Publications

Found 5 results
Filters: Author is R.F. Sun  [Clear All Filters]
2011
W. J. Kuang, Sun, R. F., Zhu, Y. S., and Li, S. B., A new single-nucleotide mutation (rs362719) of the reelin (RELN) gene associated with schizophrenia in female Chinese Han, vol. 10, pp. 1650-1658, 2011.
Abdolmaleky HM, Cheng KH, Russo A, Smith CL, et al. (2005). Hypermethylation of the reelin (RELN) promoter in the brain of schizophrenic patients: a preliminary report. Am. J. Med. Genet. B Neuropsychiatr. Genet. 134B: 60-66. http://dx.doi.org/10.1002/ajmg.b.30140 PMid:15717292 Aleman A, Kahn RS and Selten JP (2003). Sex differences in the risk of schizophrenia: evidence from meta-analysis. Arch. Gen. Psychiatry 60: 565-571. http://dx.doi.org/10.1001/archpsyc.60.6.565 PMid:12796219 American Psychiatric Association (2000). Diagnostic and Statistical Manual of Mental Disorders. American Psychiatric Association, Washington. Badner JA and Gershon ES (2002a). Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol. Psychiatry 7: 405-411. http://dx.doi.org/10.1038/sj.mp.4001012 PMid:11986984 Badner JA and Gershon ES (2002b). Regional meta-analysis of published data supports linkage of autism with markers on chromosome 7. Mol. Psychiatry 7: 56-66. http://dx.doi.org/10.1038/sj.mp.4000922 PMid:11803446 Berrettini W (2003). Evidence for shared susceptibility in bipolar disorder and schizophrenia. Am. J. Med. Genet. C Semin. Med. Genet. 123C: 59-64. http://dx.doi.org/10.1002/ajmg.c.20014 PMid:14601037 Cardno AG and Gottesman II (2000). Twin studies of schizophrenia: from bow-and-arrow concordances to star wars Mx and functional genomics. Am. J. Med. Genet. 97: 12-17. http://dx.doi.org/10.1002/(SICI)1096-8628(200021)97:1<12::AID-AJMG3>3.0.CO;2-U Cardno AG, Rijsdijk FV, Sham PC, Murray RM, et al. (2002). A twin study of genetic relationships between psychotic symptoms. Am. J. Psychiatry 159: 539-545. http://dx.doi.org/10.1176/appi.ajp.159.4.539 PMid:11925290 Chameau P, Inta D, Vitalis T, Monyer H, et al. (2009). The N-terminal region of reelin regulates postnatal dendritic maturation of cortical pyramidal neurons. Proc. Natl. Acad. Sci. U. S. A. 106: 7227-7232. http://dx.doi.org/10.1073/pnas.0810764106 PMid:19366679    PMCid:2678467 Chen Y, Beffert U, Ertunc M, Tang TS, et al. (2005). Reelin modulates NMDA receptor activity in cortical neurons. J. Neurosci. 25: 8209-8216. http://dx.doi.org/10.1523/JNEUROSCI.1951-05.2005 PMid:16148228 Clinton SM and Meador-Woodruff JH (2004). Abnormalities of the NMDA receptor and associated intracellular molecules in the thalamus in schizophrenia and bipolar disorder. Neuropsychopharmacology 29: 1353-1362. http://dx.doi.org/10.1038/sj.npp.1300451 PMid:15054476 Craddock N and Owen MJ (2005). The beginning of the end for the Kraepelinian dichotomy. Br. J. Psychiatry 186: 364-366. http://dx.doi.org/10.1192/bjp.186.5.364 PMid:15863738 de Vries GJ (2008). Sex differences in vasopressin and oxytocin innervation of the brain. Prog. Brain Res. 170: 17-27. http://dx.doi.org/10.1016/S0079-6123(08)00402-0 Dong E, Guidotti A, Grayson DR and Costa E (2007). Histone hyperacetylation induces demethylation of reelin and 67- kDa glutamic acid decarboxylase promoters. Proc. Natl. Acad. Sci. U. S. A. 104: 4676-4681. http://dx.doi.org/10.1073/pnas.0700529104 PMid:17360583    PMCid:1815468 Dong E, Nelson M, Grayson DR, Costa E, et al. (2008). Clozapine and