Publications

Found 12 results
Filters: Author is H.Y. Jiang  [Clear All Filters]
2011
Y. Q. Tan, Xie, C. X., Jiang, H. Y., Ye, H., Xiang, Y., Zhu, S. W., and Cheng, B. J., Molecular mapping of genes for opposite leafing in maize using simple-sequence repeat markers, vol. 10, pp. 3472-3479, 2011.
Budak H, Shearman RC, Parmaksiz I and Dweikat I (2004). Comparative analysis of seeded and vegetative biotype buffalograsses based on phylogenetic relationship using ISSRs, SSRs, RAPDs, and SRAPs. Theor. Appl. Genet. 109: 280-288. http://dx.doi.org/10.1007/s00122-004-1630-z PMid:15024466   Cai LQ, Li Z and Zhu SW (2005). Analysis on heterosis and combining ability of yield characters in opposite maize. Acta Laser Biol. Sin. 14: 95-102.   Cai LQ, Cheng BJ and Li Z (2006). Analysis on heterosis and combining ability of grain quality characters in opposite maize. Acta Laser Biol. Sin. 15: 154-160.   Cai YP, Tao HZ and Cheng BJ (1992). Transpiration and photosynthetic characteristics of opposite maize. J. Anhui Agr. Univ. 23: 474-477.   Frary A, Xu Y, Liu J, Mitchell S, et al. (2005). Development of a set of PCR-based anchor markers encompassing the tomato genome and evaluation of their usefulness for genetics and breeding experiments. Theor. Appl. Genet. 111: 291-312. http://dx.doi.org/10.1007/s00122-005-2023-7 PMid:15926074   Galinat WC (1971). Genetic investigation of a novel mutant of maize. Annu. Rev. Genet. 5: 447-478. http://dx.doi.org/10.1146/annurev.ge.05.120171.002311 PMid:16097663   Giulini A, Wang J and Jackson D (2004). Control of phyllotaxy by the cytokinin-inducible response regulator homologue ABPHYL1. Nature 430: 1031-1034. http://dx.doi.org/10.1038/nature02778 PMid:15329722   Jackson D and Hake S (1999). Control of phyllotaxy in maize by the abphyl1 gene. Development 126: 315-323. PMid:9847245   Jackson D, Veit B and Hake S (1994). Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120: 405-413.   Kosambi DD (1944). The estimation of map distances from recombination values. Ann. Eugen. 12: 172-175.   Lander ES, Green P, Abrahamson J, Barlow A, et al. (1987). MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174-181. http://dx.doi.org/10.1016/0888-7543(87)90010-3   Lincoln S, Daly M and Lander E (1992). Constructing Genetic Maps with Mapmarker/Exp 3.0. Whitehead Institute Technical Reports. 3rd ed. Whitehead Institute, Cambridge.   Liu ZW, Biyashev RM and Saghai Maroof MA (1996). Development of simple sequence repeat markers and their integration into a barley linkage map. Theor. Appl. Genet. 93: 869-876. http://dx.doi.org/10.1007/BF00224088   Liu ZX, Wang SC, Dai JR, Huang LJ, et al. (2003). Studies of genetic analysis and SSR linked marker location of gene resistance to Southern rust in inbred line P25 of maize. Yi Chuan Xue Bao 30: 706-710. PMid:14682237   Lucey MJ, McColl SM and Manning FC (1997). Method to reduce the quantity of ethidium bromide required to stain DNA in agarose gels. Biotechniques 23: 780-782. PMid:9383534   McCouch SR, Kochert G, Yu ZH, Wang ZY, et al. (1988). Molecular mapping of rice chromosomes. Theor. Appl. Genet. 76: 815-829. http://dx.doi.org/10.1007/BF00273666   Mohammadi SA, Prasanna BM, Sudan C and Singh NN (2002). A microsatellite marker based study of chromosomal regions and gene effects on yield and yield components in maize. Cell Mol. Biol. Lett. 7: 599-606. PMid:12378265   Moore CWE (1964). Distribution of Grasslands. In: Grasses and Grasslands (Barnard C, ed.). Macmillan, London, 182- 205.   Ramsay L, Macaulay M, degli IS, MacLean K, et al. (2000). A simple sequence repeat-based linkage map of barley. Genetics 156: 1997-2005. PMid:11102390 PMCid:1461369   Selvi A, Nair NV, Balasundaram N and Mohapatra T (2003). Evaluation of maize microsatellite markers for genetic diversity analysis and fingerprinting in sugarcane. Genome 46: 394-403. http://dx.doi.org/10.1139/g03-018 PMid:12834055   Simcox KD and Bennetzen JL (1993). The use of molecular markers to study Setosphaeria turcica resistance in maize. Phytopathology 83: 1326-1330. http://dx.doi.org/10.1094/Phyto-83-1326   Xie CX, Zhu SW and Cheng BJ (2002). Obtaining of SCAR markers of two dominant genes for opposite leaves and fruits trait of Zea mays. High Technol. Lett. 8: 38-41.
