Publications

Found 12 results
Filters: Author is X.Q. Wang  [Clear All Filters]
2016
X. Q. Wang, Han, J., Wen, Y., Jiang, W. B., Fang, J. G., Zhang, B. B., Ma, R. J., Wang, X. Q., Han, J., Wen, Y., Jiang, W. B., Fang, J. G., Zhang, B. B., and Ma, R. J., Cloning and bioinformatic analysis of transcription factor MYB10 from the red-leaf peach, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch supported by the National Natural Science Foundation of China (#31101517) and the Science and Technology Innovation Foundation of Nanjing Agricultural University Young Teachers (#KJ09010).REFERENCESAharoni A, De Vos CH, Wein M, Sun Z, et al (2001). The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. Plant J. 28: 319-332. http://dx.doi.org/10.1046/j.1365-313X.2001.01154.x Ban Y, Honda C, Hatsuyama Y, Igarashi M, et al (2007). Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiol. 48: 958-970. http://dx.doi.org/10.1093/pcp/pcm066 Boase MR, Brendolise C, Wang L, Ngo H, et al (2015). Failure to launch: the self-regulating Md-MYB10 R6 gene from apple is active in flowers but not leaves of Petunia. Plant Cell Rep. 34: 1817-1823. http://dx.doi.org/10.1007/s00299-015-1827-4 Borevitz JO, Xia Y, Blount J, Dixon RA, et al (2000). Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12: 2383-2394. http://dx.doi.org/10.1105/tpc.12.12.2383 Butelli E, Titta L, Giorgio M, Mock HP, et al (2008). Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat. Biotechnol. 26: 1301-1308. http://dx.doi.org/10.1038/nbt.1506 Chagné D, Lin-Wang K, Espley RV, Volz RK, et al (2013). An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes. Plant Physiol. 161: 225-239. http://dx.doi.org/10.1104/pp.112.206771 Deluc L, Barrieu F, Marchive C, Lauvergeat V, et al (2006). Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway. Plant Physiol. 140: 499-511. http://dx.doi.org/10.1104/pp.105.067231 Dong ZD, Chen J, Li T, Chen F, et al (2015). Molecular survey of Tamyb10-1 genes and their association with grain colour and germinability in Chinese wheat and Aegilops tauschii. J. Genet. 94: 453-459. http://dx.doi.org/10.1007/s12041-015-0559-0 Grotewold E, Chamberlin M, Snook M, Siame B, et al (1998). Engineering secondary metabolism in maize cells by ectopic expression of transcription factors. Plant Cell 10: 721-740. Ivanova V, Stefova M, Vojnoski B, Dornyei A, et al (2011). Identification of polyphenolic compounds in red and white grape varieties grown in R. Macedonia and changes of their content during ripening. Food Res. Int. 44: 2851-2860. http://dx.doi.org/10.1016/j.foodres.2011.06.046 Kobayashi S, Ishimaru M, Hiraoka K, Honda C, et al (2002). Myb-related genes of the Kyoho grape ( Vitis labruscana) regulate anthocyanin biosynthesis. Planta 215: 924-933. http://dx.doi.org/10.1007/s00425-002-0830-5 Li P, Zhang Y, Einhorn TC, Cheng L, et al (2014). Comparison of phenolic metabolism and primary metabolism between green ‘Anjou’ pear and its bud mutation, red ‘Anjou’. Physiol. Plant. 