.1007/s11033-009-9669-1 PMid:19672694   Jensen PH, Weilguny D, Matthiesen F, McGuire KA, et al. (2005). Characterization of the oligomer structure of recombinant human mannan-binding lectin. J. Biol. Chem. 280: 11043-11051. http://dx.doi.org/10.1074/jbc.M412472200 PMid:15653690   Kawai T, Suzuki Y, Eda S, Ohtani K, et al. (1997). Cloning and characterization of a cDNA encoding bovine mannan-binding protein. Gene 186: 161-165. http://dx.doi.org/10.1016/S0378-1119(96)00664-6   Kawasaki N, Kawasaki T and Yamashina I (1983). Isolation and characterization of a mannan-binding protein from human serum. J. Biochem. 94: 937-947. PMid:6643429   Larsen F, Madsen HO, Sim RB, Koch C, et al. (2004). Disease-associated mutations in human mannose-binding lectin compromise oligomerization and activity of the final protein. J. Biol. Chem. 279: 21302-21311. http://dx.doi.org/10.1074/jbc.M400520200 PMid:14764589   Lillie BN, Brooks AS, Keirstead ND and Hayes MA (2005). Comparative genetics and innate immune functions of collagenous lectins in animals. Vet. Immunol. Immunopathol. 108: 97-110. http://dx.doi.org/10.1016/j.vetimm.2005.07.001 PMid:16098608   Lillie BN, Keirstead ND, Squires EJ and Hayes MA (2006). Single-nucleotide polymorphisms in porcine mannan-binding lectin A. Immunogenetics 58: 983-993. http://dx.doi.org/10.1007/s00251-006-0160-z PMid:17089118   Lillie BN, Keirstead ND, Squires EJ and Hayes MA (2007). Gene polymorphisms associated with reduced hepatic expression of porcine mannan-binding lectin C. Dev. Comp. Immunol. 31: 830-846. http://dx.doi.org/10.1016/j.dci.2006.11.002 PMid:17194476   Ma BY, Nakamura N, Dlabac V, Naito H, et al. (2007). Isolation, cloning, and characterization of a novel phosphomannan-binding lectin from porcine serum. J. Biol. Chem. 282: 12963-12975. http://dx.doi.org/10.1074/jbc.M611820200 PMid:17324926   Madsen HO, Garred P, Kurtzhals JA, Lamm LU, et al. (1994). A new frequent allele is the missing link in the structural polymorphism of the human mannan-binding protein. Immunogenetics 40: 37-44. http://dx.doi.org/10.1007/BF00163962 PMid:8206524   Madsen HO, Satz ML, Hogh B, Svejgaard A, et al. (1998). Different molecular events result in low protein levels of mannan-binding lectin in populations from southeast Africa and South America. J. Immunol. 161: 3169-3175. PMid:9743385   Nepomuceno RR, Henschen-Edman AH, Burgess WH and Tenner AJ (1997). cDNA cloning and primary structure analysis of C1qR(P), the human C1q/MBL/SPA receptor that mediates enhanced phagocytosis in vitro. Immunity 6: 119-129. http://dx.doi.org/10.1016/S1074-7613(00)80419-7   Neth O, Jack DL, Dodds AW, Holzel H, et al. (2000). Mannose-binding lectin binds to a range of clinically relevant microorganisms and promotes complement deposition. Infect. Immun. 68: 688-693. http://dx.doi.org/10.1128/IAI.68.2.688-693.2000 PMid:10639434 PMCid:97193   Ohashi T and Erickson HP (2004). The disulfide bonding pattern in ficolin multimers. J. Biol. Chem. 279: 6534-6539. http://dx.doi.org/10.1074/jbc.M310555200 PMid:14660572   Podolsky MJ, Lasker A, Flaminio MJ, Gowda LD, et al. (2006). Characterization of an equine mannose-binding lectin and its roles in disease. Biochem. Biophys. Res. Commun. 343: 928-936. http://dx.doi.org/10.1016/j.bbrc.2006.03.055 PMid:16574074   Qiu H (2002). Modern Dairy Science. Agriculture Press, China, 1-12.   