sulpiride but not haloperidol or olanzapine activate brain DNA demethylation. Proc. Natl. Acad. Sci U. S. A. 105: 13614-13619. http://dx.doi.org/10.1073/pnas.0805493105 PMid:18757738    PMCid:2533238 Eastwood S and Harrison P (2003). Interstitial white matter neurons express less reelin and are abnormally distributed in schizophrenia: towards an integration of molecular and morphologic aspects of the neurodevelopmental hypothesis. Mol. Psychiatry 8: 821-831. http://dx.doi.org/10.1038/sj.mp.4001371 PMid:12931209 Fatemi SH, Earle JA and McMenomy T (2000). Reduction in Reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression. Mol. Psychiatry 5: 654-663. http://dx.doi.org/10.1038/sj.mp.4000783 PMid:11126396 Goes FS, Willour VL, Zandi PP, Belmonte PL, et al. (2010). Sex-specific association of the Reelin gene with bipolar disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 153B: 549-553. PMid:19691043    PMCid:3032172 Grayson DR, Jia X, Chen Y, Sharma RP, et al. (2005). Reelin promoter hypermethylation in schizophrenia. Proc. Natl. Acad. Sci. U. S. A. 102: 9341-9346. http://dx.doi.org/10.1073/pnas.0503736102 PMid:15961543    PMCid:1166626 Guidotti A, Auta J, Davis JM, Di-Giorgi-Gerevini V, et al. (2000). Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch. Gen. Psychiatry 57: 1061-1069. http://dx.doi.org/10.1001/archpsyc.57.11.1061 PMid:11074872 Hadj-Sahraoui N, Frederic F, Delhaye-Bouchaud N and Mariani J (1996). Gender effect on Purkinje cell loss in the cerebellum of the heterozygous reeler mouse. J. Neurogenet. 11: 45-58. http://dx.doi.org/10.3109/01677069609107062 PMid:10876649 Herz J and Chen Y (2006). Reelin, lipoprotein receptors and synaptic plasticity. Nat. Rev. Neurosci. 7: 850-859. http://dx.doi.org/10.1038/nrn2009 PMid:17053810 Jossin Y, Ignatova N, Hiesberger T, Herz J, et al. (2004). The central fragment of Reelin, generated by proteolytic processing in vivo, is critical to its function during cortical plate development. J. Neurosci. 24: 514-521. http://dx.doi.org/10.1523/JNEUROSCI.3408-03.2004 PMid:14724251 Lander E and Kruglyak L (1995). Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat. Genet. 11: 241-247. http://dx.doi.org/10.1038/ng1195-241 PMid:7581446 Lichtenstein P, Yip BH, Bjork C, Pawitan Y, et al. (2009). Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 373: 234-239. http://dx.doi.org/10.1016/S0140-6736(09)60072-6 Liu W, Pappas GD and Carter CS (2005). Oxytocin receptors in brain cortical regions are reduced in haploinsufficient (+/-) reeler mice. Neurol. Res. 27: 339-345. http://dx.doi.org/10.1179/016164105X35602 PMid:15949229 McGuffin P, Rijsdijk F, Andrew M, Sham P, et al. (2003). The heritability of bipolar affective disorder and the genetic relationship to unipolar depression. Arch. Gen. Psychiatry 60: 497-502. http://dx.doi.org/10.1001/archpsyc.60.5.497 PMid:12742871 Mill J, Tang T, Kaminsky Z, Khare T, et al. (2008). Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am. J. Hum. Genet. 