150: 339-354. http://dx.doi.org/10.1111/ppl.12105 Lin-Wang K, McGhie TK, Wang M, Liu Y, et al (2014). Engineering the anthocyanin regulatory complex of strawberry (Fragaria vesca). Front. Plant Sci. 5: 651. http://dx.doi.org/10.3389/fpls.2014.00651 Liu YZ, Luo WL, Huang CH, Chen LK, et al (2013). Characterization of the regulatory dene hrd1(t) involved in anthocyanin biosynthesis. Zhongguo Nong Ye Ke Xue 46: 3955-3964. Medina-Puche L, Cumplido-Laso G, Amil-Ruiz F, Hoffmann T, et al (2014). MYB10 plays a major role in the regulation of flavonoid/phenylpropanoid metabolism during ripening of Fragaria x ananassa fruits. J. Exp. Bot. 65: 401-417. http://dx.doi.org/10.1093/jxb/ert377 Nesi N, Jond C, Debeaujon I, Caboche M, et al (2001). The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 13: 2099-2114. Palmer CM, Hindt MN, Schmidt H, Clemens S, et al (2013). MYB10 and MYB72 are required for growth under iron-limiting conditions. PLoS Genet. 9: e1003953. http://dx.doi.org/10.1371/journal.pgen.1003953 Poovaiah CR, Bewg WP, Lan W, Ralph J, et al (2016). Sugarcane transgenics expressing MYB transcription factors show improved glucose release. Biotechnol. Biofuels 9: 143. http://dx.doi.org/10.1186/s13068-016-0559-1 Quattrocchio F, Verweij W, Kroon A, Spelt C, et al (2006). PH4 of Petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with basic-helix-loop-helix transcription factors of the anthocyanin pathway. Plant Cell 18: 1274-1291. http://dx.doi.org/10.1105/tpc.105.034041 Schwinn K, Venail J, Shang Y, Mackay S, et al (2006). A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. Plant Cell 18: 831-851. http://dx.doi.org/10.1105/tpc.105.039255 Shan T, Rong W, Xu H, Du L, et al (2016). The wheat R2R3-MYB transcription factor TaRIM1 participates in resistance response against the pathogen Rhizoctonia cerealis infection through regulating defense genes. Sci. Rep. 6: 28777. http://dx.doi.org/10.1038/srep28777 Shimada S, Otsuki H, Sakuta M, et al (2007). Transcriptional control of anthocyanin biosynthetic genes in the Caryophyllales. J. Exp. Bot. 58: 957-967. http://dx.doi.org/10.1093/jxb/erl256 Starkevič P, Paukštytė J, Kazanavičiūtė V, Denkovskienė E, et al (2015). Expression and anthocyanin biosynthesis-modulating potential of sweet cherry (Prunus avium L.) MYB10 and bHLH genes. PLoS One 10: e0126991. http://dx.doi.org/10.1371/journal.pone.0126991 Tuan PA, Bai S, Yaegaki H, Tamura T, et al (2015). The crucial role of PpMYB10.1 in anthocyanin accumulation in peach and relationships between its allelic type and skin color phenotype. BMC Plant Biol. 15: 280. http://dx.doi.org/10.1186/s12870-015-0664-5 Wan H, Zhang J, Song T, Tian J, et al (2015). Promotion of flavonoid biosynthesis in leaves and calli of ornamental crabapple (Malus sp.) by high carbon to nitrogen ratios. Front. Plant Sci. 6: 673. http://dx.doi.org/10.3389/fpls.2015.00673 Wang ZW, Qu SC, Zhang Z, Zhang JY, et al (2004). A fast method for total RNA extraction from the tissue culture material of Malus sp. Guoshu Xuebao 21: 385-387. Xu LL, Jiang WB, Han J, Weng ML, et al (2011). Effects of foliage spray of KH2PO4 and sucrose solution on changes of pigments and net photosynthetic rate in leaves of red-leaf peach in early summer. Sci. Silvae Sin. 47: 170-174. Yang YN, Yao GF, Zheng D, Zhang SL, et al (2015). Expression differences of anthocyanin biosynthesis genes reveal regulation patterns for red pear coloration. Plant Cell Rep. 34: 189-198. http://dx.doi.org/10.1007/s00299-014-1698-0 Zhang YZ, Xu SZ, Cheng YW, Ya HY, et al (2016). Transcriptome analysis and anthocyanin-related genes in red leaf lettuce. Genet. Mol. Res. 15: .http://dx.doi.org/10.4238/gmr.15017023 Zhou MJ, Hu SL, Cao Y, Lu XQ, et al (2012). Cloning and bioinformation analysis of C3H gene in Neosinocalamus affinis. Bull. Bot. Res. 32: 38-46.    