Risch NJ (2000). Searching for genetic determinants in the new millennium. Nature 405: 847-856. http://dx.doi.org/10.1038/35015718 PMid:10866211   Rupp R and Boichard D (1999). Genetic parameters for clinical mastitis, somatic cell score, production, udder type traits, and milking ease in first lactation Holsteins. J. Dairy Sci. 82: 2198-2204. http://dx.doi.org/10.3168/jds.S0022-0302(99)75465-2   Seegers H, Fourichon C and Beaudeau F (2003). Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet. Res. 34: 475-491. http://dx.doi.org/10.1051/vetres:2003027 PMid:14556691   Shi L, Takahashi K, Dundee J, Shahroor-Karni S, et al. (2004). Mannose-binding lectin-deficient mice are susceptible to infection with Staphylococcus aureus. J. Exp. Med. 199: 1379-1390. http://dx.doi.org/10.1084/jem.20032207 PMid:15148336 PMCid:2211809   Shi YY and He L (2005). SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 15: 97-98. http://dx.doi.org/10.1038/sj.cr.7290272 PMid:15740637   Smithson A, Munoz A, Suarez B, Soto SM, et al. (2007). Association between mannose-binding lectin deficiency and septic shock following acute pyelonephritis due to Escherichia coli. Clin. Vaccine Immunol. 14: 256-261. http://dx.doi.org/10.1128/CVI.00400-06 PMid:17202308 PMCid:1828851   Takahashi R, Tsutsumi A, Ohtani K, Muraki Y, et al. (2005). Association of mannose binding lectin (MBL) gene polymorphism and serum MBL concentration with characteristics and progression of systemic lupus erythematosus. Ann. Rheum. Dis. 64: 311-314. http://dx.doi.org/10.1136/ard.2003.020172 PMid:15647440 PMCid:1755352   Wakamiya N, Okuno Y, Sasao F, Ueda S, et al. (1992). Isolation and characterization of conglutinin as an influenza A virus inhibitor. Biochem. Biophys. Res. Commun. 187: 1270-1278. http://dx.doi.org/10.1016/0006-291X(92)90440-V   Wallis R, Shaw JM, Uitdehaag J, Chen CB, et al. (2004). Localization of the serine protease-binding sites in the collagen-like domain of mannose-binding protein: indirect effects of naturally occurring mutations on protease binding and activation. J. Biol. Chem. 279: 14065-14073. http://dx.doi.org/10.1074/jbc.M400171200 PMid:14724269
2011
Y. Gao, Zhang, Y. H., Jiang, H., Xiao, S. Q., Wang, S., Ma, Q., Sun, G. J., Li, F. J., Deng, Q., Dai, L. S., Zhao, Z. H., Cui, X. S., Zhang, S. M., Liu, D. F., and Zhang, J. B., Detection of differentially expressed genes in the longissimus dorsi of Northeastern Indigenous and Large White pigs, vol. 10, pp. 779-791, 2011.
Amri EZ, Bertrand B, Ailhaud G and Grimaldi P (1991). Regulation of adipose cell differentiation. I. Fatty acids are inducers of the aP2 gene expression. J. Lipid Res. 32: 1449-1456. PMid:1753215 Arber S, Barbayannis FA, Hanser H, Schneider C, et al. (1998). Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393: 805-809. doi:10.1038/31729 PMid:9655397 Ball SG, Shuttleworth CA and Kielty CM (2007). Platelet-derived growth factor receptor-alpha is a key determinant of smooth muscle alpha-actin filaments in bone marrow-derived mesenchymal stem cells. Int. J. Biochem. Cell Biol. 39: 379-391. doi:10.1016/j.biocel.2006.09.005 Britton CH, Mackey DW, Esser V, Foster DW, et al. (1997). Fine chromosome mapping of the genes for human liver and muscle carnitine palmitoyltransferase I (CPT1A and CPT1B). Genomics 40: 209-211. doi:10.1006/geno.1996.4539 PMid:9070950 Brouns F and van der Vusse GJ (1998). Utilization of lipids during exercise in human subjects: metabolic and dietary constraints. Br. J. Nutr. 79: 117-128. doi:10.1079/BJN19980022 Chmurzynska A (2006). The multigene family of fatty acid-binding proteins (FABPs): function, structure and polymorphism. J. Appl. Genet. 