Found 108 results
Filters: Author is J. Wang  [Clear All Filters]
J. Wang, Wang, C., Tian, R., Huang, Y. - Z., Lai, X. - S., Lan, X. - Y., Wang, J. - Q., and Chen, H., Sequence variants in the bovine PRDM16 gene associated with body weight in Chinese cattle breeds, vol. 11, pp. 746-755, 2012.
Chen H and Leibenguth F (1995). Studies on multilocus fingerprints, RAPD markers, and mitochondrial DNA of a gynogenetic fish (Carassius auratus gibelio). Biochem. Genet. 33: 297-306. PMid:8748455 Chen DX, Jin QJ, Fang XT, Zhang CL, et al. (2010). Analysis of the polymorphisms in the caprine PRDM16, SHH and SF-1 genes and their association with production traits in goats. Small Ruminant Res. 93: 193-197. Cousin B, Cinti S, Morroni M, Raimbault S, et al. (1992). Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. J. Cell Sci. 10: 931-942. Farmer SR (2008). Molecular determinants of brown adipocyte formation and function. Genes Dev. 22: 1269-1275. Jenuwein T (2001). Re-SET-ting heterochromatin by histone methyltransferases. Trends Cell Biol. 11: 266-273. Kajimura S, Seale P, Tomaru T, Erdjument-Bromage H, et al. (2008). Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes Dev. 22: 1397-1409. Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, et al. (2007). A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315: 525-528. PMid:17185560 Kinameri E, Inoue T, Aruga J, Imayoshi I, et al. (2008). Prdm proto-oncogene transcription factor family expression and interaction with the Notch-Hes pathway in mouse neurogenesis. PLoS One 3: e3859. PMid:19050759    PMCid:2585159 Komar AA (2007). Silent SNPs: impact on gene function and phenotype. Pharmacogenomics 8: 1075-1080. PMid:17716239 Lai X, Lan X, Chen H, Wang X, et al. (2009). A novel SNP of the Hesx1 gene in bovine and its associations with average daily gain. Mol. Biol. Rep. 36: 1677-1681. PMid:18853282 Lan XY, Pan CY, Chen H and Zhang CL (2007). An AluI PCR-RFLP detecting a silent allele at the goat POU1F1 locus and its association with production traits. Small Ruminant Res. 73: 8-12. Nedergaard J, Bengtsson T and Cannon B (2007). Unexpected evidence for active brown adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab. 293: E444-E452. PMid:17473055 Nei M and Roychoudhury AK (1974). Sampling variances of heterozygosity and genetic distance. Genetics 76: 379-390. PMid:4822472    PMCid:1213072 Oh I, Shimizu H, Satoh T, Okada S, et al. (2006). Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature 443: 709-712. PMid:17036007 Ren G, Chen H, Zhang LZ, Lan XY, et al. (2010). A coding SNP of LHX4 gene is associated with body weight and body length in bovine. Mol. Biol. Rep. 37: 417-422. PMid:19283511 Rhee EJ, Oh KW, Lee WY, Kim SY, et al. (2006). Effects of two common polymorphisms of peroxisome proliferator-activated receptor-gamma gene on metabolic syndrome. Arch. Med. Res. 37: 86-94. PMid:16314192 Rosado EL, Bressan J, Martins MF, Cecon PR, et al. (2007). Polymorphism in the PPARgamma2 and beta2-adrenergic genes and diet lipid effects on body composition, energy expenditure and eating behavior of obese women. Appetite 49: 635-643. PMid:17658197 Sauna ZE, Kimchi-Sarfaty C, Ambudkar SV and Gottesman MM (2007). Silent polymorphisms speak: how they affect pharmacogenomics and the treatment of cancer. Cancer Res. 67: 9609-9612. PMid:17942888 Seale P, Kajimura S, Yang W, Chin S, et al. (2007). Transcriptional control of brown fat determination by PRDM16. Cell Metab. 6: 38-54. PMid:17618855    PMCid:2564846 Seale P, Bjork B, Yang W, Kajimura S, et al. (2008). PRDM16 controls a brown fat/skeletal muscle switch. Nature 454: 961-967. PMid:18719582    PMCid:2583329 Walczak R, Tontonoz P and Edward AD (2003). PPAR[gamma] Signaling in Adipose Tissue Development. In: Handbook of Cell Signaling, Academic Press, Burlington, 39-46. Wang YH, Bower NI, Reverter A, Tan SH, et al. (2009). Gene expression patterns during intramuscular fat development in cattle. J. Anim. Sci. 87: 119-130. PMid:18820161 Warner DR, Horn KH, Mudd L, Webb CL, et al. (2007). PRDM16/MEL1: a novel Smad binding protein expressed in murine embryonic orofacial tissue. Biochim. Biophys. Acta 1773: 814-820. PMid:17467076 Yang LL, Hua Q, Liu RK and Yang Z (2009). Association between two common polymorphisms of PPARgamma gene and metabolic syndrome families in a Chinese population. Arch. Med. Res. 40: 89-96. PMid:19237017 Zhang C, Wang Y, Chen H, Lan X, et al. (2007). Enhance the efficiency of single-strand conformation polymorphism analysis by short polyacrylamide gel and modified silver staining. Anal. Biochem. 365: 286-287. PMid:17449006
J. Xu, Wang, J., and Chen, B., SLC30A8 (ZnT8) variations and type 2 diabetes in the Chinese Han population, vol. 11, pp. 1592-1598, 2012.