X. Q. Wang, Han, J., Wen, Y., Jiang, W. B., Fang, J. G., Zhang, B. B., Ma, R. J., Wang, X. Q., Han, J., Wen, Y., Jiang, W. B., Fang, J. G., Zhang, B. B., and Ma, R. J., Cloning and bioinformatic analysis of transcription factor MYB10 from the red-leaf peach, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch supported by the National Natural Science Foundation of China (#31101517) and the Science and Technology Innovation Foundation of Nanjing Agricultural University Young Teachers (#KJ09010).REFERENCESAharoni A, De Vos CH, Wein M, Sun Z, et al (2001). The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. Plant J. 28: 319-332. http://dx.doi.org/10.1046/j.1365-313X.2001.01154.x Ban Y, Honda C, Hatsuyama Y, Igarashi M, et al (2007). Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiol. 48: 958-970. http://dx.doi.org/10.1093/pcp/pcm066 Boase MR, Brendolise C, Wang L, Ngo H, et al (2015). Failure to launch: the self-regulating Md-MYB10 R6 gene from apple is active in flowers but not leaves of Petunia. Plant Cell Rep. 34: 1817-1823. http://dx.doi.org/10.1007/s00299-015-1827-4 Borevitz JO, Xia Y, Blount J, Dixon RA, et al (2000). Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12: 2383-2394. http://dx.doi.org/10.1105/tpc.12.12.2383 Butelli E, Titta L, Giorgio M, Mock HP, et al (2008). Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat. Biotechnol. 26: 1301-1308. http://dx.doi.org/10.1038/nbt.1506 Chagné D, Lin-Wang K, Espley RV, Volz RK, et al (2013). An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes. Plant Physiol. 161: 225-239. http://dx.doi.org/10.1104/pp.112.206771 Deluc L, Barrieu F, Marchive C, Lauvergeat V, et al (2006). Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway. Plant Physiol. 140: 499-511. http://dx.doi.org/10.1104/pp.105.067231 Dong ZD, Chen J, Li T, Chen F, et al (2015). Molecular survey of Tamyb10-1 genes and their association with grain colour and germinability in Chinese wheat and Aegilops tauschii. J. Genet. 94: 453-459. http://dx.doi.org/10.1007/s12041-015-0559-0 Grotewold E, Chamberlin M, Snook M, Siame B, et al (1998). Engineering secondary metabolism in maize cells by ectopic expression of transcription factors. Plant Cell 10: 721-740. Ivanova V, Stefova M, Vojnoski B, Dornyei A, et al (2011). Identification of polyphenolic compounds in red and white grape varieties grown in R. Macedonia and changes of their content during ripening. Food Res. Int. 44: 2851-2860. http://dx.doi.org/10.1016/j.foodres.2011.06.046 Kobayashi S, Ishimaru M, Hiraoka K, Honda C, et al (2002). Myb-related genes of the Kyoho grape ( Vitis labruscana) regulate anthocyanin biosynthesis. Planta 215: 924-933. http://dx.doi.org/10.1007/s00425-002-0830-5 Li P, Zhang Y, Einhorn TC, Cheng L, et al (2014). Comparison of phenolic metabolism and primary metabolism between green ‘Anjou’ pear and its bud mutation, red ‘Anjou’. Physiol. Plant. 150: 339-354. http://dx.doi.org/10.1111/ppl.12105 Lin-Wang K, McGhie TK, Wang M, Liu Y, et al (2014). Engineering the anthocyanin regulatory complex of strawberry (Fragaria vesca). Front. Plant Sci. 5: 651. http://dx.doi.org/10.3389/fpls.2014.00651 Liu YZ, Luo WL, Huang CH, Chen LK, et al (2013). Characterization of the regulatory dene hrd1(t) involved in anthocyanin biosynthesis. Zhongguo Nong Ye Ke Xue 46: 3955-3964. Medina-Puche L, Cumplido-Laso G, Amil-Ruiz F, Hoffmann T, et al (2014). MYB10 plays a major role in the regulation of flavonoid/phenylpropanoid metabolism during ripening of Fragaria x ananassa fruits. J. Exp. Bot. 65: 401-417. http://dx.doi.org/10.1093/jxb/ert377 Nesi N, Jond C, Debeaujon I, Caboche M, et al (2001). The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 13: 2099-2114. Palmer CM, Hindt MN, Schmidt H, Clemens S, et al (2013). MYB10 and MYB72 are required for growth under iron-limiting conditions. PLoS Genet. 