47: 39-48. doi:10.1007/BF03194597 PMid:16424607 Clement S, Hinz B, Dugina V, Gabbiani G, et al. (2005). The N-terminal Ac-EEED sequence plays a role in alpha-smooth-muscle actin incorporation into stress fibers. J. Cell Sci. 118: 1395-1404. doi:10.1242/jcs.01732 PMid:15769852 Douaire M, Le Fur N, el Khadir-Mounier C, Langlois P, et al. (1992). Identifying genes involved in the variability of genetic fatness in the growing chicken. Poult. Sci. 71: 1911-1920. PMid:1437978 Fu Y, Luo N, Klein RL and Garvey WT (2005). Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation. J. Lipid Res. 46: 1369-1379. doi:10.1194/jlr.M400373-JLR200 PMid:15834118 Gardan D, Louveau I and Gondret F (2007). Adipocyte- and heart-type fatty acid binding proteins are both expressed in subcutaneous and intramuscular porcine (Sus scrofa) adipocytes. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 148: 14-19. doi:10.1016/j.cbpb.2007.03.017 PMid:17600747 Gregoire FM, Smas CM and Sul HS (1998). Understanding adipocyte differentiation. Physiol. Rev. 78: 783-809. PMid:9674695 Hamilton DN, Miller KD, Ellis M, McKeith FK, et al. (2003). Relationships between longissimus glycolytic potential and swine growth performance, carcass traits, and pork quality. J. Anim. Sci. 81: 2206-2212. PMid:12968695 Kadowaki T and Yamauchi T (2005). Adiponectin and adiponectin receptors. Endocr. Rev. 26: 439-451. doi:10.1210/er.2005-0005 PMid:15897298 Kadowaki T, Yamauchi T, Kubota N, Hara K, et al. (2007). Adiponectin and adiponectin receptors in obesity-linked insulin resistance. Novartis Found. Symp. 286: 164-176. doi:10.1002/9780470985571.ch15 Malmstrom J, Lindberg H, Lindberg C, Bratt C, et al. (2004). Transforming growth factor-beta 1 specifically induce proteins involved in the myofibroblast contractile apparatus. Mol. Cell Proteomics 3: 466-477. doi:10.1074/mcp.M300108-MCP200 Marrube G, Rozen F, Pinto GB, Pacienza N, et al. (2004). New polymorphism of FASN gene in chicken. J. Appl. Genet. 45: 453-455. PMid:15523156 Morris CA, Cullen NG, Glass BC, Hyndman DL, et al. (2007). Fatty acid synthase effects on bovine adipose fat and milk fat. Mamm. Genome 18: 64-74. doi:10.1007/s00335-006-0102-y PMid:17242864 Muñoz G, Óvilo C, Noguera JL, Sanchez A, et al. (2003). Assignment of the fatty acid synthase (FASN) gene to pig chromosome 12 by physical and linkage mapping. Anim. Genet. 34: 234-235. doi:10.1046/j.1365-2052.2003.00987.x PMid:12755829 Nowacka-Woszuk J, Szczerbal I, Fijak-Nowak H and Switonski M (2008). Chromosomal localization of 13 candidate genes for human obesity in the pig genome. J. Appl. Genet. 