Boutayeb A and Boutayeb S (2005). The burden of non communicable diseases in developing countries. Int. J. Equity Health 4: 2. PMid:15651987 PMCid:546417   Cauchi S, Proenca C, Choquet H, Gaget S, et al. (2008). Analysis of novel risk loci for type 2 diabetes in a general French population: the D.E.S.I.R. study. J. Mol. Med. 86: 341-348. PMid:18210030   Chausmer AB (1998). Zinc, insulin and diabetes. J. Am. Coll. Nutr. 17: 109-115. PMid:9550453   Chimienti F, Devergnas S, Favier A and Seve M (2004). Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes 53: 2330-2337. PMid:15331542   Crawford DC and Nickerson DA (2005). Definition and clinical importance of haplotypes. Annu. Rev. Med. 56: 303-320. PMid:15660514   Das SK and Elbein SC (2006). The genetic basis of type 2 diabetes. Cell Sci. 2: 100-131.   Frayling TM (2007a). Genome-wide association studies provide new insights into type 2 diabetes aetiology. Nat. Rev. Genet. 8: 657-662. PMid:17703236   Frayling TM (2007b). A new era in finding type 2 diabetes genes - the unusual suspects. Diabet. Med. 24: 696-701. PMid:17561964   Horikoshi M, Hara K, Ito C, Shojima N, et al. (2007). Variations in the HHEX gene are associated with increased risk of type 2 diabetes in the Japanese population. Diabetologia 50: 2461-2466. PMid:17928989   Kirchhoff K, Machicao F, Haupt A, Schafer SA, et al. (2008). Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. Diabetologia 51: 597-601. PMid:18264689   Li Z, Zhang Z, He Z, Tang W, et al. (2009). A partition-ligation-combination-subdivision EM algorithm for haplotype inference with multiallelic markers: update of the SHEsis ( Cell Res. 19: 519-523. PMid:19290020   Livak KJ, Marmaro J and Todd JA (1995). Towards fully automated genome-wide polymorphism screening. Nat. Genet. 9: 341-342. PMid:7795635   MacDonald PE and Rorsman P (2007). The ins and outs of secretion from pancreatic beta-cells: control of single-vesicle exo- and endocytosis. Physiology 22: 113-121. PMid:17420302   Morris RW and Kaplan NL (2002). On the advantage of haplotype analysis in the presence of multiple disease susceptibility alleles. Genet. Epidemiol. 23: 221-233. PMid:12384975   Omori S, Tanaka Y, Takahashi A, Hirose H, et al. (2008). Association of CDKAL1, IGF2BP2, CDKN2A/B, HHEX, SLC30A8, and KCNJ11 with susceptibility to type 2 diabetes in a Japanese population. Diabetes 57: 791-795. PMid:18162508   Owen KR and McCarthy MI (2007). Genetics of type 2 diabetes. Curr. Opin. Genet. Dev. 17: 239-244. PMid:17466512   Palmiter RD and Huang L (2004). Efflux and compartmentalization of zinc by members of the SLC30 family of solute carriers. Pflugers Arch. 447: 744-751. PMid:12748859   Sano M, Kuroi N, Nakayama T, Sato N, et al. (2005). Association study of calcitonin-receptor-like receptor gene in essential hypertension. Am. J. Hypertens. 18: 403-408. PMid:15797661   Saxena R, Voight BF, Lyssenko V, Burtt NP, et al. (2007). Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316: 1331-1336. PMid:17463246   Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, et al. (2007). A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316: 1341-1345. PMid:17463248 PMCid:3214617   Shi YY and He L (2005). SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 15: 97-98. PMid:15740637   Sladek R, Rocheleau G, Rung J, Dina C, et al. (2007). A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445: 881-885. PMid:17293876   Staiger H, Machicao F, Stefan N, Tschritter O, et al. (2007). Polymorphisms within novel risk loci for type 2 diabetes determine beta-cell function. PLoS One 2: e832. PMid:17786204 PMCid:1952072   Steinthorsdottir V, Thorleifsson G, Reynisdottir I, Benediktsson R, et al. (2007). A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat. Genet. 39: 770-775. PMid:17460697   Xiang X, Ma YT, Fu ZY, Yang YN, et al. (2009). Haplotype analysis of the CYP8A1 gene associated with myocardial infarction. Clin. Appl. Thromb. Hemost. 15: 574-580. PMid:19147528   Zeggini E (2007). A new era for type 2 diabetes genetics. Diabet. Med. 24: 1181-1186. PMid:17897328 PMCid:2121132   Zeggini E, Weedon MN, Lindgren CM, Frayling TM, et al. (2007). Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316: 1336-1341. PMid:17463249
P. Xuan, Guo, M. Z., Wang, J., Wang, C. Y., Liu, X. Y., and Liu, Y., Genetic algorithm-based efficient feature selection for classification of pre-miRNAs, vol. 10, pp. 588-603, 2011.