9: e1003953. http://dx.doi.org/10.1371/journal.pgen.1003953 Poovaiah CR, Bewg WP, Lan W, Ralph J, et al (2016). Sugarcane transgenics expressing MYB transcription factors show improved glucose release. Biotechnol. Biofuels 9: 143. http://dx.doi.org/10.1186/s13068-016-0559-1 Quattrocchio F, Verweij W, Kroon A, Spelt C, et al (2006). PH4 of Petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with basic-helix-loop-helix transcription factors of the anthocyanin pathway. Plant Cell 18: 1274-1291. http://dx.doi.org/10.1105/tpc.105.034041 Schwinn K, Venail J, Shang Y, Mackay S, et al (2006). A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. Plant Cell 18: 831-851. http://dx.doi.org/10.1105/tpc.105.039255 Shan T, Rong W, Xu H, Du L, et al (2016). The wheat R2R3-MYB transcription factor TaRIM1 participates in resistance response against the pathogen Rhizoctonia cerealis infection through regulating defense genes. Sci. Rep. 6: 28777. http://dx.doi.org/10.1038/srep28777 Shimada S, Otsuki H, Sakuta M, et al (2007). Transcriptional control of anthocyanin biosynthetic genes in the Caryophyllales. J. Exp. Bot. 58: 957-967. http://dx.doi.org/10.1093/jxb/erl256 Starkevič P, Paukštytė J, Kazanavičiūtė V, Denkovskienė E, et al (2015). Expression and anthocyanin biosynthesis-modulating potential of sweet cherry (Prunus avium L.) MYB10 and bHLH genes. PLoS One 10: e0126991. http://dx.doi.org/10.1371/journal.pone.0126991 Tuan PA, Bai S, Yaegaki H, Tamura T, et al (2015). The crucial role of PpMYB10.1 in anthocyanin accumulation in peach and relationships between its allelic type and skin color phenotype. BMC Plant Biol. 15: 280. http://dx.doi.org/10.1186/s12870-015-0664-5 Wan H, Zhang J, Song T, Tian J, et al (2015). Promotion of flavonoid biosynthesis in leaves and calli of ornamental crabapple (Malus sp.) by high carbon to nitrogen ratios. Front. Plant Sci. 6: 673. http://dx.doi.org/10.3389/fpls.2015.00673 Wang ZW, Qu SC, Zhang Z, Zhang JY, et al (2004). A fast method for total RNA extraction from the tissue culture material of Malus sp. Guoshu Xuebao 21: 385-387. Xu LL, Jiang WB, Han J, Weng ML, et al (2011). Effects of foliage spray of KH2PO4 and sucrose solution on changes of pigments and net photosynthetic rate in leaves of red-leaf peach in early summer. Sci. Silvae Sin. 47: 170-174. Yang YN, Yao GF, Zheng D, Zhang SL, et al (2015). Expression differences of anthocyanin biosynthesis genes reveal regulation patterns for red pear coloration. Plant Cell Rep. 34: 189-198. http://dx.doi.org/10.1007/s00299-014-1698-0 Zhang YZ, Xu SZ, Cheng YW, Ya HY, et al (2016). Transcriptome analysis and anthocyanin-related genes in red leaf lettuce. Genet. Mol. Res. 15: .http://dx.doi.org/10.4238/gmr.15017023 Zhou MJ, Hu SL, Cao Y, Lu XQ, et al (2012). Cloning and bioinformation analysis of C3H gene in Neosinocalamus affinis. Bull. Bot. Res. 32: 38-46.    
L. Liu, Li, Y. L., Xu, S. D., Wang, K. Z., Wu, P., Chu, W. Y., Wang, X. Q., Liu, L., Li, Y. L., Xu, S. D., Wang, K. Z., Wu, P., Chu, W. Y., and Wang, X. Q., Molecular characterization of the myosatin gene and the effect of fasting on its expression in Chinese perch (Siniperca chuatsi), vol. 15, p. -, 2016.
L. Liu, Li, Y. L., Xu, S. D., Wang, K. Z., Wu, P., Chu, W. Y., Wang, X. Q., Liu, L., Li, Y. L., Xu, S. D., Wang, K. Z., Wu, P., Chu, W. Y., and Wang, X. Q., Molecular characterization of the myosatin gene and the effect of fasting on its expression in Chinese perch (Siniperca chuatsi), vol. 15, p. -, 2016.