49: 373-377. doi:10.1007/BF03195636 PMid:19029685 Pfaffl MW (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29: e45. doi:10.1093/nar/29.9.e45 Picard B, Lefaucheur L, Berri C and Duclos MJ (2002). Muscle fibre ontogenesis in farm animal species. Reprod. Nutr. Dev. 42: 415-431. doi:10.1051/rnd:2002035 Ponsuksili S, Murani E, Walz C, Schwerin M, et al. (2007). Pre- and postnatal hepatic gene expression profiles of two pig breeds differing in body composition: insight into pathways of metabolic regulation. Physiol. Genomics 29: 267-279. doi:10.1152/physiolgenomics.00178.2006 PMid:17264241 Price NT, Jackson VN, van der Leij FR, Cameron JM, et al. (2003). Cloning and expression of the liver and muscle isoforms of ovine carnitine palmitoyltransferase 1: residues within the N-terminus of the muscle isoform influence the kinetic properties of the enzyme. Biochem. J. 372: 871-879. doi:10.1042/BJ20030086 PMid:12662154    PMCid:1223454 Roy R, Gautier M, Hayes H, Laurent P, et al. (2001). Assignment of the fatty acid synthase (FASN) gene to bovine chromosome 19 (19q22) by in situ hybridization and confirmation by somatic cell hybrid mapping. Cytogenet. Cell Genet. 93: 141-142. doi:10.1159/000056970 Roy R, Ordovas L, Zaragoza P, Romero A, et al. (2006). Association of polymorphisms in the bovine FASN gene with milk-fat content. Anim. Genet. 37: 215-218. doi:10.1111/j.1365-2052.2006.01434.x PMid:16734679 Sambrook J, Fritsch EF and Maniatis T (1989). Molecular Cloning: A Laboratory Manual. 2nd edn. Cold Spring Harbor Laboratory Press, Woodbury. Sourdioux M, Brevelet C, Delabrosse Y and Douaire M (1999). Association of fatty acid synthase gene and malic enzyme gene polymorphisms with fatness in turkeys. Poult. Sci. 78: 1651-1657. PMid:10626637 Spiegelman BM, Frank M and Green H (1983). Molecular cloning of mRNA from 3T3 adipocytes. Regulation of mRNA content for glycerophosphate dehydrogenase and other differentiation-dependent proteins during adipocyte development. J. Biol. Chem. 258: 10083-10089. PMid:6411703 Tichopad A, Dilger M, Schwarz G and Pfaffl MW (2003). Standardized determination of real-time PCR efficiency from a single reaction set-up. Nucleic Acids Res. 31: e122. doi:10.1093/nar/gng122 PMCid:219490 van der Leij FR, Takens J, van der Veen AY, Terpstra P, et al. (1997). Localization and intron usage analysis of the human CPT1B gene for muscle type carnitine palmitoyltransferase I. Biochim. Biophys. Acta 1352: 123-128. PMid:9199240 van der Leij FR, Cox KB, Jackson VN, Huijkman NC, et al. (2002). Structural and functional genomics of the CPT1B gene for muscle-type carnitine palmitoyltransferase I in mammals. J. Biol. Chem. 277: 26994-27005. doi:10.1074/jbc.M203189200 PMid:12015320 Wang D, Harrison W, Buja LM, Elder FF, et al. (1998). Genomic DNA sequence, promoter expression, and chromosomal mapping of rat muscle carnitine palmitoyltransferase I. Genomics 48: 314-323. doi:10.1006/geno.1997.5184 PMid:9545636 Yamazaki N, Yamanaka Y, Hashimoto Y, Shinohara Y, et al. (1997). Structural features of the gene encoding human muscle type carnitine palmitoyltransferase I. FEBS Lett. 409: 401-406. doi:10.1016/S0014-5793(97)00561-9 Yang YA, Morin PJ, Han WF, Chen T, et al. (2003). Regulation of fatty acid synthase expression in breast cancer by sterol regulatory element binding protein-1c. Exp. Cell Res. 282: 132-137. doi:10.1016/S0014-4827(02)00023-X Yu GS, Lu YC and Gulick T (1998). Co-regulation of tissue-specific alternative human carnitine palmitoyltransferase Ibeta gene promoters by fatty acid enzyme substrate. J. Biol. Chem. 273: 32901-32909. doi:10.1074/jbc.273.49.32901 PMid:9830040 Zhao S, Wang J, Song X, Zhang X, et al. (2010). Impact of dietary protein on lipid metabolism-related gene expression in porcine adipose tissue. Nutr. Metab. 7: 6. doi:10.1186/1743-7075-7-6 Zhao SH, Recknor J, Lunney JK, Nettleton D, et al. (2005). Validation of a first-generation long-oligonucleotide microarray for transcriptional profiling in the pig. Genomics 86: 618-625. doi:10.1016/j.ygeno.2005.08.001 PMid:16216716