2010
S. W. Zhu, Fang, Z. Y., Jiang, H. Y., and Cheng, B. J., Molecular and functional analysis of the poly-β-hydroxybutyrate biosynthesis operon of Pseudomonas sp BJ-1, vol. 9, pp. 2349-2356, 2010.
Agamuthu P and Faizura PN (2005). Biodegradability of degradable plastic waste. Waste Manag. Res. 23: 95-100. http://dx.doi.org/10.1177/0734242X05051045 PMid:15864950   Anton BP, Saleh L, Benner JS, Raleigh EA, et al. (2008). RimO, a MiaB-like enzyme, methylthiolates the universally conserved Asp88 residue of ribosomal protein S12 in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 105: 1826-1831. http://dx.doi.org/10.1073/pnas.0708608105 PMid:18252828 PMCid:2538847   Chien CC, Chen CC, Choi MH, Kung SS, et al. (2007). Production of poly-beta-hydroxybutyrate (PHB) by Vibrio spp. isolated from marine environment. J. Biotechnol. 132: 259-263. http://dx.doi.org/10.1016/j.jbiotec.2007.03.002 PMid:17416432   Haywood GW, Anderson AJ, Williams DR, Dawes EA, et al. (1991). Accumulation of a poly(hydroxyalkanoate) copolymer containing primarily 3-hydroxyvalerate from simple carbohydrate substrates by Rhodococcus sp. NCIMB 40126. Int. J. Biol. Macromol. 13: 83-88. http://dx.doi.org/10.1016/0141-8130(91)90053-W   Kaneko T, Thi TH, Shi DJ and Akashi M (2006). Environmentally degradable, high-performance thermoplastics from phenolic phytomonomers. Nat. Mater. 5: 966-970. http://dx.doi.org/10.1038/nmat1778 PMid:17128261   Kichise T, Fukui T, Yoshida Y and Doi Y (1999). Biosynthesis of polyhydroxyalkanoates (PHA) by recombinant Ralstonia eutropha and effects of PHA synthase activity on in vivo PHA biosynthesis. Int. J. Biol. Macromol. 25: 69-77. http://dx.doi.org/10.1016/S0141-8130(99)00017-3   Lee TR, Lin JS, Wang SS and Shaw GC (2004). PhaQ, a new class of poly-beta-hydroxybutyrate (phb)-responsive repressor, regulates phaQ and phaP (phasin) expression in Bacillus megaterium through interaction with PHB. J. Bacteriol. 186: 3015-3021. http://dx.doi.org/10.1128/JB.186.10.3015-3021.2004 PMid:15126462 PMCid:400616   Liu Q, Ouyang SP, Kim J and Chen GQ (2007). The impact of PHB accumulation on L-glutamate production by recombinant Corynebacterium glutamicum. J. Biotechnol. 132: 273-279. http://dx.doi.org/10.1016/j.jbiotec.2007.03.014 PMid:17555841   Matsusaki H, Abe H, Taguchi K, Fukui T, et al. (2000). Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant bacteria expressing the PHA synthase gene phaC1 from Pseudomonas sp. 61-3. Appl. Microbiol. Biotechnol. 53: 401-409. http://dx.doi.org/10.1007/s002530051633 PMid:10803895   Nikel PI, de Almeida A, Melillo EC, Galvagno MA, et al. (2006). New recombinant Escherichia coli strain tailored for the production of poly(3-hydroxybutyrate) from agroindustrial by-products. Appl. Environ. Microbiol. 