2013
X. Q. Wang, Yu, Y., Li, W., Guo, H. L., Lin, Z. X., and Zhang, X. L., Association analysis of yield and fiber quality traits in Gossypium barbadense with SSRs and SRAPs, vol. 12, pp. 3353-3362, 2013.
J. Ma, Wang, M. G., Mao, A. H., Zeng, J. Y., Liu, Y. Q., Wang, X. Q., Ma, J., Tian, Y. J., Ma, N., Yang, N., Wang, L., and Liao, S. Q., Target replacement strategy for selection of DNA aptamers against the Fc region of mouse IgG, vol. 12, pp. 1399-1410, 2013.
Chu TC, Twu KY, Ellington AD and Levy M (2006). Aptamer mediated siRNA delivery. Nucleic Acids Res. 34: e73. http://dx.doi.org/10.1093/nar/gkl388 PMid:16740739 PMCid:1474074   Cox JC and Ellington AD (2001). Automated selection of anti-protein aptamers. Bioorg. Med. Chem. 9: 2525-2531. http://dx.doi.org/10.1016/S0968-0896(01)00028-1   Ellington AD and Szostak JW (1990). In vitro selection of RNA molecules that bind specific ligands. Nature 346: 818-822. http://dx.doi.org/10.1038/346818a0 PMid:1697402   Hall B, Arshad S, Seo K, Bowman C, et al. (2010). In vitro selection of RNA aptamers to a protein target by filter immobilization. Curr. Protoc. Nucleic Acid Chem. Chapter 9: Unit-27.   Keefe AD and Cload ST (2008). SELEX with modified nucleotides. Curr. Opin. Chem. Biol. 12: 448-456. http://dx.doi.org/10.1016/j.cbpa.2008.06.028 PMid:18644461   Mairal T, Ozalp VC, Lozano SP, Mir M, et al. (2008). Aptamers: molecular tools for analytical applications. Anal. Bioanal. Chem. 390: 989-1007. http://dx.doi.org/10.1007/s00216-007-1346-4 PMid:17581746   Mendonsa SD and Bowser MT (2004). In vitro selection of high-affinity DNA ligands for human IgE using capillary electrophoresis. Anal. Chem. 76: 5387-5392. http://dx.doi.org/10.1021/ac049857v PMid:15362896   Miyakawa S, Oguro A, Ohtsu T, Imataka H, et al. (2006). RNA aptamers to mammalian initiation factor 4G inhibit cap-dependent translation by blocking the formation of initiation factor complexes. RNA 12: 1825-1834. http://dx.doi.org/10.1261/rna.2169406 PMid:16940549 PMCid:1581983   Nitsche A, Kurth A, Dunkhorst A, Panke O, et al. (2007). One-step selection of Vaccinia virus-binding DNA aptamers by MonoLEX. BMC Biotechnol. 7: 48. http://dx.doi.org/10.1186/1472-6750-7-48 PMid:17697378 PMCid:1994675   Sakai N, Masuda H, Akitomi J, Yagi H, et al. (2008). RNA aptamers specifically interact with the Fc region of mouse immunoglobulin G. Nucleic Acids Symp. Ser. 487-488. http://dx.doi.org/10.1093/nass/nrn247 PMid:18776466   Shamah SM, Healy JM and Cload ST (2008). Complex target SELEX. Acc. Chem. Res. 41: 130-138. http://dx.doi.org/10.1021/ar700142z PMid:18193823   Stoltenburg R, Reinemann C and Strehlitz B (2005). FluMag-SELEX as an advantageous method for DNA aptamer selection. Anal. Bioanal. Chem. 383: 83-91. http://dx.doi.org/10.1007/s00216-005-3388-9 PMid:16052344   Tuerk C and Gold L (1990). Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249: 505-510. http://dx.doi.org/10.1126/science.2200121 PMid:2200121   Yoshida Y, Sakai N, Masuda H, Furuichi M, et al. (2008). Rabbit antibody detection with RNA aptamers. Anal. Biochem. 375: 217-222. http://dx.doi.org/10.1016/j.ab.2008.01.005 PMid:18252191   Yoshida Y, Horii K, Sakai N, Masuda H, et al. (2009). Antibody-specific aptamer-based PCR analysis for sensitive protein detection. Anal. Bioanal. Chem. 395: 1089-1096. http://dx.doi.org/10.1007/s00216-009-3041-0 PMid:19705107
2011
X. Q. Wang, Feng, C. H., Lin, Z. X., and Zhang, X. L., Genetic diversity of sea-island cotton (Gossypium barbadense) revealed by mapped SSRs, vol. 10, pp. 3620-3631, 2011.