Bartel DP (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281-297. doi:10.1016/S0092-8674(04)00045-5 Batuwita R and Palade V (2009). microPred: effective classification of pre-miRNAs for human miRNA gene prediction. Bioinformatics 25: 989-995. doi:10.1093/bioinformatics/btp107 PMid:19233894 Berezikov E, Guryev V, van de Belt J, Wienholds E, et al. (2005). Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120: 21-24. doi:10.1016/j.cell.2004.12.031 PMid:15652478 Bushati N and Cohen SM (2007). microRNA functions. Annu. Rev. Cell Dev. Biol. 23: 175-205. doi:10.1146/annurev.cellbio.23.090506.123406 PMid:17506695 Chang DT, Wang CC and Chen JW (2008). Using a kernel density estimation based classifier to predict species-specific microRNA precursors. BMC Bioinformatics 9 (Suppl 12): S2. doi:10.1186/1471-2105-9-S12-S2 PMid:19091019    PMCid:2638167 Chatterjee S and Grosshans H (2009). Active turnover modulates mature microRNA activity in Caenorhabditis elegans. Nature 461: 546-549. doi:10.1038/nature08349 PMid:19734881 Fera D, Kim N, Shiffeldrim N, Zorn J, et al. (2004). RAG: RNA-As-Graphs web resource. BMC Bioinformatics 5: 88. doi:10.1186/1471-2105-5-88 PMid:15238163    PMCid:471545 Freyhult E, Gardner PP and Moulton V (2005). A comparison of RNA folding measures. BMC Bioinformatics 6: 241. doi:10.1186/1471-2105-6-241 PMid:16202126    PMCid:1274297 Gan HH, Fera D, Zorn J, Shiffeldrim N, et al. (2004). RAG: RNA-As-Graphs database - concepts, analysis, and features. Bioinformatics 20: 1285-1291. doi:10.1093/bioinformatics/bth084 PMid:14962931 Griffiths-Jones S, Saini HK, van Dongen S and Enright AJ (2008). miRBase: tools for microRNA genomics. Nucleic Acids Res. 36: D154-D158. doi:10.1093/nar/gkm952 PMid:17991681    PMCid:2238936 Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, et al. (1994). Fast folding and comparison of RNA secondary structures. Monatshefte fur Chemie/Chemical Monthly 125: 167-188. Jiang P, Wu H, Wang W, Ma W, et al. (2007). MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic Acids Res. 35: W339-W344. doi:10.1093/nar/gkm368 PMid:17553836    PMCid:1933124 Moulton V, Zuker M, Steel M, Pointon R, et al. (2000). Metrics on RNA secondary structures. J. Comput. Biol. 7: 277-292. doi:10.1089/10665270050081522 PMid:10890402 Nam JW, Shin KR, Han J, Lee Y, et al. (2005). Human microRNA prediction through a probabilistic co-learning model of sequence and structure. Nucleic Acids Res. 33: 3570-3581. doi:10.1093/nar/gki668 PMid:15987789    PMCid:1159118 Ng KL and Mishra SK (2007). De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using global and intrinsic folding measures. Bioinformatics 23: 1321-1330. doi:10.1093/bioinformatics/btm026 PMid:17267435 Quinlan JR (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo. Schultes EA, Hraber PT and LaBean TH (1999). Estimating the contributions of selection and self-organization in RNA secondary structure. J. Mol. Evol. 49: 76-83. doi:10.1007/PL00006536 PMid:10368436 Seffens W and Digby D (1999). mRNAs have greater negative folding free energies than shuffled or codon choice randomized sequences. Nucleic Acids Res. 27: 1578-1584. doi:10.1093/nar/27.7.1578 PMid:10075987    PMCid:148359 Sewer A, Paul N, Landgraf P, Aravin A, et al. (2005). Identification of clustered microRNAs using an ab initio prediction method. BMC Bioinformatics 6: 267. doi:10.1186/1471-2105-6-267 PMid:16274478    PMCid:1315341 Xue C, Li F, He T, Liu GP, et al. (2005). Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. BMC Bioinformatics 6: 310. doi:10.1186/1471-2105-6-310 PMid:16381612    PMCid:1360673 Yousef M, Nebozhyn M, Shatkay H, Kanterakis S, et al. (2006). Combining multi-species genomic data for microRNA identification using a naive Bayes classifier. Bioinformatics 22: 1325-1334. doi:10.1093/bioinformatics/btl094 PMid:16543277 Yousef M, Jung S, Showe LC and Showe MK (2008). Learning from positive examples when the negative class is undetermined - microRNA gene identification. Algorithms Mol. Biol. 3: 2. doi:10.1186/1748-7188-3-2 PMid:18226233    PMCid:2248178 Zhang BH, Pan XP, Cox SB, Cobb GP, et al. (2006). Evidence that miRNAs are different from other RNAs. Cell Mol. Life Sci. 63: 246-254. doi:10.1007/s00018-005-5467-7 PMid:16395542
X. Chen, Wu, C. - W., Zhong, S. - P., Zeng, F. - R., Zhang, J. - S., Wang, J., and Niu, S. - F., Molecular characterization and structure analysis of RPL10/QM-like protein from the red drum Sciaenops ocellatus (Sciaenidae), vol. 10, pp. 576-587, 2011.