82: 696-711. http://dx.doi.org/10.1016/j.ajhg.2008.01.008 PMid:18319075    PMCid:2427301 Moller HJ (2003). Bipolar disorder and schizophrenia: distinct illnesses or a continuum? J. Clin. Psychiatry 64 (Suppl 6): 23-27. Moskvina V, Craddock N, Holmans P, Nikolov I, et al. (2009).Gene-wide analyses of genome-wide association data sets: evidence for multiple common risk alleles for schizophrenia and bipolar disorder and for overlap in genetic risk. Mol. Psychiatry 14:252-260. http://dx.doi.org/10.1038/mp.2008.133 PMid:19065143 Murray RM, Sham P, van Os J, Zanelli J, et al. (2004). A developmental model for similarities and dissimilarities between schizophrenia and bipolar disorder. Schizophr. Res. 71: 405-416. http://dx.doi.org/10.1016/j.schres.2004.03.002 PMid:15474912 Need AC, Ge D, Weale ME, Maia J, et al. (2009). A genome-wide investigation of SNPs and CNVs in schizophrenia. PLoS Genet. 5: e1000373. http://dx.doi.org/10.1371/journal.pgen.1000373 PMid:19197363    PMCid:2631150 Quattrocchi CC, Wannenes F, Persico AM, Ciafre SA, et al. (2002). Reelin is a serine protease of the extracellular matrix. J. Biol. Chem. 277: 303-309. http://dx.doi.org/10.1074/jbc.M106996200 PMid:11689558 Roglio I, Bianchi R, Gotti S, Scurati S, et al. (2008). Neuroprotective effects of dihydroprogesterone and progesterone in an experimental model of nerve crush injury. Neuroscience 155: 673-685. http://dx.doi.org/10.1016/j.neuroscience.2008.06.034 PMid:18625290 Royaux I, Lambert de RC, D’Arcangelo G, Demirov D, et al. (1997). Genomic organization of the mouse reelin gene. Genomics 46: 240-250. http://dx.doi.org/10.1006/geno.1997.4983 PMid:9417911 Shi YY and He L (2005). SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 15: 97-98. http://dx.doi.org/10.1038/sj.cr.7290272 PMid:15740637 Shifman S, Johannesson M, Bronstein M, Chen SX, et al. (2008). Genome-wide association identifies a common variant in the reelin gene that increases the risk of schizophrenia only in women. PLoS Genet. 4: e28. http://dx.doi.org/10.1371/journal.pgen.0040028 PMid:18282107    PMCid:2242812 Tochigi M, Iwamoto K, Bundo M, Komori A, et al. (2008). Methylation status of the reelin promoter region in the brain of schizophrenic patients. Biol. Psychiatry 63: 530-533. http://dx.doi.org/10.1016/j.biopsych.2007.07.003 PMid:17870056 Tsuang MT, Taylor L and Faraone SV (2004). An overview of the genetics of psychotic mood disorders. J. Psychiatr. Res. 38: 3-15. http://dx.doi.org/10.1016/S0022-3956(03)00096-7 van Os J, Gilvarry C, Bale R, van Horn E, et al. (1999). A comparison of the utility of dimensional and categorical representations of psychosis. UK700 Group. Psychol. Med. 29: 595-606. http://dx.doi.org/10.1017/S0033291798008162 PMid:10405080 Veldic M, Kadriu B, Maloku E, Agis-Balboa RC, et al. (2007). Epigenetic mechanisms expressed in basal ganglia GABAergic neurons differentiate schizophrenia from bipolar disorder. Schizophr. Res. 91: 51-61. http://dx.doi.org/10.1016/j.schres.2006.11.029 PMid:17270400    PMCid:1876737 Wedenoja J, Loukola A, Tuulio-Henriksson A, Paunio T, et al. (2008). Replication of linkage on chromosome 7q22 and association of the regional Reelin gene with working memory in schizophrenia families. Mol. Psychiatry 13: 673-684. http://dx.doi.org/10.1038/sj.mp.4002047 PMid:17684500 Yasui N, Nogi T, Kitao T, Nakano Y, et al. (2007). Structure of a receptor-binding fragment of reelin and mutational analysis reveal a recognition mechanism similar to endocytic receptors. Proc. Natl. Acad. Sci. U. S. A. 104: 9988-9993. http://dx.doi.org/10.1073/pnas.0700438104 PMid:17548821    PMCid:1891246
R. F. Sun, Zhu, Y. S., Feng, J. L., Tian, Z., Kuang, W. J., Liu, Y., Zhang, H. B., and Li, S. B., Polymorphisms of three new microsatellite sites of the dystrophin gene, vol. 10, pp. 744-751, 2011.