Chen G, Du XM, Lu DB, Zhou ZL, et al. (2005). Genetic diversity of Sea Island cotton using SSR markers. J. Plant Genet. Resour. 6: 135-139.   Cruz VMV, Luhman R, Marek LF, Rife CL, et al. (2007). Characterization of flowering time and SSR marker analysis of spring and winter type Brassica napus L. germplasm. Euphytica 153: 43-57. http://dx.doi.org/10.1007/s10681-006-9233-1   Diao M, Chu GX, Li SK and Cao LP (2002). Studies on the relationship of upland cotton varieties in the course of replacement of varieties in North Xinjiang over the past fifty years. Sci. Agr. Sin. 35: 1456-1460.   Dongre A, Parkhi V and Gahukar S (2004). Characterization of cotton (Gossypium hirsutum) germplasm by ISSR, RAPD markers agronomic values. J. Biot. 3: 388-393.   Frelichowski JE Jr, Palmer MB, Main D, Tomkins JP, et al. (2006). Cotton genome mapping with new microsatellites from Acala "Maxxa" BAC-ends. Mol. Genet. Genomics 275: 479-491. http://dx.doi.org/10.1007/s00438-006-0106-z PMid:16501995   Fryxell PA (1992). A revised taxonomic interpretation of Gossypium L. (Malvaceae). Rheedea 2: 108-165.   Guo WZ, Cai CP, Wang CB, Han ZG, et al. (2007). A microsatellite-based, gene-rich linkage map reveals genome structure, function, and evolution in Gossypium. Genetics 176: 527-541. http://dx.doi.org/10.1534/genetics.107.070375 PMid:17409069 PMCid:1893075   He DH, Lin ZX, Zhang XL, Nie YC, et al. (2007). QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum x Gossypium barbadense. Euphytica 153: 181-197. http://dx.doi.org/10.1007/s10681-006-9254-9   He LR, Zheng DM, Zhang XL, Zhang L et al. (2002). Analysis of pedigree and evolution of main agronomic traits of self-cultivated sea-island cotton in South Xinjiang. China Cotton 29: 8-9.   Iqbal MJ, Reddy OUK, El-Zik KM and Pepper AE (2001). A genetic bottleneck in the "evolution under domestication" of upland cotton Gossypium hirsutum L. examined using DNA fingerprinting. Theor. Appl. Genet. 103: 547-554. http://dx.doi.org/10.1007/PL00002908   Jiang W, Zhu HB and He JM (2008). Genetic diversity in germplasm resources of cotton from different area based on ISSR markers. Acta Agron. Sin. 20: 348-353.   Kantartzi SK, Ulloa M, Sacks E and Stewart JMD (2009). Assessing genetic diversity in Gossypium arboreum L. cultivars using genomic and EST-derived microsatellites. Genetica 136: 141-147. http://dx.doi.org/10.1007/s10709-008-9327-x PMid:18853261   Kong QP (2002). Overview of Sea-island cotton production and comparative advantage of China. China Cotton. 29: 19-20.   Lacape JM, Dessauw D, Rajab M, Noyer JL, et al. (2007). Microsatellite diversity in tetraploid Gossypium germplasm: assembling a highly informative genotyping set of cotton SSRs. Mol. Breed. 19: 45-58. http://dx.doi.org/10.1007/s11032-006-9042-1   Li JR, Wang XG, Zhu YJ and Zhang W (2009). Cluster analysis on 14 Sea-island Cotton by SSRs. Xinjiang Agr. Sci. 46: 237-241.   Li W, Ni W, Lin ZX and Zhang XL (2008). Genetic diversity analysis of sea-Island cotton cultivars using SRAP markers. Acta Agron. Sin. 34: 893-898. http://dx.doi.org/10.3724/SP.J.1006.2008.00893   Luo R, Wu WL, Zhang Y and Li YH (2010). SSR marker and its application to crop genetics and breeding. Genomics Appl. Biol. 29: 137-143.   