Arnold K, Bordoli L, Kopp J and Schwede T (2006). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22: 195-201. doi:10.1093/bioinformatics/bti770 PMid:16301204 Buonocore F, Prugnoli D, Falasca C, Secombes CJ, et al. (2003). Peculiar gene organisation and incomplete splicing of sea bass (Dicentrarchus labrax L.) interleukin-1beta. Cytokine 21: 257-264. doi:10.1016/S1043-4666(03)00095-4 Chen C, Wanduragala S, Becker DF and Dickman MB (2006). Tomato QM-like protein protects Saccharomyces cerevisiae cells against oxidative stress by regulating intracellular proline levels. Appl. Environ. Microbiol. 72: 4001-4006. doi:10.1128/AEM.02428-05 PMid:16751508    PMCid:1489650 Dowdy SF, Lai KM, Weissman BE, Matsui Y, et al. (1991). The isolation and characterization of a novel cDNA demonstrating an altered mRNA level in nontumorigenic Wilms’ microcell hybrid cells. Nucleic Acids Res. 19: 5763-5769. doi:10.1093/nar/19.20.5763 PMid:1658743    PMCid:328988 Dresios J, Panopoulos P and Synetos D (2006). Eukaryotic ribosomal proteins lacking a eubacterial counterpart: important players in ribosomal function. Mol. Microbiol. 59: 1651-1663. doi:10.1111/j.1365-2958.2006.05054.x PMid:16553873 Farmer AA, Loftus TM, Mills AA, Sato KY, et al. (1994). Extreme evolutionary conservation of QM, a novel c-Jun associated transcription factor. Hum. Mol. Genet. 3: 723-728. doi:10.1093/hmg/3.5.723 PMid:8081358 Green H, Canfield AE, Hillarby MC, Grant ME, et al. (2000). The ribosomal protein QM is expressed differentially during vertebrate endochondral bone development. J. Bone Miner. Res. 15: 1066-1075. doi:10.1359/jbmr.2000.15.6.1066 PMid:10841175 Griaznova O and Traut RR (2000). Deletion of C-terminal residues of Escherichia coli ribosomal protein L10 causes the loss of binding of one L7/L12 dimer: ribosomes with one L7/L12 dimer are active. Biochemistry 39: 4075-4081. doi:10.1021/bi992621e PMid:10747797 Imafuku I, Masaki T, Waragai M, Takeuchi S, et al. (1999). Presenilin 1 suppresses the function of c-Jun homodimers via interaction with QM/Jif-1. J. Cell Biol. 147: 121-134. doi:10.1083/jcb.147.1.121 PMid:10508860    PMCid:2164975 Inada H, Mukai J, Matsushima S and Tanaka T (1997). QM is a novel zinc-binding transcription regulatory protein: its binding to c-Jun is regulated by zinc ions and phosphorylation by protein kinase C. Biochem. Biophys. Res. Commun. 230: 331-334. doi:10.1006/bbrc.1996.5955 PMid:9016777 Kiefer F, Arnold K, Kunzli M, Bordoli L, et al. (2009). The SWISS-MODEL Repository and associated resources. Nucleic Acids Res. 37: D387-D392. doi:10.1093/nar/gkn750 PMid:18931379    PMCid:2686475 Koller HT, Klade T, Ellinger A and Breitenbach M (1996). The yeast growth control gene GRC5 is highly homologous to the mammalian putative tumor suppressor gene QM. Yeast 12: 53-65. doi:10.1002/(SICI)1097-0061(199601)12:1<53::AID-YEA886>3.0.CO;2-M Kopp J and Schwede T (2004). The SWISS-MODEL Repository of annotated three-dimensional protein structure homology models. Nucleic Acids Res. 32: D230-D234. doi:10.1093/nar/gkh008 PMid:14681401    PMCid:308743 Kopp J and Schwede T (2006). The SWISS-MODEL Repository: new features and functionalities. Nucleic Acids Res. 34: D315-D318. doi:10.1093/nar/gkj056 PMid:16381875    PMCid:1347419 Korostelev A, Trakhanov S, Laurberg M and Noller HF (2006). Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements. Cell 126: 1065-1077. doi:10.1016/j.cell.2006.08.032 PMid:16962654 Lillico SG, Mottram JC, Murphy NB and Welburn SC (2002). Characterisation of the QM gene of Trypanosoma brucei. FEMS Microbiol. Lett. 211: 123-128. doi:10.1111/j.1574-6968.2002.tb11213.x PMid:12076801 Marty I, Brugidou C, Chartier Y and Meyer Y (1993). Growth-related gene expression in Nicotiana tabacum mesophyll protoplasts. Plant J. 4: 265-278. doi:10.1046/j.1365-313X.1993.04020265.x PMid:8220482 Melo F and Feytmans E (1998). Assessing protein structures with a non-local atomic interaction energy. J. Mol. Biol. 277: 1141-1152. doi:10.1006/jmbi.1998.1665 PMid:9571028 Monteclaro FS and Vogt PK (1993). A Jun-binding protein related to a putative tumor suppressor. Proc. Natl. Acad. Sci. U.S.A. 90: 6726-6730. doi:10.1073/pnas.90.14.6726 Nishimura M, Kaminishi T, Kawazoe M, Shirouzu M, et al. (2007). Purification, crystallization and preliminary X-ray diffraction study of human ribosomal protein L10 core domain. Acta Crystallogr. Sect. F. Struct. Biol. Cryst. Commun. 