Ambrosio CE, Fadel L, Gaiad TP, Martins DS, et al. (2009). Identification of three distinguishable phenotypes in Golden Retriever muscular dystrophy. Genet. Mol. Res. 8: 389-396. doi:10.4238/vol8-2gmr581 Banks GB and Chamberlain JS (2008). The value of mammalian models for Duchenne muscular dystrophy in developing therapeutic strategies. Curr. Top. Dev. Biol. 84: 431-453. doi:10.1016/S0070-2153(08)00609-1 Basak J, Dasgupta UB, Banerjee TK, Senapati AK, et al. (2006). Analysis of dystrophin gene deletions by multiplex PCR in eastern India. Neurol. India 54: 310-311. doi:10.4103/0028-3886.27164 Davies KE (1997). Challenges in Duchenne muscular dystrophy. Neuromuscul. Disord. 7: 482-486. doi:10.1016/S0960-8966(97)00107-7 Den Dunnen JT, Grootscholten PM, Bakker E, Blonden LA, et al. (1989). Topography of the Duchenne muscular dystrophy (DMD) gene: FIGE and cDNA analysis of 194 cases reveals 115 deletions and 13 duplications. Am. J. Hum. Genet. 45: 835-847. Dubowitz V (2006). Enigmatic conflict of clinical and molecular diagnosis in Duchenne/Becker muscular dystrophy. Neuromuscul. Disord. 16: 865-866. doi:10.1016/j.nmd.2006.09.003 Gao Y and Li SB (2008). Effects of sample size on the observed number of allele of 9 STR loci with various genetic data. Yi Chuan 30: 313-320. doi:10.3724/SP.J.1005.2008.00313 Giliberto F, Ferreiro V, Dalamon V, Surace E, et al. (2003). Direct deletion analysis in two Duchenne muscular dystrophy symptomatic females using polymorphic dinucleotide (CA)n loci within the dystrophin gene. J. Biochem. Mol. Biol. 36: 179-184. doi:10.5483/BMBRep.2003.36.2.179 Kimmel M and Chakraborty R (1996). Measures of variation at DNA repeat loci under a general stepwise mutation model. Theor. Popul. Biol. 50: 345-367. doi:10.1006/tpbi.1996.0035 Koenig M, Hoffman EP, Bertelson CJ, Monaco AP, et al. (1987). Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50: 509-517. doi:10.1016/0092-8674(87)90504-6 Lai KK, Lo IF, Tong TM, Cheng LY, et al. (2006). Detecting exon deletions and duplications of the DMD gene using multiplex ligation-dependent probe amplification (MLPA). Clin. Biochem. 39: 367-372. doi:10.1016/j.clinbiochem.2005.11.019 Lai PS, Takeshima Y, Adachi K, Van Tran K, et al. (2002). Comparative study on deletions of the dystrophin gene in three Asian populations. J. Hum. Genet. 47: 552-555. doi:10.1007/s100380200084 Li Q and Wan JM (2005). SSRHunter: development of a local searching software for SSR sites. Yi Chuan 27: 808-810. Melis MA, Cau M, Muntoni F, Mateddu A, et al. (1998). Elevation of serum creatine kinase as the only manifestation of an intragenic deletion of the dystrophin gene in three unrelated families. Eur. J. Paediatr. Neurol. 2: 255-261. doi:10.1016/S1090-3798(98)80039-1 Mendell JR, Buzin CH, Feng J, Yan J, et al. (2001). Diagnosis of Duchenne dystrophy by enhanced detection of small mutations. Neurology 57: 645-650. Ribeiro Rodrigues EM, Leite FP, Hutz MH, Palha TJ, et al. (2008). A multiplex PCR for 11 X chromosome STR markers and population data from a Brazilian Amazon Region. Forensic Sci. Int. Genet. 2: 154-158. doi:10.1016/j.fsigen.2007.10.179 Roberts RG, Gardner RJ and Bobrow M (1994). Searching for the 1 in 2,400,000: a review of dystrophin gene point mutations. Hum. Mutat. 4: 1-11. doi:10.1002/humu.1380040102 Sewry CA (2010). Muscular dystrophies: an update on pathology and diagnosis. Acta Neuropathol. 120: 343-358. doi:10.1007/s00401-010-0727-5 Sifringer M, Uhlenberg B, Lammel S, Hanke R, et al. (2004). Identification of transcripts from a subtraction library which might be responsible for the mild phenotype in an intrafamilially variable course of Duchenne muscular dystrophy. Hum. Genet. 114: 149-156. doi:10.1007/s00439-003-1041-2 Suminaga R, Takeshima Y, Adachi K, Yagi M, et al. (2002). A novel cryptic exon in intron 3 of the dystrophin gene was incorporated into dystrophin mRNA with a single nucleotide deletion in exon 5. J. Hum. Genet. 47: 196-201. doi:10.1007/s100380200023 Walmsley GL, Arechavala-Gomeza V, Fernandez-Fuente M, Burke MM, et al. (2010). A Duchenne muscular dystrophy gene hot spot mutation in dystrophin-deficient Cavalier King Charles Spaniels is amenable to exon 51 skipping. PLoS One 5: e8647. doi:10.1371/journal.pone.0008647 Yan J and Hou YP (2004). Exploring Novel STR Loci on Human Chromosome 21 for Forensic and Medical Genetics. Doctoral thesis, Sichuan University, Chengdu.