Mehetre SS, Aher AR, Gawande VL, Patil VR et al. (2003). Induced polyploidy in Gossypium: a tool to overcome interspecific incompatibility of cultivated tetraploid and diploid cottons. Curr. Sci. 84: 1510-1512.   Mei YJ, Ding S, Zheng DM, Cao XC et al. (2001). Analysis and evaluation of grey relational of south Sea-island cotton varieties (lines). China Cotton 28: 16-17.   Nguyen TB, Giband M, Brottier P, Risterucci AM, et al. (2004). Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers. Theor. Appl. Genet. 109: 167-175. http://dx.doi.org/10.1007/s00122-004-1612-1 PMid:14997301   Qureshi SN, Saha S, Kantety RV, Jenkins JN et al. (2004). EST-SSR: a new class of genetic markers in cotton. Cotton Sci. 8: 112-123.   Rana MK, Singh VP and Bhat KV (2005). Assessment of genetic diversity in upland cotton (Gossypium hirsutum L.) breeding lines by using amplified fragment length polymorphism (AFLP) markers and morphological characteristics. Genet. Resour. Crop Evol. 52: 989-997. http://dx.doi.org/10.1007/s10722-003-6113-6   Rohlf FJ (2000). NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System, Version 2.1. Exeter Software, New York.   Rong JK, Abbey C, Bowers JE, Brubaker CL et al. (2004). A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics 389. http://dx.doi.org/10.1534/genetics.166.1.389   Song XL, Sun XZ, Zhang TZ and Wang HG (2004). Advances on genetic diversity of cotton (Gossypium). Acta Bot. Boreali-Occidentalia Sin. 24: 2393-2397.   Tan ZM, Li YC, Hu Q, Mei DS et al. (2009). Genetic diversity of parental lines of rapeseed hybrids based on SSR and SRAP markers. J. Agr. Biot. 15: 882-890.   Vafai-Tabar M, Chandrashekaran S, Rana MK and Bhat KV (2004). RAPD analysis of genetic diversity in Indian tetraploid and diploid cotton (Gossypium spp). J. Plant Biochem. Biot. 13: 81-84.   Wang HZ, Wu ZD, Wang XW and Fang ZY (2008). Analysis of the genetic diversity in different types of sugar beets by SRAP and SSR markers. Acta Agron. Sin. 34: 37-46. http://dx.doi.org/10.3724/SP.J.1006.2008.00037   Wang XL and Diao ZF (2002). Analysis of long staples cotton pedigree in Xinjiang. China Seeds 12: 21-22.   Westengen OT, Huaman Z and Heun M (2005). Genetic diversity and geographic pattern in early South American cotton domestication. Theor. Appl. Genet. 110: 392-402. http://dx.doi.org/10.1007/s00122-004-1850-2 PMid:15580473   Wu DP, Fang XX, Ma MN, Chen JH et al. (2010). Genetic relationship and diversity of the germplasms in Gossypium barbadense L. from four different countries using SSR markers. Cotton Sci. 22: 104-109.   Yu JW, Yu SX, Lu C, Wang W et al. (2007). High-density linkage map of cultivated allotetraploid cotton based on SSR, TRAP, SRAP and AFLP markers. J. Integr. Plant Biol. 49: 716-724. http://dx.doi.org/10.1111/j.1744-7909.2007.00459.x   Zhang P, Zhang HY, Guo WZ, Zheng YZ et al. (2007). Genetic diversity analysis of Sesamum indicum L. germplasms using SRAP and EST-SSR markers. Acta Agron. Sin. 33: 1696-1702.   Zhang Y, Lin Z, Xia Q, Zhang M, et al. (2008). Characteristics and analysis of simple sequence repeats in the cotton genome based on a linkage map constructed from a BC1 population between Gossypium hirsutum and G. barbadense. Genome 51: 534-546. http://dx.doi.org/10.1139/G08-033 PMid:18545277