L. S. Dai, Zhao, Y. M., Zhang, G. L., Zhao, R. F., Jiang, H., Ma, T. H., Gao, Y., Yuan, B., Xu, Y. L., Yu, W. Y., Zhao, Z. H., and Zhang, J. B., Molecular cloning and sequence analysis of follicle-stimulating hormone beta polypeptide precursor cDNA from the bovine pituitary gland, vol. 10, pp. 1504-1513, 2011.
Aizawa Y and Ishii S (2003). Cloning of complimentary deoxyribonucleic acid encoding follicle-stimulating hormone and luteinizing hormone beta subunit precursor molecules in Reeves’s turtle (Geoclemys reevesii) and Japanese grass lizard (Takydromus tachydromoides). Gen. Comp. Endocrinol. 132: 465-473. doi:10.1016/S0016-6480(03)00103-5 Barreau C, Paillard L and Osborne HB (2005). AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res. 33: 7138-7150. doi:10.1093/nar/gki1012 PMid:16391004    PMCid:1325018 Chien JT, Shen ST, Lin YS and Yu JY (2005). Molecular cloning of the cDNA encoding follicle-stimulating hormone beta subunit of the Chinese soft-shell turtle Pelodiscus sinensis, and its gene expression. Gen. Comp. Endocrinol. 141: 190-200. doi:10.1016/j.ygcen.2004.12.017 PMid:15748721 Dai L, Zhao Z, Zhao R, Xiao S, et al. (2009). Effects of novel single nucleotide polymorphisms of the FSH beta-subunit gene on semen quality and fertility in bulls. Anim. Reprod. Sci. 114: 14-22. doi:10.1016/j.anireprosci.2008.08.021 PMid:18829190 de Kretser DM, Buzzard JJ, Okuma Y, O’Connor AE, et al. (2004). The role of activin, follistatin and inhibin in testicular physiology. Mol. Cell Endocrinol. 225: 57-64. doi:10.1016/j.mce.2004.07.008 PMid:15451568 Dias JA, Cohen BD, Lindau-Shepard B, Nechamen CA, et al. (2002). Molecular, structural, and cellular biology of follitropin and follitropin receptor. Vitam. Horm. 64: 249-322. doi:10.1016/S0083-6729(02)64008-7 Druet T, Fritz S, Sellem E, Basso B, et al. (2009). Estimation of genetic parameters and genome scan for 15 semen characteristics traits of Holstein bulls. J. Anim. Breed. Genet. 126: 269-277. doi:10.1111/j.1439-0388.2008.00788.x PMid:19630877 Geyer CB, Inselman AL, Sunman JA, Bornstein S, et al. (2009). A missense mutation in the Capza3 gene and disruption of F-actin organization in spermatids of repro32 infertile male mice. Dev. Biol. 330: 142-152. doi:10.1016/j.ydbio.2009.03.020 PMid:19341723    PMCid:2688473 Gharib SD, Wierman ME, Shupnik MA and Chin WW (1990). Molecular biology of the pituitary gonadotrophins. Endocr. Rev. 11: 177-199. doi:10.1210/edrv-11-1-177 PMid:2108012 Jameson JL, Becker CB, Lindell CM and Habener JF (1988). Human follicle-stimulating hormone β-subunit gene encodes multiple messenger ribonucleic acids. Mol. Endocrinol. 2: 806-815. doi:10.1210/mend-2-9-806 PMid:3139991 Jarrousse AS, Petit F, Kreutzer-Schmid C, Gaedigk R, et al. (1999). Possible involvement of proteasomes (prosomes) in AUUUA-mediated mRNA decay. J. Biol. Chem. 274: 5925-5930. doi:10.1074/jbc.274.9.5925 PMid:10026217 Kikuchi M, Kobayashi M, Ito T, Kato Y, et al. (1998). Cloning of complementary deoxyribonucleic acid for the follicle-stimulating hormone-beta subunit in the Japanese quail. Gen. Comp. Endocrinol. 