Publications

Found 8 results
Filters: Author is L. He  [Clear All Filters]
2013
L. He, Yao, H., Fan, L. H., Liu, L., Qiu, S., Li, X., Gao, J. P., and Hao, C. Q., MicroRNA-181b expression in prostate cancer tissues and its influence on the biological behavior of the prostate cancer cell line PC-3, vol. 12, pp. 1012-1021, 2013.
Ambros V and Chen X (2007). The regulation of genes and genomes by small RNAs. Development 134: 1635-1641. http://dx.doi.org/10.1242/dev.002006 PMid:17409118   Berezikov E, Guryev V, van de Belt J, Wienholds E, et al. (2005). Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120: 21-24. http://dx.doi.org/10.1016/j.cell.2004.12.031 PMid:15652478   Chen C, Ridzon DA, Broomer AJ, Zhou Z, et al. (2005). Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 33: e179. http://dx.doi.org/10.1093/nar/gni178 PMid:16314309 PMCid:1292995   Chen H, Chen Q, Fang M and Mi Y (2009). Regulatory effect on the proliferation of the leukemic cell HL-60 by miRNA- 181b through MLK2 science in China. Life Sci. 39: 1034-1040.   de Yébenes VG, Belver L, Pisano DG, Gonzalez S, et al. (2008). miR-181b negatively regulates activation-induced cytidine deaminase in B cells. J. Exp. Med. 205: 2199-2206. http://dx.doi.org/10.1084/jem.20080579 PMid:18762567 PMCid:2556787   Debernardi S, Skoulakis S, Molloy G, Chaplin T, et al. (2007). MicroRNA miR-181a correlates with morphological sub-class of acute myeloid leukaemia and the expression of its target genes in global genome-wide analysis. Leukemia 21: 912-916. PMid:17330104   Gibson W, Green A, Bullard RS, Eaddy AC, et al. (2007). Inhibition of PAX2 expression results in alternate cell death pathways in prostate cancer cells differing in p53 status. Cancer Lett. 248: 251-261. http://dx.doi.org/10.1016/j.canlet.2006.08.007 PMid:16996682   Jonler M and Pedersen KV (2007). Diagnosis, evaluation and follow-up of patients with prostatic cancer. Ugeskr. Laeger 169: 1889-1891. PMid:17553363   Livak KJ and Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25: 402-408. http://dx.doi.org/10.1006/meth.2001.1262 PMid:11846609   Marcucci G, Radmacher MD, Maharry K, Mrózek K, et al. (2008). MicroRNA expression in cytogenetically normal acute myeloid leukemia. N. Engl. J. Med. 358: 1919-1928. http://dx.doi.org/10.1056/NEJMoa074256 PMid:18450603   Meltzer PS (2005). Cancer genomics: small RNAs with big impacts. Nature 435: 745-746. http://dx.doi.org/10.1038/435745a PMid:15944682   Nakajima G, Hayashi K, Xi Y, Kudo K, et al. (2006). Non-coding MicroRNAs hsa-let-7g and hsa-miR-181b are associated with chemoresponse to S-1 in colon cancer. Cancer Genomics Proteomics 3: 317-324. PMid:18172508 PMCid:2170889   Ozen M, Creighton CJ, Ozdemir M and Ittmann M (2008). Widespread deregulation of microRNA expression in human prostate cancer. Oncogene 27: 1788-1793. http://dx.doi.org/10.1038/sj.onc.1210809 PMid:17891175   Pekarsky Y, Santanam U, Cimmino A, Palamarchuk A, et al. (2006). Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res. 66: 11590-11593. http://dx.doi.org/10.1158/0008-5472.CAN-06-3613 PMid:17178851   Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, et al. (2007). MicroRNA expression profiling in prostate cancer. Cancer Res. 67: 6130-6135. http://dx.doi.org/10.1158/0008-5472.CAN-07-0533 PMid:17616669   Prueitt RL, Yi M, Hudson RS, Wallace TA, et al. (2008). Expression of microRNAs and protein-coding genes associated with perineural invasion in prostate cancer. Prostate 68: 1152-1164. http://dx.doi.org/10.1002/pros.20786 PMid:18459106 PMCid:2597330   Rajewsky N (2006). microRNA target predictions in animals. Nat. Genet. 38 Suppl: S8-13. http://dx.doi.org/10.1038/ng1798 PMid:16736023   Schaefer A, Jung M, Mollenkopf HJ, Wagner I, et al. (2010). Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int. J. Cancer 126: 1166-1176. PMid:19676045   Shi L, Cheng Z, Zhang J, Li R, et al. (2008). hsa-mir-181a and hsa-mir-181b function as tumor suppressors in human glioma cells. Brain Res. 1236: 185-193. http://dx.doi.org/10.1016/j.brainres.2008.07.085 PMid:18710654   Spahn M, Kneitz S, Scholz CJ, Stenger N, et al. (2010). Expression of microRNA-221 is progressively reduced in aggressive prostate cancer and metastasis and predicts clinical recurrence. Int. J. Cancer 127: 394-403. PMid:19585579   Stark A, Brennecke J, Bushati N, Russell RB, et al. (2005). Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution. Cell 123: 1133-1146. http://dx.doi.org/10.1016/j.cell.2005.11.023 PMid:16337999   Volinia S, Calin GA, Liu CG, Ambs S, et al. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad. Sci. U. S. A. 103: 2257-2261. http://dx.doi.org/10.1073/pnas.0510565103 PMid:16461460 PMCid:1413718   Xu L and Wang GM (2007). The progress and current situation in the management of moderate and far advanced prostate cancer. Int. J. Urol. Nephrol. 27: 773.   Zhang B and Farwell MA (2008). microRNAs: a new emerging class of players for disease diagnostics and gene therapy. J. Cell Mol. Med. 12: 3-21. http://dx.doi.org/10.1111/j.1582-4934.2007.00196.x PMid:18088390
J. Liu, Zhang, H. X., Feng, G. Y., and He, L., Significantly association of diabetes mellitus with CTLA-4 gene polymorphisms based on a meta-analysis of epidemiological evidence in Asians and non-Asians, vol. 12, pp. 3919-3930, 2013.
2011
D. - A. Fang, Wang, Q., Wang, J., He, L., Liu, L. - H., and Wang, Y., A novel DDX5 gene in the freshwater crayfish Cherax quadricarinatus is highly expressed during ontogenesis and spermatogenesis, vol. 10, pp. 3963-3975, 2011.
Abdelhaleem M (2005). RNA helicases: regulators of differentiation. Clin. Biochem. 38: 499-503. http://dx.doi.org/10.1016/j.clinbiochem.2005.01.010 PMid:15885226 Altschul SF, Madden TL, Schaffer AA, Zhang J, et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. http://dx.doi.org/10.1093/nar/25.17.3389 PMid:9254694 PMCid:146917 Barki A, Levi T, Hulata G and Karplus I (1997). Annual cycle spawning and molting in the red-claw crayfish, Cherax quadricarinatus, under laboratory conditions. Aquaculture 157: 239-249. http://dx.doi.org/10.1016/S0044-8486(97)00163-4 Bugnot AB and López Greco LS (2009). Sperm production in the red claw crayfish Cherax quadricarinatus (Decapoda Parastacidae). Aquaculture 295: 292-299. http://dx.doi.org/10.1016/j.aquaculture.2009.07.021 Claerhout T, Bendena W, Tobe SS and Borst DW (1996). Characterization of methyl transferase activity in the mandibular organ of the American lobster Homarus americanus. Biol. Bull. 191: 304-308. Cordin O, Banroques J, Tanner NK and Linder P (2006). The DEAD-box protein family of RNA helicases. Gene 367: 17-37. http://dx.doi.org/10.1016/j.gene.2005.10.019 PMid:16337753 Eddy EM (2002). Male germ cell gene expression. Recent Prog. Horm. Res. 57: 103-128. http://dx.doi.org/10.1210/rp.57.1.103 PMid:12017539 Extavour CG (2005). The fate of isolated blastomeres with respect to germ cell formation in the amphipod crustacean Parhyale hawaiensis. Dev. Biol. 277: 387-402. http://dx.doi.org/10.1016/j.ydbio.2004.09.030 PMid:15617682 Foulks NB and Hoffman DL (1974). The effects of eyestalk ablation and B-ecdysone on RNA synthesis in the androgenic glands of the protandric shrimp, Pandalus platyceros Brandt. Gen. Comp. Endocrinol. 22: 439-447. http://dx.doi.org/10.1016/0016-6480(74)90018-5 Gustafson EA and Wessel GM (2010). DEAD-box helicases: posttranslational regulation and function. Biochem. Biophys. Res. Commun. 395: 1-6. http://dx.doi.org/10.1016/j.bbrc.2010.02.172 PMid:20206133 PMCid:2863303 Heinlein UA (1998). Dead box for the living. J. Pathol. 184: 345-347. http://dx.doi.org/10.1002/(SICI)1096-9896(199804)184:4<345::AID-PATH1243>3.0.CO;2-6 Iggo RD and Lane DP (1989). Nuclear protein p68 is an RNA-dependent ATPase. EMBO J. 8: 1827-1831. PMid:2527746 PMCid:401029 Jost JP, Schwarz S, Hess D and Angliker (1999). A chicken embryo protein related to the mammalian DEAD box protein p68 is tightly associated with the highly purified protein-RNA complex of 5-MeC-DNA glycosylase. Nucleic Acids Res. 27: 3245-3252. http://dx.doi.org/10.1093/nar/27.16.3245 PMid:10454630 PMCid:148556 Karplus I, Gideon H and Barki A (2003). Shifting the natural spring-summer breeding season of Australian freshwater crayfish Cherax quadricarinatus into winter by environmental manipulations. Aquaculture 220: 277-286. http://dx.doi.org/10.1016/S0044-8486(02)00225-9 Khalaila I, Manor R, Weil S, Granot Y, et al. (2002). The eyestalk-androgenic gland-testis endocrine axis in the crayfish Cherax quadricarinatus. Gen. Comp. Endocrinol. 127: 147-156. http://dx.doi.org/10.1016/S0016-6480(02)00031-X Lane DP and Hoeffler WK (1980). SV40 large T shares an antigenic determinant with a cellular protein of molecular weight 68,000. Nature 288: 167-170. http://dx.doi.org/10.1038/288167a0 PMid:6159551 LeMaire L and Heinlein UA (1993). High-level expression in male germ cells of murine P68 RNA helicase mRNA. Life Sci. 52: 917-926. http://dx.doi.org/10.1016/0024-3205(93)90526-9 Li S, Wagner CA, Friesen JA and Borst DW (2003). 3-hydroxy-3-methylglutaryl-coenzyme A reductase in the lobster mandibular organ: regulation by the eyestalk. Gen. Comp. Endocrinol. 134: 147-155. http://dx.doi.org/10.1016/S0016-6480(03)00246-6 Linder P (2006). Dead-box proteins: a family affair--active and passive players in RNP-remodeling. Nucleic Acids Res. 34: 4168-4180. http://dx.doi.org/10.1093/nar/gkl468 PMid:16936318 PMCid:1616962 Liu ZR (2002). p68 RNA helicase is an essential human splicing factor that acts at the U1 snRNA-5ꞌ splice site duplex. Mol. Cell Biol. 22: 5443-5450. http://dx.doi.org/10.1128/MCB.22.15.5443-5450.2002 PMid:12101238 PMCid:133941 Livak KJ and Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408. López Greco LS and Lo Nostro FL (2008). Structural changes of the spermatophore in the freshwater "red claw" crayfish