Y. S. Zhu, Wei, S. G., Sun, R. F., Feng, J. L., Kuang, W. J., Lai, J. H., and Li, S. B., A study on the relationship between TCTA tetranucleotide polymorphism of the HPRT gene and primary hyperuricemia, vol. 10, pp. 3121-3126, 2011.
Fujimori S (1996). PRPP synthetase superactivity. Nihon Rinsho 54: 3309-3314. PMid:8976111 Hong YS, Lee MJ, Kim KH, Lee SH, et al. (2004). The C677 mutation in methylene tetrahydrofolate reductase gene: correlation with uric acid and cardiovascular risk factors in elderly Korean men. J. Korean Med. Sci. 19: 209-213. http://dx.doi.org/10.3346/jkms.2004.19.2.209 PMid:15082892    PMCid:2822300 Li YC, Korol AB, Fahima T and Nevo E (2004). Microsatellites within genes: structure, function, and evolution. Mol. Biol. Evol. 21: 991-1007. http://dx.doi.org/10.1093/molbev/msh073 PMid:14963101 Mygind T, Birkelund S, Birkebaek NH, Ostergaard L, et al. (2002). Determination of PCR efficiency in chelex-100 purified clinical samples and comparison of real-time quantitative PCR and conventional PCR for detection of Chlamydia pneumoniae. BMC Microbiol. 2: 17. http://dx.doi.org/10.1186/1471-2180-2-17 PMid:12106506    PMCid:117782 Nyhan WL (2005). Inherited hyperuricemic disorders. Contrib. Nephrol. 147: 22-34. PMid:15604603 Reginato AM and Olsen BR (2007). Genetics and experimental models of crystal-induced arthritis. Lessons learned from mice and men: is it crystal clear? Curr. Opin. Rheumatol. 19: 134-145. http://dx.doi.org/10.1097/BOR.0b013e328040c00b PMid:17278928 Srivastava T, O’Neill JP, Dasouki M and Simckes AM (2002). Childhood hyperuricemia and acute renal failure resulting from a missense mutation in the HPRT gene. Am. J. Med. Genet. 108: 219-222. http://dx.doi.org/10.1002/ajmg.10217 PMid:11891689 Valdes AM, Slatkin M and Freimer NB (1993). Allele frequencies at microsatellite loci: the stepwise mutation model revisited. Genetics 133: 737-749. PMid:8454213    PMCid:1205356 Yamada Y, Nomura N, Yamada K and Wakamatsu N (2007). Molecular analysis of HPRT deficiencies: an update of the spectrum of Asian mutations with novel mutations. Mol. Genet. Metab. 90: 70-76. http://dx.doi.org/10.1016/j.ymgme.2006.08.013 PMid:17027311 Yamamoto T, Moriwaki Y and Takahashi S (2005). Effect of ethanol on metabolism of purine bases (hypoxanthine, xanthine, and uric acid). Clin. Chim. Acta 356: 35-57. http://dx.doi.org/10.1016/j.cccn.2005.01.024 PMid:15936302