111: 376-385. doi:10.1006/gcen.1998.7123 PMid:9707483 Komoike Y and Ishii S (2003). Cloning of cDNAs encoding the three pituitary glycoprotein hormone beta subunit precursor molecules in the Japanese toad, Bufo japonicus. Gen. Comp. Endocrinol. 132: 333-347. doi:10.1016/S0016-6480(03)00095-9 Koura M, Handa H, Noguchi Y, Takano K, et al. (2004). Sequence analysis of cDNA encoding follicle-stimulating hormone and luteinizing hormone beta-subunits in the Mongolian gerbil (Meriones unguiculatus). Gen. Comp. Endocrinol. 136: 406-410. doi:10.1016/j.ygcen.2004.01.012 PMid:15081841 Kumar S, Nei M, Dudley J and Tamura K (2008). MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform. 9: 299-306. doi:10.1093/bib/bbn017 PMid:18417537    PMCid:2562624 Kumar TR (2005). What have we learned about gonadotropin function from gonadotropin subunit and receptor knockout mice? Reproduction 130: 293-302. doi:10.1530/rep.1.00660 PMid:16123236 Larkin MA, Blackshields G, Brown NP, Chenna R, et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948. doi:10.1093/bioinformatics/btm404 PMid:17846036 Lawrence SB, Vanmontfort DM, Tisdall DJ, McNatty KP, et al. (1997). The follicle-stimulating hormone beta-subunit gene of the common brushtail possum (Trichosurus vulpecula): analysis of cDNA sequence and expression. Reprod. Fertil. Dev. 9: 795-801. doi:10.1071/R98009 Li MD, Rohrer GA, Wise TH and Ford JJ (2000). Identification and characterization of a new allele for the beta subunit of follicle-stimulating hormone in Chinese pig breeds. Anim. Genet. 31: 28-30. doi:10.1046/j.1365-2052.2000.00581.x PMid:10690358 Liao MJ, Zhu MY, Zhang ZH, Zhang AJ, et al. (2003). Cloning and sequence analysis of FSH and LH in the giant panda (Ailuropoda melanoleuca). Anim. Reprod. Sci. 77: 107-116. doi:10.1016/S0378-4320(02)00275-0 Lin CL, Jennen DG, Ponsuksili S, Tholen E, et al. (2006). Haplotype analysis of beta-actin gene for its association with sperm quality and boar fertility. J. Anim. Breed. Genet. 123: 384-388. doi:10.1111/j.1439-0388.2006.00622.x PMid:17177693 Manjithaya RR and Dighe RR (2004). The 3’ untranslated region of bovine follicle-stimulating hormone beta messenger RNA downregulates reporter expression: involvement of AU-rich elements and transfactors. Biol. Reprod. 71: 1158-1166. doi:10.1095/biolreprod.104.030130 PMid:15189830 Maurer RA (1987). Molecular cloning and nucleotide sequence analysis of complementary deoxyribonucleic acid for the beta-subunit of rat follicle stimulating hormone. Mol. Endocrinol. 1: 717-723. doi:10.1210/mend-1-10-717 PMid:3155259 Maurer RA and Beck A (1986). Isolation and nucleotide sequence analysis of a cloned cDNA encoding the beta-subunit of bovine follicle-stimulating hormone. DNA 5: 363-369. doi:10.1089/dna.1986.5.363 PMid:3096676 Mountford PS, Bello PA, Brandon MR and Adams TE (1989). Cloning and DNA sequence analysis of the cDNA for the precursor of ovine follicle stimulating hormone beta-subunit. Nucleic Acids Res. 17: 6391. doi:10.1093/nar/17.15.6391 PMid:2505233    PMCid:318292 Noguchi Y, Takano K, Koura M, Uchio-Yamada K, et al. (2006). Sequence analysis of cDNA encoding rabbit follicle-stimulating hormone beta-subunit precursor protein. Gen. Comp. Endocrinol. 