63: 950-952. doi:10.1107/S1744309107048142 PMid:18007048    PMCid:2339757 Nishimura M, Kaminishi T, Takemoto C, Kawazoe M, et al. (2008). Crystal structure of human ribosomal protein L10 core domain reveals eukaryote-specific motifs in addition to the conserved fold. J. Mol. Biol. 377: 421-430. doi:10.1016/j.jmb.2008.01.003 PMid:18258260 Park S and Jeong DG (2006). Ribosomal protein L10 interacts with the SH3 domain and regulates GDNF-induced neurite growth in SH-SY-5y cells. J. Cell Biochem. 99: 624-634. doi:10.1002/jcb.20888 PMid:16741966 Saitou N and Nei M (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425. PMid:3447015 Sambrook J and Russell DW (2001). Molecular Cloning 3. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 644-656. Scotto-Lavino E, Du G and Frohman MA (2006). 5’ end cDNA amplification using classic RACE. Nat. Protoc. 1: 2555- 2562. doi:10.1038/nprot.2006.480 PMid:17406509 Tamura K, Dudley J, Nei M and Kumar S (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. doi:10.1093/molbev/msm092 PMid:17488738 Tron T, Yang M, Dick FA, Schmitt ME, et al. (1995). QSR1, an essential yeast gene with a genetic relationship to a subunit of the mitochondrial cytochrome bc1 complex, is homologous to a gene implicated in eukaryotic cell differentiation. J. Biol. Chem. 270: 9961-9970. doi:10.1074/jbc.270.17.9961 PMid:7730379 Wen Y, Shao JZ, Pan XX and Xiang LX (2005). Molecular cloning, characterization and expression analysis of QM gene from grass carp (Ctenopharyngodon idellus) homologous to Wilms’ tumor suppressor. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 141: 356-365. doi:10.1016/j.cbpc.2005.04.007 PMid:15936234
D. - A. Fang, Wang, Q., Wang, J., He, L., Liu, L. - H., and Wang, Y., A novel DDX5 gene in the freshwater crayfish Cherax quadricarinatus is highly expressed during ontogenesis and spermatogenesis, vol. 10, pp. 3963-3975, 2011.
Abdelhaleem M (2005). RNA helicases: regulators of differentiation. Clin. Biochem. 38: 499-503. PMid:15885226 Altschul SF, Madden TL, Schaffer AA, Zhang J, et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. PMid:9254694 PMCid:146917 Barki A, Levi T, Hulata G and Karplus I (1997). Annual cycle spawning and molting in the red-claw crayfish, Cherax quadricarinatus, under laboratory conditions. Aquaculture 157: 239-249. Bugnot AB and López Greco LS (2009). Sperm production in the red claw crayfish Cherax quadricarinatus (Decapoda Parastacidae). Aquaculture 295: 292-299. Claerhout T, Bendena W, Tobe SS and Borst DW (1996). Characterization of methyl transferase activity in the mandibular organ of the American lobster Homarus americanus. Biol. Bull. 191: 304-308. Cordin O, Banroques J, Tanner NK and Linder P (2006). The DEAD-box protein family of RNA helicases. Gene 367: 17-37. PMid:16337753 Eddy EM (2002). Male germ cell gene expression. Recent Prog. Horm. Res. 57: 103-128. PMid:12017539 Extavour CG (2005). The fate of isolated blastomeres with respect to germ cell formation in the amphipod crustacean Parhyale hawaiensis. Dev. Biol. 277: 387-402. PMid:15617682 Foulks NB and Hoffman DL (1974). The effects of eyestalk ablation and B-ecdysone on RNA synthesis in the androgenic glands of the protandric shrimp, Pandalus platyceros Brandt. Gen. Comp. Endocrinol. 22: 439-447. Gustafson EA and Wessel GM (2010). DEAD-box helicases: posttranslational regulation and function. Biochem. Biophys. Res. Commun. 395: 1-6. PMid:20206133 PMCid:2863303 Heinlein UA (1998). Dead box for the living. J. Pathol. 184: 345-347.