72: 3949-3954. http://dx.doi.org/10.1128/AEM.00044-06 PMid:16751501 PMCid:1489613   Oeding V and Schlegel HG (1973). Beta-ketothiolase from Hydrogenomonas eutropha H16 and its significance in the regulation of poly-beta-hydroxybutyrate metabolism. Biochem. J. 134: 239-248. PMid:4198758 PMCid:1177804   Peralta-Gil M, Segura D, Guzman J, Servin-Gonzalez L, et al. (2002). Expression of the Azotobacter vinelandii poly-beta-hydroxybutyrate biosynthetic phbBAC operon is driven by two overlapping promoters and is dependent on the transcriptional activator PhbR. J. Bacteriol. 184: 5672-5677. http://dx.doi.org/10.1128/JB.184.20.5672-5677.2002 PMid:12270825 PMCid:139623   Seo MC, Shin HD and Lee YH (2003). Functional role of granule-associated genes, phaP and phaR, in poly-beta-hydroxybutyrate biosynthesis in recombinant E. coli harboring phbCAB operon. Biotechnol. Lett. 25: 1243-1249. http://dx.doi.org/10.1023/A:1025074926821 PMid:14514075   Steinbuchel A and Schlegel HG (1991). Physiology and molecular genetics of poly(beta-hydroxy-alkanoic acid) synthesis in Alcaligenes eutrophus. Mol. Microbiol. 5: 535-542. http://dx.doi.org/10.1111/j.1365-2958.1991.tb00725.x PMid:2046547   Takeda M, Kitashima K, Adachi K, Hanaoka Y, et al. (2000). Cloning and expression of the gene encoding thermostable poly(3-hydroxybutyrate) depolymerase. J. Biosci. Bioeng. 90: 416-421. PMid:16232882   Trainer MA and Charles TC (2006). The role of PHB metabolism in the symbiosis of rhizobia with legumes. Appl. Microbiol. Biotechnol. 71: 377-386. http://dx.doi.org/10.1007/s00253-006-0354-1 PMid:16703322   Uchino K and Saito T (2006). Thiolysis of poly(3-hydroxybutyrate) with polyhydroxyalkanoate synthase from Ralstonia eutropha. J. Biochem. 139: 615-621. http://dx.doi.org/10.1093/jb/mvj069 PMid:16567428   Uchino K, Saito T and Jendrossek D (2008). Poly(3-hydroxybutyrate) (PHB) depolymerase PhaZa1 is involved in mobilization of accumulated PHB in Ralstonia eutropha H16. Appl. Environ. Microbiol. 74: 1058-1063. http://dx.doi.org/10.1128/AEM.02342-07 PMid:18156336 PMCid:2258578   Wang C, Meek DJ, Panchal P, Boruvka N, et al. (2006). Isolation of poly-3-hydroxybutyrate metabolism genes from complex microbial communities by phenotypic complementation of bacterial mutants. Appl. Environ. Microbiol. 72: 384-391. http://dx.doi.org/10.1128/AEM.72.1.384-391.2006 PMid:16391068 PMCid:1352230   Yan S, Tyagi RD and Surampalli RY (2006). Polyhydroxyalkanoates (PHA) production using wastewater as carbon source and activated sludge as microorganisms. Water Sci. Technol. 53: 175-180. http://dx.doi.org/10.2166/wst.2006.193 PMid:16749455
F. Chen, Zhu, S. W., Xiang, Y., Jiang, H. Y., and Cheng, B. J., Molecular marker-assisted selection of the ae alleles in maize, vol. 9, pp. 1074-1084, 2010.