147: 231-235. doi:10.1016/j.ygcen.2006.01.001 PMid:16476428 Pesole G, Mignone F, Gissi C, Grillo G, et al. (2001). Structural and functional features of eukaryotic mRNA untranslated regions. Gene 276: 73-81. doi:10.1016/S0378-1119(01)00674-6 Pierce JG and Parsons TF (1981). Glycoprotein hormones: structure and function. Annu. Rev. Biochem. 50: 465-495. doi:10.1146/annurev.bi.50.070181.002341 PMid:6267989 Rabani M, Kertesz M and Segal E (2008). Computational prediction of RNA structural motifs involved in posttranscriptional regulatory processes. Proc. Natl. Acad. Sci. U. S. A. 105: 14885-14890. doi:10.1073/pnas.0803169105 PMid:18815376    PMCid:2567462 Ren DR, Ren J, Xing YY, Guo YM, et al. (2009). A genome scan for quantitative trait loci affecting male reproductive traits in a White Duroc x Chinese Erhualian resource population. J. Anim. Sci. 87: 17-23. doi:10.2527/jas.2008-0923 PMid:18599669 Saneyoshi T, Min KS, Jing MX, Nambo Y, et al. (2001). Equine follicle-stimulating hormone: molecular cloning of beta subunit and biological role of the asparagine-linked oligosaccharide at asparagine56 of alpha subunit. Biol. Reprod. 65: 1686-1690. doi:10.1095/biolreprod65.6.1686 PMid:11717129 Scammell JG, Funkhouser JD, Moyer FS, Gibson SV, et al. (2008). Molecular cloning of pituitary glycoprotein alpha-subunit and follicle stimulating hormone and chorionic gonadotropin beta-subunits from New World squirrel monkey and owl monkey. Gen. Comp. Endocrinol. 155: 534-541. doi:10.1016/j.ygcen.2007.08.004 PMid:17897645    PMCid:2277479 Schmidt A, Gromoll J, Weinbauer GF, Galla HJ, et al. (1999). Cloning and expression of cynomolgus monkey (Macaca fascicularis) gonadotropins luteinizing hormone and follicle-stimulating hormone and identification of two polymorphic sites in the luteinizing hormone beta subunit. Mol. Cell Endocrinol. 156: 73-83. doi:10.1016/S0303-7207(99)00140-9 Shen ST and Yu JY (2002). Cloning and gene expression of a cDNA for the chicken follicle-stimulating hormone (FSH)- beta-subunit. Gen. Comp. Endocrinol. 125: 375-386. doi:10.1006/gcen.2001.7763 PMid:11884082 Shen ST, Cheng YS, Shen TY and Yu JY (2006). Molecular cloning of follicle-stimulating hormone (FSH)-beta subunit cDNA from duck pituitary. Gen. Comp. Endocrinol. 148: 388-394. doi:10.1016/j.ygcen.2006.03.013 PMid:16674957 Strausberg RL, Feingold EA, Grouse LH, Derge JG, et al. (2002). Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc. Natl. Acad. Sci. U. S. A. 99: 16899-16903. doi:10.1073/pnas.242603899 PMid:12477932    PMCid:139241 Takano K, Koura M, Noguchi Y, Yamamoto Y, et al. (2004). Sequence analysis of cDNA encoding follicle-stimulating hormone and luteinizing hormone beta-subunits in the Mastomys (Praomys coucha). Gen. Comp. Endocrinol. 138: 281-286. doi:10.1016/j.ygcen.2004.06.009 PMid:15364211 Wimmers K, Lin CL, Tholen E, Jennen DG, et al. (2005). Polymorphisms in candidate genes as markers for sperm quality and boar fertility. Anim. Genet. 36: 152-155. doi:10.1111/j.1365-2052.2005.01267.x PMid:15771727 Xing Y, Ren J, Ren D, Guo Y, et al. (2009). A whole genome scanning for quantitative trait loci on traits related to sperm quality and ejaculation in pigs. Anim. Reprod. Sci. 114: 210-218. doi:10.1016/j.anireprosci.2008.08.008 PMid:18789839 Zhang T, Kruys V, Huez G and Gueydan C (2002). AU-rich element-mediated translational control: complexity and multiple activities of trans-activating factors. Biochem. Soc. Trans. 30: 952-958. doi:10.1042/BST0300952