<345::AID-PATH1243>3.0.CO;2-6 Iggo RD and Lane DP (1989). Nuclear protein p68 is an RNA-dependent ATPase. EMBO J. 8: 1827-1831. PMid:2527746 PMCid:401029 Jost JP, Schwarz S, Hess D and Angliker (1999). A chicken embryo protein related to the mammalian DEAD box protein p68 is tightly associated with the highly purified protein-RNA complex of 5-MeC-DNA glycosylase. Nucleic Acids Res. 27: 3245-3252. PMid:10454630 PMCid:148556 Karplus I, Gideon H and Barki A (2003). Shifting the natural spring-summer breeding season of Australian freshwater crayfish Cherax quadricarinatus into winter by environmental manipulations. Aquaculture 220: 277-286. Khalaila I, Manor R, Weil S, Granot Y, et al. (2002). The eyestalk-androgenic gland-testis endocrine axis in the crayfish Cherax quadricarinatus. Gen. Comp. Endocrinol. 127: 147-156. Lane DP and Hoeffler WK (1980). SV40 large T shares an antigenic determinant with a cellular protein of molecular weight 68,000. Nature 288: 167-170. PMid:6159551 LeMaire L and Heinlein UA (1993). High-level expression in male germ cells of murine P68 RNA helicase mRNA. Life Sci. 52: 917-926. Li S, Wagner CA, Friesen JA and Borst DW (2003). 3-hydroxy-3-methylglutaryl-coenzyme A reductase in the lobster mandibular organ: regulation by the eyestalk. Gen. Comp. Endocrinol. 134: 147-155. Linder P (2006). Dead-box proteins: a family affair--active and passive players in RNP-remodeling. Nucleic Acids Res. 34: 4168-4180. PMid:16936318 PMCid:1616962 Liu ZR (2002). p68 RNA helicase is an essential human splicing factor that acts at the U1 snRNA-5ꞌ splice site duplex. Mol. Cell Biol. 22: 5443-5450. PMid:12101238 PMCid:133941 Livak KJ and Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408. López Greco LS and Lo Nostro FL (2008). Structural changes of the spermatophore in the freshwater "red claw" crayfish Cherax quadricarinatus (von Martens 1898) (Decapoda Parastacidae). Acta Zool. 89: 149-155. Luo YL, Wu ZX, Chen XX and Shen XH (1999). Histological study on spermary development of Cherax quadricarinatus. J. Huazhong Agric. Univ. 18: 78-79. Marcelo GG, Michel EH and Humberto V (2003). Description of the embryonic development of Cherax quadricarinatus (von Martens 1868) (Decapoda Parastacidae) based on the staging method. Crustaceana 76: 269-280. McCormick S, Curie C, Eyal Y and Muschietti J (1994). Molecular biology of male gametogenesis. Euphytica 79: 245-250. Meistrich ML, Mohapatra B, Shirley CR and Zhao M (2003). Roles of transition nuclear proteins in spermiogenesis. Chromosoma 111: 483-488. PMid:12743712 Meng FL, Zhao YL, Chen LQ and Gu ZM (2000). The study of embryonic development of Cherax quadricarinatus I. Morphogenesis of external structures of embryo. Zool. Res. 21: 468-472. Olsen LC, Aasland R and Fjose A (1997). A vasa-like gene in zebrafish identifies putative primordial germ cells. Mech. Dev. 66: 95-105. Parvinen M (2005). The chromatoid body in spermatogenesis. Int. J. Androl 28: 189-201. PMid:16048630 Rocak S and Linder P (2004). DEAD-box proteins: the driving forces behind RNA metabolism. Nat. Rev. Mol. Cell Biol. 5: 232-241. PMid:14991003 Saffman EE and Lasko P (1999). Germline development in vertebrates and invertebrates. Cell Mol. Life Sci. 55: 1141-1163. PMid:10442094 Sandhu H, LeMaire L and Heinlein UA (1995). Male germ cell extracts contain proteins binding to the conserved 3'-end of mouse p68 RNA helicase mRNA. Biochem. Biophys. Res. Commun. 214: 632-638. PMid:7677776 Schulz RW, de Franca LR, Lareyre JJ, Le GF, et al. (2010). Spermatogenesis in fish. Gen. Comp. Endocrinol. 165: 390-411. PMid:19348807 Sengoku T, Nureki O, Nakamura A, Kobayashi S, et al. (2006). Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa. Cell 125: 287-300. PMid:16630817 Seufert DW, Kos R, Erickson CA and Swalla BJ (2000). p68, a DEAD-box RNA helicase, is expressed in chordate embryo neural and mesodermal tissues. J. Exp. Zool. 288: 193-204.<193::AID-JEZ1>3.0.CO;2-V Seydoux G and Braun RE (2006). Pathway to totipotency: lessons from germ cells. Cell 127: 891-904. PMid:17129777 Stevenson RJ, Hamilton SJ, MacCallum DE, Hall PA, et al. (1998). Expression of the 'dead box' RNA helicase p68 is developmentally and growth regulated and correlates with organ differentiation/maturation in the fetus. J. Pathol. 184: 351-359.<351::AID-PATH1235>3.0.CO;2-C Tamura K, Dudley J, Nei M and Kumar S (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. PMid:17488738
J. Wang, Liu, X. Y., and Yang, Y. Q., Novel NKX2-5 mutations responsible for congenital heart disease, vol. 10, pp. 2905-2915, 2011.