Campbell MR, Brumm TJ and Glover DV (1997). Whole grain amylase analysis in maize using near-infrared transmittance spectroscopy. Cereal Chem. 74: 300-303. http://dx.doi.org/10.1094/CCHEM.1997.74.3.300   Ciurczak EW (1995). Use of near infrared spectroscopy in cereal products. Food Test. Anal. 5: 35-39.   Collard BC and Mackill DJ (2008). Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 363: 557-572. http://dx.doi.org/10.1098/rstb.2007.2170 PMid:17715053 PMCid:2610170   Fergason V (1994). Specialty Corns. CRC Press, Boca Raton. PMid:7965894   Fisher DK, Gao M, Kim KN, Boyer CD, et al. (1996). Allelic analysis of the maize amylose-extender locus suggests that independent genes encode starch-branching enzymes IIa and IIb. Plant Physiol. 110: 611-619. PMid:12226207 PMCid:157757   Francia E, Tacconi G, Crosatti C, Barabaschi D, et al. (2005). Marker assisted selection in crop plants. Plant Cell Tissue Organ Cult. 82: 317-342. http://dx.doi.org/10.1007/s11240-005-2387-z   Frisch M and Melchinger AE (2005). Selection theory for marker-assisted backcrossing. Genetics 170: 909-917. http://dx.doi.org/10.1534/genetics.104.035451 PMid:15802512 PMCid:1450430   Kim KN, Fisher DK, Gao M and Guiltinan MJ (1998). Molecular cloning and characterization of the Amylose-Extender gene encoding starch branching enzyme IIB in maize. Plant Mol. Biol. 38: 945-956. http://dx.doi.org/10.1023/A:1006057609995 PMid:9869401   Lande R and Thompson R (1990). Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124: 743-756. PMid:1968875 PMCid:1203965   Leterrier M, Holappa LD, Broglie KE and Beckles DM (2008). Cloning, characterisation and comparative analysis of a starch synthase IV gene in wheat: functional and evolutionary implications. BMC Plant Biol. 8: 98. http://dx.doi.org/10.1186/1471-2229-8-98 PMid:18826586 PMCid:2576272   Martinez C and Prodolliet J (1996). Determination of amylose in cereal and non-cereal starches by a colorimetric assay: collaborative study. Starch 48: 81-85. http://dx.doi.org/10.1002/star.19960480302   Morrison WR and Laignet B (1983). An improved colorimetric procedure for determining apparent and total amylose in cereal and other starches. J. Cereal Sci. 1: 9-20. http://dx.doi.org/10.1016/S0733-5210(83)80004-6   Nishi A, Nakamura Y, Tanaka N and Satoh H (2001). Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm. Plant Physiol. 127: 459-472. http://dx.doi.org/10.1104/pp.010127 PMid:11598221 PMCid:125082   Orman BA and Schumann RA Jr (1991). Comparison of near-infrared spectroscopy calibration methods for the prediction of protein, oil, and starch in maize grain. J. Agric. Food Chem. 39: 883-886. http://dx.doi.org/10.1021/jf00005a015   Ribaut JM and Betrán J (1999). Single large-scale marker-assisted selection (SLS-MAS). Mol. Breed. 5: 531-541. http://dx.doi.org/10.1023/A:1009631718036   Rutenberg MW and Solarek D (1984). Starch: Chemistry and Technology. 2nd edn. Academic Press, Orlando.   Saghai Maroof MA, Biyashev RM, Yang GP, Zhang Q, et al. (1994). Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. Proc. Natl. Acad. Sci. U. S. A. 91: 5466-5470. http://dx.doi.org/10.1073/pnas.91.12.5466 PMid:8202509 PMCid:44016   Seetharaman K, Tziotis A, Borras F, White PJ, et al. (2001). Thermal and functional characterization of starch from Argentinean corn. Cereal Chem. 78: 379-386. http://dx.doi.org/10.1094/CCHEM.2001.78.4.379   Smith AM, Denyer K and Martin C (1997). The synthesis of the starch granule. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 67-87. http://dx.doi.org/10.1146/annurev.arplant.48.1.67 PMid:15012257   Sun C, Sathish P, Ahlandsberg S and Jansson C (1998). The two genes encoding starch-branching enzymes IIa and IIb are differentially expressed in barley. Plant Physiol. 118: 37-49. http://dx.doi.org/10.1104/pp.118.1.37 PMid:9733524 PMCid:34872   Van Berloo R and Stam P (2001). Simultaneous marker-assisted selection for multiple traits in autogamous crops. Theor. Appl. Genet. 102: 1107-1112. http://dx.doi.org/10.1007/s001220000518   Vineyard ML, Bear RP, MacMasters MM and Deatherage WL (1958). Development of "Amylosemaize" - corn hybrids with high amylose starch. Agron. J. 50: 595-598. http://dx.doi.org/10.2134/agronj1958.00021962005000100009x   Wang YJ, White P, Pollak L and Jane J (1993). Characterization of starch structures of 17 maize endosperm mutant genotypes with Oh43 inbred line background. Cereal Chem. 70: 171-179.   Whistler RL (1958). Amylose development and progress. Chemurgic Dig. 17: 38.   Wu Y, Campbell M, Yen Y, Wicks Z III, et al. (2009). Genetic analysis of high amylose content in maize (Zea mays L.) using a triploid endosperm model. Euphytica 166: 155-164. http://dx.doi.org/10.1007/s10681-008-9798-y   Yun SH and Matheson NK (1993). Structures of the amylopectins of waxy, normal, amylose-extender, and wx:ae genotypes and of the phytoglycogen of maize. Carbohydr. Res. 243: 307-321. http://dx.doi.org/10.1016/0008-6215(93)87035-Q