Cherax quadricarinatus (von Martens 1898) (Decapoda Parastacidae). Acta Zool. 89: 149-155. http://dx.doi.org/10.1111/j.1463-6395.2007.00303.x Luo YL, Wu ZX, Chen XX and Shen XH (1999). Histological study on spermary development of Cherax quadricarinatus. J. Huazhong Agric. Univ. 18: 78-79. Marcelo GG, Michel EH and Humberto V (2003). Description of the embryonic development of Cherax quadricarinatus (von Martens 1868) (Decapoda Parastacidae) based on the staging method. Crustaceana 76: 269-280. http://dx.doi.org/10.1163/156854003765911676 McCormick S, Curie C, Eyal Y and Muschietti J (1994). Molecular biology of male gametogenesis. Euphytica 79: 245-250. http://dx.doi.org/10.1007/BF00022525 Meistrich ML, Mohapatra B, Shirley CR and Zhao M (2003). Roles of transition nuclear proteins in spermiogenesis. Chromosoma 111: 483-488. http://dx.doi.org/10.1007/s00412-002-0227-z PMid:12743712 Meng FL, Zhao YL, Chen LQ and Gu ZM (2000). The study of embryonic development of Cherax quadricarinatus I. Morphogenesis of external structures of embryo. Zool. Res. 21: 468-472. Olsen LC, Aasland R and Fjose A (1997). A vasa-like gene in zebrafish identifies putative primordial germ cells. Mech. Dev. 66: 95-105. http://dx.doi.org/10.1016/S0925-4773(97)00099-3 Parvinen M (2005). The chromatoid body in spermatogenesis. Int. J. Androl 28: 189-201. http://dx.doi.org/10.1111/j.1365-2605.2005.00542.x PMid:16048630 Rocak S and Linder P (2004). DEAD-box proteins: the driving forces behind RNA metabolism. Nat. Rev. Mol. Cell Biol. 5: 232-241. http://dx.doi.org/10.1038/nrm1335 PMid:14991003 Saffman EE and Lasko P (1999). Germline development in vertebrates and invertebrates. Cell Mol. Life Sci. 55: 1141-1163. http://dx.doi.org/10.1007/s000180050363 PMid:10442094 Sandhu H, LeMaire L and Heinlein UA (1995). Male germ cell extracts contain proteins binding to the conserved 3'-end of mouse p68 RNA helicase mRNA. Biochem. Biophys. Res. Commun. 214: 632-638. http://dx.doi.org/10.1006/bbrc.1995.2333 PMid:7677776 Schulz RW, de Franca LR, Lareyre JJ, Le GF, et al. (2010). Spermatogenesis in fish. Gen. Comp. Endocrinol. 165: 390-411. http://dx.doi.org/10.1016/j.ygcen.2009.02.013 PMid:19348807 Sengoku T, Nureki O, Nakamura A, Kobayashi S, et al. (2006). Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa. Cell 125: 287-300. http://dx.doi.org/10.1016/j.cell.2006.01.054 PMid:16630817 Seufert DW, Kos R, Erickson CA and Swalla BJ (2000). p68, a DEAD-box RNA helicase, is expressed in chordate embryo neural and mesodermal tissues. J. Exp. Zool. 288: 193-204. http://dx.doi.org/10.1002/1097-010X(20001015)288:3<193::AID-JEZ1>3.0.CO;2-V Seydoux G and Braun RE (2006). Pathway to totipotency: lessons from germ cells. Cell 127: 891-904. http://dx.doi.org/10.1016/j.cell.2006.11.016 PMid:17129777 Stevenson RJ, Hamilton SJ, MacCallum DE, Hall PA, et al. (1998). Expression of the 'dead box' RNA helicase p68 is developmentally and growth regulated and correlates with organ differentiation/maturation in the fetus. J. Pathol. 184: 351-359. http://dx.doi.org/10.1002/(SICI)1096-9896(199804)184:4<351::AID-PATH1235>3.0.CO;2-C Tamura K, Dudley J, Nei M and Kumar S (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. http://dx.doi.org/10.1093/molbev/msm092 PMid:17488738