Akazawa H and Komuro I (2005). Cardiac transcription factor Csx/Nkx2-5: its role in cardiac development and diseases. Pharmacol. Ther. 107: 252-268. Benson DW, Silberbach GM, Kavanaugh-McHugh A, Cottrill C, et al. (1999). Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J. Clin. Invest. 104: 1567-1573. PMid:10587520    PMCid:409866 Biben C, Weber R, Kesteven S, Stanley E, et al. (2000). Cardiac septal and valvular dysmorphogenesis in mice heterozygous for mutations in the homeobox gene Nkx2-5. Circ. Res. 87: 888-895. PMid:11073884 Briggs LE, Takeda M, Cuadra AE, Wakimoto H, et al. (2008). Perinatal loss of Nkx2-5 results in rapid conduction and contraction defects. Circ. Res. 103: 580-590. PMid:18689573    PMCid:2590500 Ching YH, Ghosh TK, Cross SJ, Packham EA, et al. (2005). Mutation in myosin heavy chain 6 causes atrial septal defect. Nat. Genet. 37: 423-428. PMid:15735645 Elliott DA, Kirk EP, Yeoh T, Chandar S, et al. (2003). Cardiac homeobox gene NKX2-5 mutations and congenital heart disease: associations with atrial septal defect and hypoplastic left heart syndrome. J. Am. Coll. Cardiol. 41: 2072-2076. Garg V, Kathiriya IS, Barnes R, Schluterman MK, et al. (2003). GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 424: 443-447. PMid:12845333 Garg V, Muth AN, Ransom JF, Schluterman MK, et al. (2005). Mutations in NOTCH1 cause aortic valve disease. Nature 437: 270-274. PMid:16025100 Grow MW and Krieg PA (1998). Tinman function is essential for vertebrate heart development: elimination of cardiac differentiation by dominant inhibitory mutants of the tinman-related genes, XNkx2-3 and XNkx2-5. Dev. Biol. 204: 187-196. PMid:9851852 Hirayama-Yamada K, Kamisago M, Akimoto K, Aotsuka H, et al. (2005). Phenotypes with GATA4 or NKX2.5 mutations in familial atrial septal defect. Am. J. Med. Genet. A 135: 47-52. PMid:15810002 Hosoda T, Komuro I, Shiojima I, Hiroi Y, et al. (1999). Familial atrial septal defect and atrioventricular conduction disturbance associated with a point mutation in the cardiac homeobox gene CSX/NKX2-5 in a Japanese patient. Jpn. Circ. J. 63: 425-426. PMid:10943630 Jenkins KJ, Correa A, Feinstein JA, Botto L, et al. (2007). Noninherited risk factors and congenital cardiovascular defects: current knowledge: a scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation 115: 2995-3014. PMid:17519397 Kasahara H and Benson DW (2004). Biochemical analyses of eight NKX2.5 homeodomain missense mutations causing atrioventricular block and cardiac anomalies. Cardiovasc. Res. 64: 40-51. PMid:15364612 Kasahara H, Lee B, Schott JJ, Benson DW, et al. (2000). Loss of function and inhibitory effects of human CSX/NKX2.5 homeoprotein mutations associated with congenital heart disease. J. Clin. Invest. 106: 299-308. PMid:10903346    PMCid:314312 Kasahara H, Wakimoto H, Liu M, Maguire CT, et al. (2001). Progressive atrioventricular conduction defects and heart failure in mice expressing a mutant Csx/Nkx2.5 homeoprotein. J. Clin. Invest. 108: 189-201. PMid:11457872    PMCid:203028 Kodo K, Nishizawa T, Furutani M, Arai S, et al. (2009). GATA6 mutations cause human cardiac outflow tract defects by disrupting semaphorin-plexin signaling. Proc Natl. Acad. Sci U. S. A. 106: 13933-13938. PMid:19666519    PMCid:2728998 Li QY, Newbury-Ecob RA, Terrett JA, Wilson DI, et al. (1997). Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nat. Genet. 15: 21-29. PMid:8988164 Lloyd-Jones D, Adams R, Carnethon M, De Simone G, et al. (2009). Heart disease and stroke statistics--2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 119: e21-181. PMid:19075105 Lyons I, Parsons LM, Hartley L, Li R, et al. (1995). Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev. 9: 1654-1666. Matsson H, Eason J, Bookwalter CS, Klar J, et al. (2008). Alpha-cardiac actin mutations produce atrial septal defects. Hum. Mol. Genet. 17: 256-265. PMid:17947298 Nora JJ and Nora AH (1976). Recurrence risks in children having one parent with a congenital heart disease. Circulation 53: 701-702. PMid:1253394 Pashmforoush M, Lu JT, Chen H, Amand TS, et al. (2004). Nkx2-5 pathways and congenital heart disease; loss of ventricular myocyte lineage specification leads to progressive cardiomyopathy and complete heart block. Cell 117: 373-386. Pierpont ME, Basson CT, Benson DW Jr, Gelb BD, et al. (2007). Genetic basis for congenital heart defects: current knowledge: a scientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation 115: 3015-3038. PMid:17519398 Prall OW, Menon MK, Solloway MJ, Watanabe Y, et al. (2007). An Nkx2-5/Bmp2/Smad1 negative feedback loop controls heart progenitor specification and proliferation. Cell 128: 947-959. PMid:17350578    PMCid:2092439 Razzaque MA, Nishizawa T, Komoike Y, Yagi H, et al. (2007). Germline gain-of-function mutations in RAF1 cause Noonan syndrome. Nat. Genet. 39: 1013-1017. PMid:17603482 Reamon-Buettner SM and Borlak J (2004). Somatic NKX2-5 mutations as a novel mechanism of disease in complex congenital heart disease. J. Med. Genet. 41: 684-690. PMid:15342699    PMCid:1735891 Roberts AE, Araki T, Swanson KD, Montgomery KT, et al. (2007). Germline gain-of-function mutations in SOS1 cause Noonan syndrome. Nat. Genet. 39: 70-74. PMid:17143285 Rodriguez-Viciana P, Tetsu O, Tidyman WE, Estep AL, et al. (2006). Germline mutations in genes within the MAPK pathway cause cardio-facio-cutaneous syndrome. Science 311: 1287-1290. PMid:16439621 Sarkozy A, Conti E, Neri C, D’Agostino R, et al. (2005). Spectrum of atrial septal defects associated with mutations of NKX2.5 and GATA4 transcription factors. J. Med. Genet. 42: e16. PMid:15689439    PMCid:1735979 Schott JJ, Benson DW, Basson CT, Pease W, et al. (1998). Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science 281: 108-111. PMid:9651244 Shiojima I, Komuro I, Inazawa J, Nakahori Y, et al. (1995). Assignment of cardiac homeobox gene CSX to human chromosome 5q34. Genomics 27: 204-206. PMid:7665173 Stallmeyer B, Fenge H, Nowak-Gottl U and Schulze-Bahr E (2010). Mutational spectrum in the cardiac transcription factor gene NKX2.5 (CSX) associated with congenital heart disease. Clin. Genet. 78: 533-540. PMid:20456451 Tanaka M, Chen Z, Bartunkova S, Yamasaki N, et al. (1999). The cardiac homeobox gene Csx/Nkx2.5 lies genetically upstream of multiple genes essential for heart development. Development 126: 1269-1280. PMid:10021345
J. Wang, Zou, Q., and Guo, M. Z., Mining SNPs from EST sequences using filters and ensemble classifiers, vol. 9, pp. 820-834, 2010.
Altschul SF, Madden TL, Schaffer AA, Zhang J, et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. PMid:9254694 PMCid:146917   Barker G, Batley J, O' Sullivan H, Edwards KJ, et al. (2003). Redundancy based detection of sequence polymorphisms in expressed sequence tag data using autoSNP. Bioinformatics 19: 421-422. PMid:12584131   Batley J, Barker G, O'Sullivan H, Edwards KJ, et al. (2003). Mining for single nucleotide polymorphisms and insertions/ deletions in maize expressed sequence tag data. Plant Physiol. 132: 84-91. PMid:12746514 PMCid:166954   Clifford R, Edmonson M, Hu Y, Nguyen C, et al. (2000). Expression-based genetic/physical maps of single-nucleotide polymorphisms identified by the cancer genome anatomy project. Genome Res. 10: 1259-1265. PMid:10958644 PMCid:310932   Deutsch S, Iseli C, Bucher P, Antonarakis SE, et al. (2001). A cSNP map and database for human chromosome 21. Genome Res. 11: 300-307. PMid:11157793 PMCid:311032   Frank E and Witten IH (2005). Data Mining: Practical machine learning tools and techniques. 2nd edn. Morgan Kaufmann, San Francisco.   Frank E, Hall M, Trigg L, Holmes G, et al. (2004). Data mining in bioinformatics using Weka. Bioinformatics 20: 2479-2481. PMid:15073010   Holliday R and Grigg GW (1993). DNA methylation and mutation. Mutat. Res. 285: 61-67.   Huang X and Madan A (1999). CAP3: A DNA sequence assembly program. Genome Res. 9: 868-877. PMid:10508846 PMCid:310812   Huntley D, Baldo A, Johri S and Sergot M (2006). SEAN: SNP prediction and display program utilizing EST sequence clusters. Bioinformatics 22: 495-496. PMid:16357032   Irizarry K, Kustanovich V, Li C, Brown N, et al. (2000). Genome-wide analysis of single-nucleotide polymorphisms in human expressed sequences. Nat. Genet. 26: 233-236. PMid:11017085   Krogh A and Vedelsby J (1995). Advances in Neural Information Processing Systems 7. In: Neural Network Ensembles, Cross Validation, and Active Learning (Krogh A and Vedelsby J, eds.). MIT Press, Cambridge, 231-238.   Marth GT, Korf I, Yandell MD, Yeh RT, et al. (1999). A general approach to single-nucleotide polymorphism discovery. Nat. Genet. 23: 452-456. PMid:10581034   Mullikin JC, Hunt SE, Cole CG, Mortimore BJ, et al. (2000). An SNP map of human chromosome 22. Nature 407: 516-520. PMid:11029003   Ning Z, Caccamo M and Mullikin JC (2005). ssahaSNP-A polymorphism detection tool by genomic alignment. Proceedings of the 2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05), Stanford, 251-254.   Picoult-Newberg L, Ideker TE, Pohl MG, Taylor SL, et al. (1999). Mining SNPs from EST databases. Genome Res. 9: 167-174. PMid:10022981 PMCid:310719   Savage D, Batley J, Erwin T, Logan E, et al. (2005). SNPServer: a real-time SNP discovery tool. Nucleic Acids Res. 33: W493-W495. PMid:15980519 PMCid:1160223   Sherry ST, Ward MH, Kholodov M, Baker J, et al. (2001). dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29: 308-311. PMid:11125122 PMCid:29783   Taillon-Miller P, Gu Z, Li Q, Hillier LD, et al. (1998). Overlapping genomic sequences: a treasure trove of single-nucleotide polymorphisms. Genome Res. 748: 754.   Zhang J, Wheeler DA, Yakub I, Wei S, et al. (2005). SNPdetector: a software tool for sensitive and accurate SNP detection. PLoS. Comput. Biol. 1: e53. PMid:16261194 PMCid:1274293